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Application of the Natural-Element Method to
Model Moving Electromagnetic Devices

L. Illoul1, J. Yvonet1, F. Chinesta1, and S. Clénet2

LMSP, ENSAM, CER Paris, 75013 Paris, France
L2EP, ENSAM, CER Lille, 59046 Lille Cedex, France

The natural-element method, which belongs to the family of meshless methods, is applied in the context of two-dimensional magne-
tostatics with moving parts. The method is reviewed and its interest for handling discontinuities in electromagnet devices with moving
parts is illustrated through a numerical example.

Index Terms—Magnetostatics, movement, natural-element method (NEM).

I. INTRODUCTION

E FFICIENT methods have been already developed in two
dimensionstohandle themotionofelectromagneticdevices

with rotating parts in finite-element model (FEM) [1], [2]. When
the motion becomes complex (combination of rotation and
translation), it leads to large mesh deformations. A remeshing
step is then required, which increases the complexity of the
method and can also induce noise due to the gap between the field
projections from the old to the new meshes. Meshless methods
provide new tools to take motion of interfaces into account.
Nevertheless, in most mesh-free methods, imposition of essential
boundary conditions is a difficult task. The natural-element
method (NEM), which is a great interest in the domain of
mechanics, enables us to easily overcome the aforementioned
issues [3], [4]. In this paper, we propose the use of the NEM
to model an electromagnetic device involving moving parts.
First, the magnetostatics problem is summarized. Then, the
NEM is reviewed. Finally, the interest of the NEM to handle
moving discontinuities is evaluated in the context of a simple
electromagnetic problem.

II. MAGNETOSTATICS PROBLEM

Let denote the domain studied and its surface. In mag-
netostatics, the magnetic field and the magnetic flux density

verify

(1)

where is the current density whose distribution is assumed
known in . Both fields are related by the constitutive equation

(2)

with the permeability. On the surface , the following
boundary conditions are prescribed:

on on (3)

with and , two complementary parts of , and , the out-
ward normal unity vector defined on . In magnetostatics, the

problem is generally solved using the vector potential which
satisfies

on (4)

The vector potential has only one component in two dimen-
sions, with the coordinates of a point in the domain

. The equation to be solved then reads

and on (5)

III. DISCRETISATION

A set of nodes , with coordinates ,
respectively, is distributed on the whole domain . A scalar
function is associated with each node in . The vector
potential is then approximated in the usual form

(6)

with representing the nodal degrees of freedom which are
obtained solving the linear system obtained by applying the
Galerkin method to the weak formulation related to (5). In
the FEM context, the nodal degree of freedom corresponds
with the vector potential at node . The interpolation function

verifies the Kronecker’s delta property, i.e. .
Thus, the essential boundary conditions can be imposed by
prescribing the vector potential at the nodes located on
(the shape functions related to internal nodes vanish on the
domain boundary). In most mesh-free methods, it is not possible
to directly impose essential boundary conditions because the
shape functions do not satisfy the Kronecker property, and the
shape functions related to the interior nodes do not vanish on
the domain boundary. In the next section, we show how the
NEM enables us to overcome this issue and allows handling
discontinuities in the domain in a very simple manner.

In recent years, mesh-free methods for the solution of partial
differential equations have significantly matured and have
been used in various fields of engineering science. One of
the reasons for this development is the fact that mesh-free
discretizations and particle models are often better suited to
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cope with geometrical changes of the domain of interest than
mesh-based discretization techniques, such as finite differences,
finite elements, or finite volumes techniques. Furthermore, the
computational costs associated with mesh generation are al-
leviated in mesh-free approaches since they are based only
on a cloud of nodes without any geometrical restriction with
respect to their distribution, in contrast with the finite-element
method, where elements that are too distorted lead to poor
accuracy. The so-called meshless or mesh-free methods have
been investigated and used by many researchers for treating a
large variety of engineering problems, usually involving large
displacements as encountered, for example, in forming process
simulations (free surface problems, moving boundaries prob-
lems, moving interfaces, and cracks propagation, among many
others). In these problems, accurate finite-element solutions
require significant computational efforts in remeshing steps.
In contrast, meshless methods require only nodal data without
explicit connectivity between nodes. The first generation of
meshless methods, the smooth particle hydrodynamics (SPH)
method, originally proposed by Lucy [5], introduces kernel
approximations and imposes the consevation laws using a
collocation technique. Recently, other mesh-free methods have
been proposed, such as the element-free Galerkin (EFG) [6],
the reproducing kernel particle method (RKPM) [7], and the
NEM [8], among many others, and they have been success-
fully used to discretize the Galerkin weak form associated
with the different models. Several methods for the analysis of
discontinuities or interfaces have been developed in both mesh
and meshless techniques. The most common approach lies in
explicitly tracking the interface motion. Within the interface
tracking approach, two main alternatives exist: the moving
mesh methods and the mixed Eulerian–Lagrangian methods.
Moving finite-element mesh methods conform element bound-
aries to the interface as it evolves. Although these methods
are very accurate, they are limited by severe mesh distortion.
Thus, frequent remeshing is needed, with the associated field
projections between successive meshes. Moreover, remeshing
is, even today, a delicate task in three dimensions. To alleviate
remeshing efforts a number of Eulerian–Lagrangian methods
have been developed recently that track the interface while
solving the equations on a fixed grid. Many of these methods
effectively smear the discontinuity over a few grid cells, and,
therefore, are not capable of accurately representing the solution
across the interface. A new approach for representing localized
behaviors has recently emerged in the field of the finite-element
method, known as extended finite-element method (X-FEM),
in which the interface evolution can be properly represented
on a fixed background mesh, just by adding an appropriate
enrichment in the functional approximation in the elements
that are intersected by the moving discontinuity. Alternative
to the aforementioned methods, the constrained NEM [4] has
been proposed to handle discontinuities and moving interfaces
in mesh-free methods in a very simple manner. The technique
uses the features of the NEM [8], [3] in tandem with a visibility
criterion. Unlike in most mesh-free methods, the constructed
approximation is strictly conforming and continuous across
interfaces (with discontinuous normal derivative), which avoids
the use of discontinuous enrichment techniques.

Fig. 1. Construction of the Sibson shape functions. On left, the point x is
located inside the domain. On right, the point x is located on the boundary.

IV. NEM

In this section, after a brief review of the Voronoï-based in-
terpolants, the utility of the technique for handling moving in-
terfaces is presented. We briefly touch upon the foundation of
Sibson’s natural neighbor coordinates (shape functions) that are
used in the NEM. For a more in-depth discussion on the Sibson
interpolant and its application for solving second-order partial
differential equations, the interested reader can refer to [8] and
the references therein. The NEM interpolant is constructed on
the basis of the Voronoï diagram. The Delaunay tessellation is
the topological dual of the Voronoï diagram.

Consider a set of nodes [for
the sake of simplicity, we will consider only two-dimensional
(2-D) models, but all the results can be directly extended to the
three-dimensional (3-D) case]. The Voronoï diagram is the sub-
division of into regions (Voronoï cells) defined by

(7)

where denotes the Euclidean distance. Thus, points in
are closer to the node than to any other node in the cloud. Let
consider a point inside the domain studied (Fig. 1). To calcu-
late the value of the Sibson coordinates of with respect
to a natural neighbor (see Fig. 1), the set of neighbor nodes
is determined. Nodes are natural neighbors of if the
point is within the circumcircle of the triangle
coming from the Delaunay tessellation. In Fig. 1, only natural
neighbors of are represented. The second-order Voronoï cell

is given by

(8)

In Fig. 1, the second-order cell related to the point
and the node is the polygon (afghe). If we denote , the
surface of the cell , the Sibson coordinate is given
by

(9)

For example, in the case of the Fig. 1, is given by

(10)

If the point coincides with the node , i.e., , then
, and all other shape functions are zero, i.e.,
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being the Kronecker delta). If a node is not a neighbor
of the point , the function vanishes. The support of the
function is bounded.

The properties of positivity, interpolation, and partition of
unity are then verified [8]

and and (9)

The natural neighbor shape functions also satisfy the local
coordinate property, namely

(10)

which combined with (9), implies that the natural neighbor in-
terpolant spans the space of linear polynomials (linear com-
pleteness). Sibson natural neighbor shape functions are at
any point except at the nodes, where they are only . The
continuity can be improved by using special classes of natural
neighbor shape functions. Another important property of this
interpolant is its strict linearity over the boundary of convex do-
mains [8]. An illustration is depicted in Fig. 1 (right): As the
areas of the Voronoï cells associated with the nodes located on
the domain boundary become infinite, the contribution of in-
ternal nodes (with a finite area) vanish in the limit when the
point approaches the convex boundary, and the shape functions
associated with nodes and become linear on the segment

. This is not true in the case of nonconvex boundaries,
but the use of a special treatment such as a visibility criterion
in the context of the NEM generalizes this property to any kind
of domain boundary. The resulting technique (which involves
a visibility criterion to limit the number of neighbor nodes) is
called the constrained natural-element method (C-NEM) [4].
To handle fixed or moving interfaces the C-NEM proceeds by
defining the different interfaces as a collection of linear seg-
ments (or triangular facets in three dimensions), which can be
viewed as opaque boundaries. Now, the C-NEM functional in-
terpolation is defined by considering at point the contribution
of all neighbor and visible nodes (the interfaces being consid-
ered as opaque). Thus, we can write

(12)

where is the number of natural neighbors visible from point
. The computation of the constrained natural neighbor shape

functions is similar to the natural neighbor shape func-
tion, when one proceeds using the constrained Voronoï diagram
[4]. Due to the inherent meshless character, these interfaces can
be added in arbitrary clouds of nodes and the nodes defining
the interface can move freely on the background cloud without
any geometrical restriction. In this context, the constructed ap-
proximation is strictly continuous across any interface, being
its normal derivative discontinuous. To illustrate this behavior,
we consider the situation depicted in Fig. 3, where the point
moves from to . If is in then the interpolated field
is constructed using the neighbor visible nodes from point (

Fig. 2. Sibson shape function related to a node surrounded by eight other
nodes.

Fig. 3. Interface tracking: reproducing transmission conditions.

is assumed opaque). If is on , according to the previous dis-
cussion, the interpolated field is strictly linear because it only
depends on the two neighbor nodes located on . Finally, when

is in , the interpolated field is defined using the neighbor
and visible nodes from point . The con-
tinuity of the interpolated field is then guaranteed, but a discon-
tinuity appears in the normal derivative, because of a sudden
change in the neighbor nodes across the interface.

V. MOVEMENT

In the framework of the NEM, updating, addition or suppres-
sion of nodes is quite easy. So, to move a part in , we pro-
ceed as follow. First, nodes are distributed on the whole domain

without considering the moving part . Then, the moving
part is added to the domain with all its associated nodes. Then,
whatever the position of in , all the nodes of shad-
owing by are suppressed. The problem is solved with the
remaining nodes of and the nodes of . This technique is
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Fig. 4. Electromagnet under study and the distribution of nodes used for the
discretization with the NEM.

Fig. 5. Evolution of the flux versus the angle.

Fig. 6. Evolution of the attractive torque versus the angle.

simple to carry out whatever the movement (translation, rota-
tion, or a combination of both).

VI. NUMERICAL EXAMPLE

The electromagnet depicted in Fig. 4, which involves a
moving part, is analyzed. The static part is composed of a
ferromagnetic core with two coils in series. The moving part
is made up ferromagnetic material. The relative permeability
of the ferromagnetic material is constant and equal to 1000.
The nodal distribution used for the discretization of the elec-
tromagnet is illustrated in Fig. 4. When the coil is supplied and
the moving part rotates around the point 0 (see Fig. 4), we have
calculated the flux (Fig. 5) and the attractive torque (Fig. 6).
The torque is calculated using the Maxwell stress tensor. The
results obtained are very coherent because the torque is close
to the torque calculated using another method based on the

derivative of the coenergy (i.e., by derivating the flux versus
the angle)

(12)

where is the torque, is the flux, both calculated at the
angular position, and is the angle step. Concerning the

computational effort, it is not possible at present to compare of
both the FEM and the NEM because due to the novelty of the
last one (i.e., the numerical algorithms are not yet optimized).
The construction of the NEM shape functions are more expen-
sive that those of the FEM; however, the accuracy of the NEM
is significantly higher and no remeshing is required when one
uses the NEM (remeshing procedures are expensive in two di-
mensions and very delicate in three dimensions). In a former
work [9], we have proposed a new fast algorithm for computing
the NEM shape functions that is not much more expensive that
the one used in the FEM context.

VII. CONCLUSION

In this work, we have proved the ability of a novel meshless
method, the C-NEM, for simulating electromagnetic devices in-
volving moving interfaces in two dimensions. All the construc-
tions described in this paper can be directly extended to the 3-D
case for nodal interpolation [10]. We are conscious that the ex-
tension to the 3-D treatment (i.e., edge elements) of electromag-
netic models requires more in deep developments.

REFERENCES

[1] B. Davat, Z. Ren, and M. Lajoie-Mazenc, “The movement in field mod-
eling,” IEEE Trans. Magn., vol. MAG-21, no. 6, pp. 2296–2298, Nov.
1985.

[2] B. Boualem and F. Piriou, “Numerical models for rotor cage induction
machines using finite element method,” IEEE Trans. Magn., vol. 34, no.
5, pp. 3202–3205, Sep. 1998.

[3] E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, and M. Doblaré,
“Overview and recent developments in natural neighbor galerkin
methods,” Arch. Comput. Meth. Eng., vol. 10/4, pp. 307–384, 2003.

[4] J. Yvonnet, D. Ryckelynck, P. Lorong, and F. Chinesta, “A New exten-
sion of the natural element method for nonconvex and discontinuous
problems: The constrained natural element method (C-NEM),” Int. J.
Numer. Meth. Eng., vol. 60/8, pp. 1451–1474, 2004.

[5] L. B. Lucy, “A Numerical approach to the testing of fusion process,”
Astron. J., vol. 88, pp. 1013–1024, 1997.

[6] T. Belytschko, Y. Lu, and L. Gu, “Element-free galerkin methods,” Int.
J. Numer. Meth. Eng., vol. 37, pp. 229–256, 1994.

[7] W. K. Liu, S. Jun, and Y. F. Zhang, “Reproducing kernel particle
methods,” Int. J. Numer. Meth. Fluids, vol. 21, pp. 1081–1106, 1995.

[8] N. Sukumar, B. Moran, and T. Belytschko, “The natural element method
in solid mechanics,” Int. J. Numer. Meth. Eng., vol. 43, pp. 839–887,
1998.

[9] J. Yvonnet and F. Chinesta, “An Hybrid element free galerkin and nat-
ural element meshfree method for direct imposition of boundary condi-
tions and faster three-dimensional computations,” presented at the 3rd
MIT Conf. Computational Fluid and Solid Mechanics, Cambridge, MA,
2005.

[10] I. Alfaro, D. Bel, E. Cueto, M. Doblare, and F. Chinesta, “Three-dimen-
sional simulation of aluminum extrusion by the alpha-shape based nat-
ural element method,” in Proc. Comput. Meth. Appl. Mech. Eng., to be
published.

4


	toc
	Application of the Natural-Element Method to Model Moving Electr
	L. Illoul ${}^{1}$, J. Yvonet ${}^{1}$, F. Chinesta ${}^{1}$, an
	${}^1$ LMSP, ENSAM, CER Paris, 75013 Paris, France ${}^2$ L2EP, 
	I. I NTRODUCTION
	II. M AGNETOSTATICS P ROBLEM
	III. D ISCRETISATION

	Fig.€1. Construction of the Sibson shape functions. On left, the
	IV. NEM

	Fig.€2. Sibson shape function related to a node surrounded by ei
	Fig.€3. Interface tracking: reproducing transmission conditions.
	V. M OVEMENT

	Fig.€4. Electromagnet under study and the distribution of nodes 
	Fig.€5. Evolution of the flux versus the angle.
	Fig.€6. Evolution of the attractive torque versus the angle.
	VI. N UMERICAL E XAMPLE
	VII. C ONCLUSION
	B. Davat, Z. Ren, and M. Lajoie-Mazenc, The movement in field mo
	B. Boualem and F. Piriou, Numerical models for rotor cage induct
	E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, and M. Doblaré, Ove
	J. Yvonnet, D. Ryckelynck, P. Lorong, and F. Chinesta, A New ext
	L. B. Lucy, A Numerical approach to the testing of fusion proces
	T. Belytschko, Y. Lu, and L. Gu, Element-free galerkin methods, 
	W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle 
	N. Sukumar, B. Moran, and T. Belytschko, The natural element met
	J. Yvonnet and F. Chinesta, An Hybrid element free galerkin and 
	I. Alfaro, D. Bel, E. Cueto, M. Doblare, and F. Chinesta, Three-





