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In part I of this study it was shown that, to model synthetic fiber ropes, two scale transition models can be used in 
sequence. The first model (continuum model) has been presented in the part I and the present paper examines the behavior 
of a fibrous structure consisting of 6 helicoidal strands around a central core (1 + 6 structure). An analytical model will be 
presented which enables the global elastic behavior of such a cable under tension torsion loading to be predicted. In this 
model, first, the core and the strands are described as Kirchhoff Love beams and then the traction torsion coupling behav
ior is taken into account for both of them. By modeling the contact conditions between the strands and the core, with cer
tain assumptions, it is possible to describe the behavior of the cable section as a function of the degrees of freedom of the 
core. The behavior of the cable can thus be deduced from the tension torsion coupling behavior of its constituents. Tensile 
tests have been performed on the core, the strands and then on a full scale 205 ton failure load cable. Finally, predicted 
stiffness from the analytical models is compared to the test results.

Keywords: Fiber rope; Simple strand; Wire; Aramid; Analytical model; Testing
1. Introduction

As presented in the part I (Ghoreishi et al., in press) of this work, large synthetic fiber ropes are character-
ized by a very complex architecture, and a hierarchical structure in which the base components (fiber or yarn)
are transformed by a twisting operation. The resulting structure is then a base component for the next higher
structure. Its hierarchical structure leads to the hierarchical approach where the top is the fiber rope and the
bottom is the base components, with several different types of elements between the base component and the
fiber rope. As indicated in part I of this work the fiber rope consists of two different types of structure:
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multi-layered and 1 + 6 structures. It has been also shown that to go from fiber to rope, two scale transition
models are necessary that are used in sequence. An analytical closed-form formulation (continuum model) of a
multi-layered structure has been developed in part I. The objective of the present paper is the modeling of the
static behavior of a 1 + 6 fibrous structure subjected to axial loads, using the mechanical behavior of the core
and strands, and the geometric description of the structure.

In Section 2, the global behavior of the cable will be described and then, in Section 3, an overview of the
existing models for such structures will be given. In Section 4.5, an extension of Labrosse’s model to predict
global response of a 1 + 6 fibrous rope structure, is developed. The analytical models are compared in Section
5. Tensile tests, on two different fiber ropes, have been performed and provide the experimental data that are
described in Section 6. In Section 8, results of analytical models are compared to experimental data.

2. Cable global behavior

Let us consider a 1 + 6 fiber rope made of six helical strands (wires) wrapped around a straight core as illus-
trated in Fig. 1. Due to the hierarchical structure of large synthetic fiber ropes, the core and strands are not
homogeneous, and are themselves formed from constitutive elements, see Part I. However, at the rope level,
the strands and core may be considered as homogeneous, provided that their behavior takes into account their
components (constitutive element). It is in this sense that, in this work, we use the wire for the strand.

The axial behavior of such a structure exhibits coupling between tension and torsion due to the helical
design of the wires. Thus, the overall behavior can be expressed as
F z

Mz

� �
¼

kee keh

khe khh

� �
uz;z

hz;z

� �
ð1Þ
where uz,z denotes the overall axial strain, hz,z the twist angle per unit length, Fz the axial force and Mz the torque.
The four stiffness matrix components kee, khh, khe and keh are pure tensile, torsion and coupling terms, respec-
tively. Moreover, the stiffness matrix should be symmetric, as can be shown from Betti’s reciprocal theorem.

3. Earlier models

This work is concentrated on 1 + 6 structures in which, in contrast to multi-layered structures, the bending
moments and torque in individual components should be considered. Several analytical models are available to
predict the mechanical behavior of 1 + 6 metallic structures subjected to axial loads, based on a knowledge of
the component material behavior and geometry of the structure. The first approaches only incorporate effects
associated with tension, the bending and torsion stiffness of the wires being neglected. Such analyses have been
performed by Hruska (1951, 1952, 1953) and by Knapp (1975) for a rigid core. More recent and complex ana-
lytical models are based on beam theory assumptions: the behavior of wires is described using Love’s curved
Fig. 1. 1 + 6 fiber rope with 205 ton failure loads: (a) cross section and (b) side view.
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beam equations. Following this approach, Machida and Durelli (1973) have studied the effects of the bending
and torsion stiffness of individual wires on the cable stiffness matrix. Knapp (1979) studied the effect of varia-
tions in core radius. This approach, primarily devoted to soft core cables, can also be applied to more rigid core
structures. Costello and Philips (1976) presented a general non-linear theory for a layer of helical wound wires
without core, which included the effects of radius and helix angle variations (Poisson’s ratio effect). This formu-
lation leads to a set of non-linear equations. A more recent paper by Philips and Costello (1985) presents a solu-
tion of the same theory applied to wire rope with internal wire rope cores. Kumar and Cochran (1987) have
developed a linearized form of this theory, leading to a closed-form expression for axial stiffness coefficients.
This model, was later extended by Kumar and Botsis (2001) to obtain the analytical expression for the maxi-
mum contact stresses induced in the multi-layered strands with metallic wire core. Huang (1978) studied the
contact mode conditions (radial or lateral) for 1 + 6 cable. Local contact deformation is neglected whilst the
Poisson’s ratio effect is included. It is found that radial contact seems to be prevailing case, even when no initial
gap exists between wires in the layers. Utting and Jones (1987a,b) have extended the model of Costello et al. to
include wire flattening (contact deformation) and friction effects. The results show that friction and wire flat-
tening have very little effect on estimates of the global cable response.

Sathikh et al. (1996) presented a closed-form symmetric linear elastic model for a cable with a rigid core,
using discrete thin rod theory. In this model only core-to-wire contact, the wire tension, twist and bending
together have been taken into account. Recently, Costello (1997) presented a linearized theory including
the effects of curvature and twist variations. Finally, Labrosse (1998) presented a new analytical approach
to predict the overall behavior of 1 + 6 cables subjected to bending, tension and torsion. In this model, Pois-
son’s ratio effect is neglected while relative motions between core and wires are considered.

Elata et al. (2004) presented a new model for simulating the mechanical behavior of a wire rope with an
independent wire rope core under axial loads. In contrast with previous models that consider the effective
response of wound strands, this model considers the complete double-helix configuration of individual wires
within the wound strand and directly relates the wire level stress to the overall load applied at the rope level.
Bending and torsion stiffness of the individual wires are neglected. Therefore, the accuracy of this model
increases when the number of wires in the wire rope increases.

Another approach for multi-layered structures consists in modeling each layer as an equivalent orthotropic
sheet developed by Hobbs and Raoof (1982) and Raoof and Hobbs (1988). The same approach also consists
of replacing each layer with a cylinder of orthotropic, transversely isotropic material (Blouin and Cardou,
1989; Jolicoeur and Cardou, 1994, 1996; Crossley et al., 2003a,b). Such homogenization approaches can be
applied when the number of wires in the layer is important, but this is not the case for 1 + 6 structures.

For all the models mentioned above, the material is considered isotropic, homogeneous and the local
behavior of wires and core does not exhibit coupling between tension and torsion phenomena.

As indicated in Part I of this paper (see Section 3), different models are available for the analysis of fiber
ropes (Leech et al., 1993; Rungamornrat et al., 2002; Beltran et al., 2003; Beltran and Williamson, 2004) and
are implemented in a computer program.

4. Present 1 + 6 model

Several closed-form formulations have been presented to predict the behavior of 1 + 6 metallic cables while
there are few models for synthetic fiber ropes. In addition, all fiber rope models available are implemented in
computer programs (not closed-form model). So we decided to develop a closed-form formulation for syn-
thetic fiber ropes as an extension of an existing model of metallic cables. The comparison of different existing
models (1 + 6 metallic cables: Hruska, 1951, 1952, 1953; Machida and Durelli, 1973; McConnell and Zemeke,
1982; Kumar and Cochran, 1987; Sathikh et al., 1996; Costello, 1997; Labrosse, 1998) with the results of a 3D
finite element model has been performed elsewhere by Ghoreishi et al. (2004) and Ghoreishi (2005). The results
demonstrated that, generally, the models selected, except Hruska’s model (1953), yield very similar results for
the usual practical values of lay angle (a 6 15�). In this paper, Labrosse’s model has been chosen as a base
model because it has a closed-form and symmetric stiffness matrix and the relative motions between core
and the wires are considered. Also, this model has the potential to study the friction phenomena between
the core and wires, (even if this is not considered in this work due to simplifying assumptions).
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The initial Labrosse’s model (Labrosse, 1998) which is based on the following hypotheses is developed:

Only the static behavior of structure is addressed.
Displacement and strain are assumed to be small. For a metallic cable, Velinsky (1985) has shown that the
results from linear and non-linear theories are very close in the usual practical load range.
The wires are made of a homogeneous, isotropic and linearly elastic material.
For each wire, a section initially normal to the wire centerline remains plane and normal after deformation.
Poisson’s ratio effect and contact deformation are neglected. Utting and Jones (1987a,b) demonstrated that
in axial loading, the results are nearly unchanged when the Poisson’s ratio and wire flattening are taken into
account. This approximation is well established for metallic ropes, and is supposed to be valid also for fiber
ropes, even if change in cross-sectional area due to contact stresses may arise for such structures which are
transversely soft.
Outside wires do not touch each other, which is often a design criterion so as to minimize the friction effect.
Moreover, Huang (1978) has shown that core-wires contact seems to be the prevailing case, even when no
initial gap exists between wires in the layers.
Friction effects are neglected. Several authors (Utting and Jones, 1987a; Leech et al., 1993; Nawrocki, 1997;
Ghoreishi et al., 2004) have noted that friction has very little effect on the global cable behavior under axial
loads.

In addition, to extend this model to apply to the fiber ropes, the following modification assumptions are
made:

Only the axial loading is addressed. The transverse displacements of the cable axis are zero.
Bending stiffness for the core and wires are neglected. This assumption is felt to be reasonable for synthetic
fiber components.
The wires are supposed homogeneous at the rope level that are made of an elastic material with a coupling
behavior between traction and torsion. This anisotropy appears from the construction effect (no material
effect). Indeed, it is the results of twisting various components (yarn, assembled yarn) into a further
component.

4.1. Geometry description

Let us consider a 1 + 6 structure, as indicated in Fig. 2, in which core and wires are homogenous with a
circular cross-section. It should be noted that this geometry, usually represents the 1 + 6 metallic cables.
We suppose that the real geometry of fiber ropes, as illustrated in Fig. 1, can be approximated by this geom-
etry (Fig. 2) at the rope level.

The geometry is characterized by the core radius Rc, the wires radius Rw, and the lay angle a measured with
respect to the cable z-axis. The wires centerline is then a helical curve of radius Rh:
Rh ¼ Rc þ Rw ð2Þ
It can be noted that the wire cross-sections are elliptical in the plane perpendicular to the structure z-axis
(see Fig. 2). Therefore, the pitch length denoted by P can be calculated using the following expression:
P ¼ 2pRh

tan a
ð3Þ
4.2. Displacement field

As shown in Fig. 3, the centerline of a helical wire forms a helix of radius Rh and lay angle a. Let Gi be a
point of a centerline of wire i (i runs from 1 to 6 for the wires), its coordinates in the global Cartesian coor-
dinate system R0ðO;X

!
; Y
!
; Z
!
Þ are defined as follows:
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Fig. 2. Geometry of a ‘‘1 + 6’’ structure.

Fig. 3. (a) Centerline of a helical wire, (b) axial force and torque in the helical wire, and (c) local coordinate system.
xGi ¼ Rh cosð/iÞ
yGi ¼ Rh sinð/iÞ;
zGi ¼ Rh

/i

tan a

8><
>: i ¼ 1; . . . ; 6 ð4Þ
where /i is the polar angle (see Fig. 3a). The vectors ti
!

, ni
!

and bi
!

are tangent, normal and binormal unit vectors
along the helix and their components in R0 are
fti
!
g ¼

� sin a sinð/iÞ
sin a cosð/iÞ

cos a

8><
>:

9>=
>;; fni

!
g ¼

� cosð/iÞ
� sinð/iÞ

0

8><
>:

9>=
>;; fbi

!
g ¼

cos a sinð/iÞ
� cos a cosð/iÞ

sin a

8><
>:

9>=
>; ð5Þ
that define the local coordinate system RiðGi; ti
!
; ni
!
; bi
!
Þ (see Fig. 3b).

Let us consider a wire section of center Gi, the displacement field of an arbitrary point Mi (see Fig. 3c),
according to the classical curved beam theory, can be expressed as follows:
uMi
! ¼ uGi

! þ hi
!
�GiMi

!
ð6Þ
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where uGi
!

and hi
!

represent the displacement vector at Gi and the rotation vector of the cross-section i, respec-
tively, and their components in R0 are
fuGi
! g ¼

ui
xðlÞ

ui
yðlÞ

ui
zðlÞ

8><
>:

9>=
>; and fhi

!
g ¼

hi
xðlÞ

hi
yðlÞ

hi
zðlÞ

8><
>:

9>=
>; ð7Þ
where l is the length of the component.
To transform the displacement vector uGi

!
and the rotation vector hi

!
from global coordinate system R0 into

the local coordinate system Ri, the following relations are used:
uj ¼ ajkuk

hj ¼ ajkhk

�
ð8Þ
where ajk denote the direction cosines given by
½a� ¼
� sin a sinð/iÞ sin a cosð/iÞ cos a

� cosð/iÞ � sinð/iÞ 0

cos a sinð/iÞ � cos a cosð/iÞ sin a

2
64

3
75 ð9Þ
performing the matrix multiplication, displacement components of arbitrary point Mi(0,ni,gi), in the local
coordinate system RiðGi; ti

!
; ni
!
; bi
!
Þ, can be defined as
fuMi
! g ¼

�ui
xðlÞ sin a sinð/iÞ þ ui

yðlÞ sin a cosð/iÞ þ ui
zðlÞ cos a

�gi½hi
xðlÞ cosð/iÞ þ hi

yðlÞ sinð/iÞ�
�ni½hi

xðlÞ cos a sinð/iÞ � hi
yðlÞ cos a cosð/iÞ þ hi

zðlÞ sin a�
�ui

xðlÞ cosð/iÞ � ui
yðlÞ sinð/iÞ � gi½�hi

xðlÞ sin a sinð/iÞ
þhi

yðlÞ sin a cosð/iÞ þ hi
zðlÞ cos a�

ui
xðlÞ cos a sinð/iÞ � ui

yðlÞ cos a cosð/iÞ þ ui
zðlÞ sin a

þni½�hi
xðlÞ sin a sinð/iÞ þ hi

yðlÞ sin a cosð/iÞ þ hi
zðlÞ cos a�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð10Þ
The straight core can be considered as a particular case of a helical wire (a 0) and for axial loading, its cen-
terline displacement vector can be given by
u6þ1
x ðlÞ ¼ u6þ1

y ðlÞ ¼ h6þ1
x ðlÞ ¼ h6þ1

y ðlÞ ¼ 0

u6þ1
z ðlÞ ¼ uz

h6þ1
z ðlÞ ¼ hz

8><
>: ð11Þ
where superscript 6 + 1 is referred to the core.
For the moment, the wires and core are modeled independently and displacement field of the whole section

of the structure are described by (6 · 6) + 2, i.e. 38 parameters.
4.3. Contact conditions

In order to reduce the kinematics parameters and to simplify the general form of the displacement field
above, core-wires contact (relative motions between core and wires) will be studied.

As shown in Fig. 4, the contact line between core and wires is also an helical curve of radius Rc and lay
angle a 0 where a0 ¼ arc tan Rc

Rh
tan a

� �
. The relative motions on the contact line, in the contact point C which

is relating to the helical contact line, will be expressed as
6
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contact line

Wire

Contact
line

 t’

 n’ C
G 

6+1
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Fig. 4. (a) Local coordinate system RCðC; ti0
!
; ni0
!
; bi0
!
Þ, (b) relation between the lay angle of a helical wire centerline and those of the contact

line, and (c) linear contact core/wire.
uRi

C

!
¼ uCi

! � uC6þ1
!

hRi
!

¼ hi
!
� h6þ1

!

8><
>: where Ci 2 wire i and C6þ1 2 core ð12Þ
where uRi

C

!
and hRi

!

are the relative translation vector at C and the relative rotation vector between core and wire,
respectively.

A new local coordinate system RCðC; ti0
!
; ni0
!
; bi0
!
Þ is defined at the contact point C (see Fig. 4a). We note that

ni0
!
¼ ni
!

, GiCi
!
¼ Rw ni0

!
and G6þ1C6þ1

!
¼ �RC ni0

!
.

The relative translations in the plane (b 0, t 0), uRi

C

!
� ti0
!

and uRi

C

!
� bi0
!

, represent the sliding, and the relative trans-
lation in the direction n 0 describes relative normal displacement. Rolling and pivoting are the relative rotations
along t 0 and n 0, respectively. The relative motion along b 0 describes relative binormal rotation.

As indicated in Fig. 4c, the permanent contact between core and wires leads to the following conditions:
uRi

C

!
� ni0
!
¼ 0

hRi
!

� bi0
!
¼ 0

8><
>: ð13Þ
The real behavior is bounded by two extreme cases; sliding without friction or no-sliding. As indicated by sev-
eral authors (Utting and Jones, 1987a; Leech et al., 1993; Nawrocki, 1997; Ghoreishi et al., 2004; Cartraud
and Messager, 2006), the friction effects on the global cable behavior, subjected to axial loads, are negligible,
so, the no-sliding case is considered here or
uRi

C

!
� ti0
!
¼ 0

uRi

C

!
� bi0
!
¼ 0

8><
>: ð14Þ
Nawrocki and Labrosse (2000), using numerical examples, have shown that rolling plays no significant role in
the global cable behavior under axial loads. Therefore, it can be supposed to be null,
hRi
!

� ti0
!
¼ 0 ð15Þ
consequently the driving interwire motion under axial loads appears to be only pivoting, hi
nðlÞ ¼ hRi

!

� ni0
!

.
Using of contact condition hypotheses written previously and making certain mathematical simplifications,

allow to reduce the initial number of parameters. The details of these simplifications are available elsewhere
(Ghoreishi, 2005) and will not be presented here.

Finally, it turns out that the displacement vector of the helical wire centerline can be expressed as a function
of global cable displacement, (uz,hz), and pivoting, hi

n. One obtains
7



ui
xðlÞ ¼ Rhhz sinð/iÞ

ui
yðlÞ ¼ Rhhz cosð/iÞ

ui
zðlÞ ¼ uz

hi
xðlÞ ¼ �hi

n cosð/iÞ
hi

yðlÞ ¼ �hi
n sinð/iÞ

hi
zðlÞ ¼ hz

8>>>>>>>>><
>>>>>>>>>:

ð16Þ
Substituting (16) into the expression (10), the displacement field of an arbitrary point, Mi, on the helical wire

section i can be expressed in the local coordinate system, RiðGi; ti
!
; ni
!
; bi
!
Þ, as
fuMi
! g ¼

uz cos aþ gihi
n � ðn

i � RhÞhz sin a

�gihz cos a

uz sin aþ ðni � RhÞhz cos a

8><
>:

9>=
>; ð17Þ
we obtain that in a given section i, the kinematics of the section are now described by the 2 degrees of freedom
of the structure axis (global displacement) and the 6 relative rotations (pivoting) between the core and wires.

It is recalled that for the core, the kinematics involve only the 2 degrees of freedom of the structure axis (see
(10) and (11)).

4.4. Strain field

Then, the strains can be expressed in terms of the displacement components at point Mi. In the same the-
oretical framework, the linearized Green strain tensor at point Mi is given by
ei
jk ¼

1

2
ðuMi

j;k
þ uMi

k;j
Þ ð18Þ
Finally, strain tensor components of wire i, in the local coordinate system RiðGi; ti
!
; ni
!
; bi
!
Þ, become
ei
tt ¼ 1

1�nij0
ðuz;z cos2 aþ gihi

n;z cos a� nihi
ns� ðn

i � RhÞhz;z cos a sin aÞ
ei

nn ¼ ei
bb ¼ ci

nb ¼ 0

ci
nt ¼

gi

1�nij0
ð�hz;z cos2 aþ j0hi

nÞ
ci

bt ¼ 1
1�nij0

ðuz;z cos a sin aþ ð1� nij0Þhi
n þ ðn

i � RhÞhz;z cos2 aÞ

8>>>>><
>>>>>:

ð19Þ
where k 0 and s represent the curvature and the twist in each wire that, for a circular helix, are given by
k0 ¼ sin2 a
Rh

s ¼ sin a cos a
Rh

(
ð20Þ
For a given circular cross-section under axial loads, in the local coordinate system, twist angle per unit
length, ht,t, is constant (independent of gi and ni) and the torsional strains ci

nt and ci
bt assumed to increase lin-

early from zero at the center to a maximum at the external surface of the wire (vary linearly with ht,t). Con-
sequently, torsional strains at an arbitrary point Mi are expressed by
ci
nt ¼ �gihi

t;t

ci
bt ¼ nihi

t;t

(
ð21Þ
while knowing that ht,t is constant we obtain
ci
nt

gi
þ ci

bt

ni ¼ 0 ð22Þ
then, using Eqs. (19)3 4, the pivoting, hi
n, is found to be
8



hi
n ¼ �uz;z cos a sin aþ Rh cos2 ahz;z ð23Þ
Substituting (23) and (20) into the expression (19), we obtain the axial strains of the wire i centerline
(gi ni 0) as follows:
ei
tt ¼ uz;z cos2 aþ Rhhz;z cos a sin a

hi
t;t ¼ uz;z

cos a sin3 a
Rh

þ hz;z cos4 a

(
ð24Þ
It should be noted that Eq. (24) was established previously by Sathikh et al. (1996), using Ramsey’s theory
(1988, 1990) and by Labrosse (1998) using the free pivoting condition between core and the wires, confirming
the correctness of the strain field solution.
4.5. Global behavior of the 1 + 6 structure

At this stage, each component is considered as a structure with a coupling behavior between traction and
torsion. It means that the bending moments (Mi

n and Mi
b in the directions ni

!
and bi

!
) and shear forces of each

individual component are ignored.
The behavior of component i can be expressed in the following matrix form:
F i
t

Mi
t

( )
¼

kw
ee kw

eh

kw
he kw

hh

� �
ei

tt

hi
t;t

( )
ð25Þ
Substituting (24) into the expression (25), axial force and torque (in the tangential direction ti
!

) carried by com-
ponent i, are given as follows:
F i
t ¼ kw

ee cos2 aþ kw
eh cos a sin3 a=Rh

� 	
uz;z þ kw

eeRh cos a sin a� kw
eh cos4 a

� 	
hz;z

Mi
t ¼ kw

he cos2 aþ kw
hh cos a sin3 a=Rh

� 	
uz;z þ kw

heRh cos a sin a� kw
hh cos4 a

� 	
hz;z

(
ð26Þ
For the core, tangential direction ti
!

is the cable z-axis, therefore, core behavior is expressed by
F c
t ;

M c
t

� �
¼

kc
ee kc

eh

kc
he kc

hh

� �
uz;z

hz;z

� �
ð27Þ
The stiffness coefficients kw
ij and kc

ij represent the stiffness matrix components of wire and core, respectively. It
should be noted that these coefficients can be determined either by test on the components or by the use of a
model at a lower scale (continuum model, FRM, . . .), see part I of this paper.

The force and torque applied to the structure are the resultants of all the forces and torques carried by the
central core and wires. The behavior of each component is expressed in the local coordinate system,
RiðGi; ti

!
; ni
!
; bi
!
Þ. Therefore, by projecting on the cable axis, and summing for all the components (wires and

core), global force and torque of structure, in the direction of z-axis, can be found as follows:
F z ¼ F c
t þ
P6
i 1

½F i
t cos a�

Mz ¼ M c
t þ Rh

P6
i 1

½F i
t sin a� þ

P6
i 1

½Mi
t cos a�

8>>><
>>>:

ð28Þ
Finally the global behavior of a 1 + 6 fibrous structure can be given by following matrix form:
F z

Mz

� �
¼

k�ee k�eh
k�he k�hh

� �
uz;z

hz;z

� �
ð29Þ
where k�ee, k�eh, k�he and k�hh represent the global stiffness matrix components that are expressed directly in terms
of components stiffness matrix and the geometrical parameters of the structure:
9



Table
The ge

Ropes

25 ton
205 to

Table
Core a

Ropes

25 ton

205 to

Table
Calcul

Ropes

25 ton

205 to
k�ee ¼ kc
ee þ 6 kw

ee cos3 aþ kw
eh

sin3 a cos2 a
Rh

� �
k�eh ¼ kc

eh þ 6ðkw
eeRh sin a cos2 aþ kw

eh cos5 aÞ
k�he ¼ kc

he þ 6ðkw
eeRh sin a cos2 aþ kw

eh sin4 a cos aþ kw
he cos3 aÞ

k�hh ¼ kc
hh þ 6Rhðkw

eeRh sin2 a cos aþ kw
eh sin a cos4 aÞ þ 6ðkw

heRh sin a cos2 aþ kw
hh cos5 aÞ

8>>>><
>>>>:

ð30Þ
5. Comparison between models

In this section, the present 1 + 6 model is used, and the objective is to compare its results to those of Leech’s
model.

To apply these models, geometrical and mechanical input data are necessary. To compare the stiffness
matrix coefficients, calculated by present model and the Leech approach, two fiber ropes are considered, with
25 ton and 205 ton failure loads. The construction details for both of them are presented in Appendix A. The
geometrical input parameters at the rope level, which are necessary for the present model, are presented in
Table 1.

The mechanical input data required, are the core and wire stiffness matrices. They are obtained from
Leech’s model, starting at the yarn level (the yarn axial stiffness was obtained from experiments, see part
I). FRM software (FRM, 2003) is used in two steps to pass successively to assembled yarn and rope. The
results are presented in Table 2.

Then, these core and wires stiffness matrices are considered as input data at the next step (rope level). The
1 + 6 model presented in the previous section is applied. Leech’s model is also used with FRM software and
wedge geometry option (see Fig. 6b of part 1 of this paper). It should be noted that in FRM software, a lay-
ered packing geometry option can be used only for a structure with identical components, but this is not the
case here (core and wires are not identical).

Finally, Table 3 provides the results to compare ropes stiffness matrices, as calculated by the theory pre-
sented in Section 4.5 above and Leech’s model, for the two 25 ton and 205 ton ropes.
1
ometrical input parameters at the rope level, for the present model

Rc (mm) Rw (mm) Pitch length, P (mm)

6.0 5.25 152
n 18.2 15.9 500

2
nd wires stiffness matrix components which are used as input data for present model

Structure Model kee (103 kN) keh (kN m) khe (kN m) khh (N m2)

Core Leech 2.19 0.901 0.848 0.540
Wire Leech 1.75 0.419 0.413 0.154

n Core Leech 19.5 32.4 29.6 82.4
Wire Leech 14.2 8.69 9.68 10.3

3
ated stiffness matrix components for the two 25 ton and 205 ton ropes

Models kee (103 kN) keh (kN m) khe (kN m) khh (N m2)

Leech 11.8 10.3 9.89 16.7
1 + 6 Model 11.9 9.65 9.61 12.2

n Leech 98.8 224 215 1145
Present 1 + 6 Model 99.0 212 207 832
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Fig. 5. The geometry considered by models: (a) present 1 + 6 model and (b) Leech’s model (wedge geometry).
Table 3 shows that, as for the multi-layered models presented in Part I, both models for 1 + 6 structure,
yield very similar results for the axial stiffness, kee. There is a small difference for the coupling terms. Only
the torsion term results, khh, are significantly different for two models. This is easily explained by the fact that,
for a given outer diameter, the helix radius considered by Leech’s model is greater than those of 1 + 6 model
(in the wedge geometry, the equivalent helix radius is the radius of the center of area of the wedge) (see Fig. 5).
An increase in helix radius does not influence the axial stiffness, kee, but the coupling terms and the torsion
term are related to the helix radius in a linear and quadratic form, respectively.

To show which model gives more reliable results (particularly for the torsion term, khh), it is necessary to be
able to compare them to experimental results. However, as will be discussed in the next section torsion tests on
fiber ropes are very difficult to perform.

6. Experiments

The principal tests which have been performed to produce data to compare with the predictions presented
above are tensile tests. These enabled values of kee and khe to be determined, as will be described below. It
would also have been very interesting to have been able to obtain a value of khh but this proved impossible.
Two approaches can be used, either introducing a swivel in the tensile loading system and applying a moment,
or loading a sample directly on a torsion test frame. Some preliminary trials on small ropes with swivels pro-
duced variable results due to friction of the swivel under load. Torsional stiffness of these materials is quite low
and great care is needed with measurements. Tests on a torsion test frame were hampered by difficulty in intro-
ducing the load through end fittings without affecting the sample stiffness.

Tension tests were performed on 25 ton and 205 ton break load samples. The former were performed on a
100 ton capacity test frame at IFREMER in Brest, 8 m long samples were loaded to 50% of the break load.
Fig. 6 shows the test frame.

In the second, performed on a specially adapted 500 ton test facility at LCPC (Laboratoire Centrale des
Ponts des Chaussées) in Nantes, a 46 m long sample of a 205 ton break load rope was blocked at one end
and loaded in tension by a hydraulic piston at the other. The tensile response as well as the induced moment
were measured at loads up to 100 ton. Fig. 7 illustrates the 500 ton test facility at LCPC in Nantes.

In both cases the specimens have been loaded using hydraulic pistons and loads were introduced via splices
(see Fig. 7). All the ropes were made with the same aramid fiber grade (Twaron 1000). Construction details for
both fiber ropes are given in Appendix A, Tables A.1 and A.2.

In order to provide reliable results great care is needed during testing, particularly concerning the following
points:

extensometry,
load measurements,
test procedure.
11
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Fig. 6. 100 ton capacity test frame, test on 25 ton fiber rope.
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Fig. 7. 500 ton test facility at LCPC in Nantes.
6.1. Extensometry

The extensions were obtained by three independent measuring systems:

wire transducers clamped to the central section of the cable,
two digital cameras measuring the movements of markers in the central part of the cable, and
an LVDT measuring piston displacement.

The first two measure the true strain in the central part of the rope (away from the splices) and give similar
results, as shown in Fig. 8. The analysis of the digital images is performed using in-house image analysis soft-
ware. These values allowed the stiffness measurements to be checked using two independent strain values. The
piston displacement was recorded but not used in stiffness determination as it includes splice, end loop and
rope displacements.
12
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Fig. 8. Comparison between measurements with wire transducer and image analysis system, test on 25 ton break load fiber rope.
6.2. Load measurements

For the 25 ton rope tests at the IFREMER center in Brest a single load cell at the end of the piston was
used. This is calibrated annually. For the tests at LCPC tensile loads were measured using two independent
load cells, a 300 ton capacity cell at the end of the piston and a second 100 ton cell at the fixed end. Both were
calibrated before and after the test series. The induced moment was measured using a strain gauged torque
meter, calibrated before testing.

6.3. Test procedure

The test procedure includes a preliminary bedding-in loading of 5 cycles to 50% of the nominal break load,
followed by either loading to failure or cycling. This initial stabilization of the rope removes bedding-in strain
but also results in an internal molecular realignment of the fibers. Fig. 9 shows examples of strains measured
during the bedding-in cycles of a 25 ton and 205 ton break load ropes. It is clear that without a consistent bed-
ding-in procedure significant variations in stiffness can be measured.

All force, moment and extension data were recorded on a PC acquisition system for post-treatment.

6.4. Test results

The global response of ropes can be expressed by Eq. (1) and all the tests described above were performed
in tension with fixed ends loading conditions (hz,z 0). This enabled the axial stiffness kee and coupling term
keh, to be determined using following Eq. (31)
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Fig. 9. Bedding in cycles, synthetic fiber ropes: (a) five bedding in cycles, 25 ton rope, (b) 1st and 5th bedding in cycles, 205 ton rope.
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Table 4
Results from tensile tests on 25 ton break load ropes with fixed ends loading conditions, at IFREMER in Brest

Specimen number Average

1 2 3 4 5

Axial stiffness kee (103 kN) 9.71 9.50 10.2 10.6 11.2 10.2 ± 7.5%
Break force (kN) 268 256 264 252 249 258 ± 3.5%

Table 5
Tensile test results for 205 ton fiber rope with fixed ends loading conditions

Test number Average

1 2 3 4 5

Axial stiffness kee (103 kN) 79.1 81.0 81.9 83.1 83.8 81.8 ± 2.8%
Coupling term khe (kN m) 175 179 181 183 185 181 ± 2.8%
kee ¼ F z
uz;z

khe ¼ Mz
uz;z

(
ð31Þ
In the load range of interest, the behavior of aramid fiber ropes exhibits a quasi-linear behavior, as shown
in Fig. 9. Thus, the stiffness matrix components can be considered to be constant, and are obtained from a
linear curve fitting.

Results for the 25 ton rope are summarized in Table 4.
As shown in Table 4 there is some scatter in the results for different samples, due to variations of material

properties and splicing. It should be mentioned that several authors have studied the variability effect on the
global response of the fibrous structures (Amaniampong and Burgoyne, 1995; Chudoba et al., 2006; Vorec-
hovsky and Chudoba, 2006), but usually there are different sources of variability.

Table 5 shows the results from the tests on the 205 ton rope, the coupling term being obtained from the
torque meter measurements.

7. Test/models comparison

In this section the experimental results will be compared to model predictions. In both ropes studied here,
the base component is the yarn, whose mechanical properties are given as input. For predicting the global
behavior of ropes, the presented models are applied in three steps (see Fig. 3 of part I of this paper).

For modeling the 25 ton break load rope, first, to pass from yarn to assembled yarns structure, the yarn
axial stiffness and the geometrical parameters enable a prediction to be made of the stiffness coefficients of
the assembled yarns using the continuum model presented in the part I of this paper; in the second step,
the assembled yarns stiffness matrix (determined in the first step) and the geometrical parameters, can be used
to determine the stiffness matrix coefficients of the strands and core using the present 1 + 6 model (Eq. (30)).
Finally, the strands and core stiffness matrix (determined in the second step) and the geometrical parameters,
can be used to predict the global behavior of the 25 ton break load fiber rope using again the present 1 + 6
model (Eq. (30)), and this gives an axial stiffness value of 11.9 · 103 kN.

To model the 205 ton break load rope, in the same way, the continuum model is applied to pass from yarn
to assembled yarns as well as from assembled yarns to core and strands. At the rope level, the 1 + 6 model is
applied to pass from core and strands to 205 ton break load rope.

The strands and core stiffness matrices (determined at the previous step) and the geometrical parameters
then enable a prediction to be made of the rope global response using the 1 + 6 model (Eq. (30)), and this gives
axial stiffness,kee, and coupling term, khe, values of 99.1 · 103 kN and 205 kN m, respectively.

Therefore, the overall rope behavior is obtained using in sequence the two models (continuum and 1 + 6)
presented in the parts I and II of this paper.

The ropes were also treated using Leech’s model with the FRM software. This has been used in many pre-
vious large fiber rope studies and is commercially available. It was therefore taken as a reference here for com-
14
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Fig. 11. Comparison between Leech’s model/presented approach/experimental data for 205 ton break load fiber rope: (a) axial force
versus axial strain and (b) induced torque versus axial strain.
parison purposes, rather than comparing results to all the 1 + 6 models available in the literature, primarily
developed for metallic ropes. This model gives results very close to those of the presented models
(11.8 · 103 kN, 98.8 · 103 kN and 215 kN m for axial stiffness of 25 ton rope, axial stiffness and coupling term
of 205 ton rope, respectively). The comparison is shown graphically below in Figs. 10 and 11 for 25 ton and
205 ton break load fiber ropes, respectively.

The results show that FRM software (Leech’s model) and the presented models give results which are
within 1% and 5% of each other for axial stiffness, kee, and coupling term, khe, respectively. However, the com-
parison between predictions and test results are not as close, being 17.5% and 15.8% for the tensile stiffness
and coupling terms. This difference appears to be small since the ropes are modeled by taking yarn stiffness
and then using three models in sequence. At each step there are errors and these accumulate in the final pre-
diction. If we assume that errors at each step are similar the difference between model and test results at each
level may only be around 5%. A larger test database would be useful to examine this in more detail. Moreover,
both continuum (see part I of this paper) and 1 + 6 models neglected the diametral contractions, which there-
fore contribute to overestimate the rope stiffness.

8. Conclusion

A linear elastic model has been developed for the computation of the elastic axial stiffness terms of a fibrous
structure, made of six helical strands wrapped around a straight core (1 + 6 structure). A model initially
15



designed for metallic cables has been modified for synthetic fiber ropes applications. The helical strands are
described as Kirchhoff Love beams, but bending moments and shear forces are neglected. The elastic tensile
and torsion behavior of constituents is taken into account, with coupling which appears from the construction
effect. Considering static axial loads and the fact that typical lay angles are small (less than 15�), the friction
effects and the lateral contraction of the core have been neglected. The approach developed leads to analytical
closed-form expressions.

Due to lack of published experimental data, the model has first been compared with an existing model
(Leech’s model implemented in FRM software) and is found to provide similar results, except with respect
to the torsion term, for which there is a significant difference. Then, two transition models, referred to as a
continuum model (see part I) and the 1 + 6 model, have been used together in sequence to analyze synthetic
fiber ropes. The results of the model at each level have been used as input data for the model at the next higher
level. Use of this approach from the lowest level (yarn), at which mechanical properties are given as input, to
the highest level of the rope determines the rope axial stiffness matrix. Based on this strategy, the transition
models thus developed can be used to analyze synthetic fiber ropes of various complex cross-section. As
examples, theoretical results, using the present approach, are determined for 25 ton and 205 ton break load
fiber ropes. Tests have also been performed on both fiber ropes with 25 ton and 205 ton rupture force, to
obtain experimentally the values of stiffness matrix components. Comparison between models and experimen-
tal data shows reasonable agreement, particularly given the low level (yarn) of the input material
characteristics.

Therefore, the developed model appear to be reliable and useful, requiring less input data than existing
models of the literature. Moreover, the final analytical closed-form solutions allow parametric case studies
to be run in order to demonstrate construction effects, at each level, on the global response of fiber ropes
and can be used as an optimal design tool. Laboratory full scale testing of large ropes being expensive and
time consuming, the development of such theoretical models has the potential to significantly reduce the cost
and time needed for cable design.
Appendix A

Construction details for two fiber ropes studied here, with 25 ton and 205 ton failure loads, are given in
Tables A.1 and A.2. It should be mentioned that all the ropes were made with the same aramid fiber grade
(Twaron 1000).
Table A.1
Construction details for new 25 ton synthetic fiber rope

Structure Constitutive
elements

Number of constitutive
elements

Assumed
arrangement

Pitch length
(mm)

Diameter
(mm)

25 ton cable

25 ton cable Core 1 1 layer 6.555 16.5
Strand 6 1 layer (RHL)

Core

Core Assembled yarn 7 2 layers (1 + 6) 18.868 (RHL) 6
Assembled yarn Yarn 16 3 layers (1 + 5 + 10) 17 (LHL) 2.0
Yarn (Twaron

1000)
Fiber 2000 Parallel fibers 0 0.572

Fiber 0.012

Strand

Strand Assembled yarn 7 2 layers (1 + 6) 10.870 (LHL) 5.25
Assembled yarn Yarn 12 2 layers (3 + 9) 19 (RHL) 1.75
Yarn (Twaron

1000)
Fiber 2000 Parallel fibers 0 0.572

Fiber 0.012
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Table A.2
Construction details for new 205 ton synthetic fiber rope

Structure Constitutive
elements

Number of constitutive
elements

Assumed arrangement Pitch length
(mm)

Diameter
(mm)

205 ton cable

205 ton cable Core 1 1 layer 2 50
Strand 6 1 layer (RHL)

Core

Core Assembled yarn 42 4 layers
(1 + 6 + 14 + 21)

6.329 (RHL) 18.2

Assembled yarn Yarn 24 3 layers (3 + 7 + 14) 14 (RHL) 3.0
Yarn (Twaron

1000)
Fiber 2000 Parallel fibers 0 0.572

Fiber 0.012

Strand

Strand Assembled yarn 42 4 layers
(1 + 6 + 14 + 21)

3.636 (LHL) 15.9

Assembled yarn Yarn 18 3 layers (1 + 6 + 11) 16 (RHL) 2.65
Yarn (Twaron

1000)
Fiber 2000 Parallel fibers 0 0.572

Fiber 0.012
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