
HAL Id: hal-01005250
https://hal.science/hal-01005250

Submitted on 2 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Analytical calculation of the transient thermoelastic
stresses in thick walled composite pipes

Frédéric Jacquemin, Alain Vautrin

To cite this version:
Frédéric Jacquemin, Alain Vautrin. Analytical calculation of the transient thermoelastic stresses
in thick walled composite pipes. Journal of Composite Materials, 2004, 38 (19), pp.1733-1751.
�10.1177/0021998304044766�. �hal-01005250�

https://hal.science/hal-01005250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Analytical Calculation of the Transient
Thermoelastic Stresses in Thick Walled

Composite Pipes

1

F. JACQUEMIN
1 AND A. VAUTRIN

2

Laboratoire d’Applications des Matériaux à la Mécanique 
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ABSTRACT: This article aims at assessing the internal stresses in thick laminated
pipes, composed of orthotropic plies, subjected to transient thermal fields. The
original contribution of the work is to provide novel analytical solutions, based on
well founded assumptions, to compute the internal stresses due to transient thermal
fields throughout the pipe thickness, within the framework of thermoelasticity. The
structures considered here are thick, laminated and anisotropic pipes of infinite
length. They are subjected to heat flux conditions on their inner and outer surfaces
due to the environmental conditions. The transient thermal field is determined and
the thermoelastic stresses are derived by using the classical equations of solid
mechanics and assuming a thermoelastic orthotropic ply behavior. Finally,
particular attention is paid to wall thickness effect.

KEY WORDS: thermoelastic stresses, transient, thick pipe, laminate, anisotropy.

INTRODUCTION

T
HE DETERMINATION OF internal stress fields in thick walled composite laminated
cylinders is a key issue to optimize industrial pipes, especially when those pipes are

subjected to time dependent hygrothermal loading. Such a calculation provides more accu-
rate information on the structural behavior at any time. Finally, it supplies rational bases to
set up more effective life time prediction methodology. In the literature, different analytical
calculations can still be found to determine thermoelastic stresses within laminated pipes.
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However, such analytical solutions have been derived under quite restrictive assumptions
on thermal loading and mechanical fields. For instance, Hyer and Rousseau [1] and Shin
and Sekine [2] published analytical approaches to compute thermoelastic stresses due to
time and space independent temperature fields within thick walled laminated pipes.
Timoschenko andGoodier [3] considered both time and space dependent temperature fields
but computed stresses in the very special case of isotropic cylinders. Ootao et al. [4] and
Tanigawa et al. [5] considered time dependent temperature fields for composite laminated
hollow cylinders composed of isotropic plies only. Therefore, at present, there is no
analytical solution to tackle problems involving thick laminated hollow cylinders,
composed of orthotropic plies, under time dependent temperature changes. Since such
varying boundary conditions are quite usual in industrial applications, well-controlled
solutions simulating transient evolutions are obviously of high practical importance.

In the present article we establish a reference solution which allows to compute
thermoelastic stresses due to transient thermal fields through thick laminated tube-like
composite structures. To get rid of the usual restrictive assumptions met in the literature,
we first determine the transient thermal field throughout the thickness and then solve the
usual set of equations of 3D solid mechanics for every ply at any time: constitutive laws of
thermoelastic orthotropic materials, strain-displacement relations, compatibility and
equilibrium equations and boundary conditions. The use of the Tsai Wu strength criterion
allows us to estimate the internal stresses versus the ply strength in case of heating or
cooling processes. The effect of wall thickness on the internal stress state is investigated.

DEFINITION OF THE PROBLEM

We consider a pipe (Figure 1), made up of n perfectly bonded plies, whose inner and
outer radii are a and b respectively. Any ply i of the pipe is a cylinder whose inner and
outer radii are ri and riþ1 respectively. It contains an internal fluid and is surrounded by an
external one, both fluids being initially at the same uniform temperature T0. The fluids are
then assumed to be instantly heated at the constant temperatures Tint and Text. Thermal
transfers between the fluids and the pipe are controlled by heat transfer coefficients

r 

θ

x 

ba
ha

hb

Tint.

Text.

Figure 1. Hollow laminated cylinder subjected to heat transfers on external surfaces.
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ha and hb, which are kept constant. Conditions of continuity of the temperature and
heat flux are prescribed at any ply interface. ki is the through-thickness thermal diffusivity
of ply i.

The temperature field in ply i is the solution of the following system (1)–(2):

@Ti

@t
¼ ki

@2Ti

@r2
þ
1

r

@Ti

@r

� �
a < r < b, i ¼ 1 to n ð1Þ

Tiðri, tÞ ¼ Tiþ1ðri, tÞ

�i
@Tiðri, tÞ

@r
¼ �iþ1

@Tiþ1ðri, tÞ

@r

@T1ða, tÞ

@r
� haðT1ða, tÞ � TintÞ ¼ 0

@Tnðb, tÞ

@r
� hbðText � Tnðb, tÞÞ ¼ 0

Tiðr, 0Þ ¼ T0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

We introduce the following dimensionless parameters:

�TTi ¼
ðTi � T0Þ

ðTint � T0Þ
,

�kki ¼ ���i=ð �cci ���iÞ, ���i ¼ �i=�0,

�cci ¼ ci=c0, ���i ¼ �i=�0, ð�rr, �aaÞ ¼ ðr, aÞ=b,

� ¼ �0t=ðc0�0b
2Þ, Ha ¼ bha, Hb ¼ bhb,

where, Ti, �i, ci and �i are, respectively, the temperature, the transverse thermal conducti-
vity, the specific heat and the density of the ply i. The typical values of temperature,
thermal conductivity, specific heat and density are respectively T0, �0, c0 and �0.

The system (1)–(2) writes in a dimensionless form:

@ �TTi

@�
¼ �kki

@2 �TTi

@�rr2
þ
1

�rr

@ �TTi

@�rr

� �
a

b
< �rr < 1, i ¼ 1 to n ð3Þ

�TTið�rri, �Þ ¼ �TTiþ1ð�rri, �Þ

���i
@ �TTið�rri, �Þ

@�rr
¼ ���iþ1

@ �TTiþ1ð�rri, �Þ

@�rr
@ �TT1ð �aa, �Þ

@�rr
�Hað �TT1ð �aa, �Þ � 1Þ ¼ 0

@ �TTnð1, �Þ

@�rr
�Hbð �TText � �TTnð1, �ÞÞ ¼ 0

�TTið�rr, 0Þ ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

3



Applying the Laplace transform to system (3)–(4) and by using the residue theory
to inverse the solution in the time space [6], we finally obtain the thermal field in every
ply i:

�TTið�rr, �Þ ¼
1

�s
ðA0

i þ B0
i ln �rrÞ þ

X1
m¼1

2 expð�!2
m�Þ

!m�0
uð!mÞ

AiJ0ð�i!m �rrÞ þ BiY0ð�i!m �rrÞ
� �

ð5Þ

where J0 and Y0 are Bessel’s functions of order zero, �u and �s are determinants of
2n� 2n matrices a½ � and b½ �. Ai and Bi are determinants of matrices deduced from a½ �

by respectively substituting columns (2i� 1) and 2i by the constant vector fgg. A0
i and B0

i

are similar determinants of Am and Bm but with respect to the matrix b½ �. �0
uð!mÞ is the

derivative of �u with respect to ! calculated for !m, the mth positive root of �u. �i is
defined by the relation �i ¼ 1= �kki

p
.

Furthermore, the non-zero elements of a½ �, b½ � and fgg are:

a11 ¼ HaJ0ð�1! �aaÞ þ �1!J1ð�1! �aaÞ, a12 ¼ HaY0ð�1! �aaÞ þ �1!Y1ð�1! �aaÞ,

a2n2n 1 ¼ HbJ0ð�n!Þ � �n!J1ð�n!Þ, a2n2n ¼ HbY0ð�n!Þ � �n!Y1ð�n!Þ,

a2i2i 1 ¼ J0ð�i!�rriÞ, a2i2i ¼ Y0ð�i!�rriÞ, a2i2iþ1 ¼ �J0ð�iþ1!�rriÞ,

a2i2iþ2 ¼ �Y0ð�iþ1!�rriÞ, a2iþ12i 1 ¼ ���i�i!J1ð�i!�rriÞ, a2iþ12i ¼ ���i�i!Y1ð�i!�rriÞ,

a2iþ12iþ1 ¼ � ���iþ1�iþ1!J1ð�iþ1!�rriÞ, a2iþ12iþ2 ¼ � ���iþ1�iþ1!Y1ð�iþ1!�rriÞ,

for i ¼ 1 to n� 1

b11 ¼ Ha, b12 ¼ Ha ln �aa� 1= �aa, b2n2n 1 ¼ Hb, b2n2n ¼ 1, b2i2i 1 ¼ 1,

b2i2i ¼ ln �rri, b2i2iþ1 ¼ �1, b2i2iþ2 ¼ � ln �rri, b2iþ12i ¼ ���i=�rri,

b2iþ12iþ2 ¼ � ���iþ1=�rri,

for i ¼ 1 to n� 1

g1 ¼ Ha, g2n ¼ Hb
�TText

This general solution (5) at time � is the sum of the permanent solution in logarithm of the
radius and of the transient solution written in the form of a series.

MECHANICAL SOLUTION

General Formulation of the Displacement Field

At the initial time, let us consider a stress-free state. The thermoelastic orthotropic
behavior (6)–(7), with a and L, the tensors of thermal expansion coefficients and stiffnesses
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respectively, assumed to be constants, can then be written as:

�xx

���

�rr

�x�

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

Lxx Lx� Lxr Lxs

Lx� L�� Lr� Ls�

Lxr Lr� Lrr Lrs

Lxs Ls� Lrs Lss

2
666664

3
777775

"xx � �xxðT � T0Þ

"�� � ���ðT � T0Þ

"rr � �rrðT � T0Þ

�x� � �x�ðT � T0Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð6Þ

�r�

�xr

( )
¼

Lr�r� Lr�xr

Lxrr� Lxrxr

" #
�r�

�xr

( )
ð7Þ

To solve the problem, it is necessary to introduce the classical relationship between
displacements and strains, along with the compatibility and equilibrium equations.

Introducing �0, L0, (Tint�T0), we define the following dimensionless variables:

�rr ¼ r=ðL0�0ðTint � T0ÞÞ, �aa ¼ a=�0, �LL ¼ L=L0,

ð �ww, �vv, �uuÞ ¼ ðw, v, uÞ=ð�0ðTint � T0ÞbÞ, �ee ¼ e=ð�0ðTint � T0ÞÞ:

(
ð8Þ

The longitudinal and orthoradial displacements �uuð �xx, �rr Þ and �vvð �xx, �rr Þ are then expressed:

�uuð �xx, �rr Þ ¼ � �SSr�xr
R3

�rr
þ �SSxrxrR4 ln �rrþ R1 �xxþ R5,

�vvð �xx, �rr Þ ¼ R2 �xx �rr�
�SSr�r�

2

R3

�rr
� �SSr�xrR4 þ R6 �rr,

R1,R2,R3,R4,R5,R6 are constants and S ¼ L 1:

8>>>>><
>>>>>:

ð9Þ

with R5 and R6 representing the rigid body displacement and rotation respectively.
Displacements �uuð �xx, �rrÞ and �vvð �xx, �rrÞ (9) are independent of the thermal field. The radial

component of the displacement field �ww satisfies the following equation:

�rr2
@2 �ww

@�rr2
þ �rr

@ �ww

@�rr
�

�LL��
�LLrr

�ww ¼
�rrðð �LLx� � �LLxrÞR1 þ ð �LLs� � 2 �LLrsÞR2 �rrþ ðK1 � K2Þ �TT þ K1 �rrð@ �TT=@ �rr ÞÞ

�LLrr

ð10Þ

with,

K1 ¼ �LLxr ���xx þ �LLr� ����� þ �LLrr ���rr þ �LLrs ���x�,

K2 ¼ �LLx� ���xx þ �LL�� ����� þ �LLr� ���rr þ �LLs� ���x�:

The general solution of the differential equation (10) is the sum of a solution of the
homogeneous equation and of a particular solution obtained by variation of the constant.
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�ww¼R7 �rr
�LL��= �LLrr

p

þR8 �rr
�LL��= �LLrr

p

þ
ð �LLx�� �LLxrÞR1 �rr

�LLrrð1� ð �LL��= �LLrrÞÞ
þ

ð �LLs�� 2 �LLrsÞR2 �rr
2

�LLrrð4� ð �LL��= �LLrrÞÞ
þ

ðK1 �K2ÞA
0
i �rr

�LLrrð1� �LL��= �LLrrÞ�s

þ
B0
i

�s

ðK1 �K2Þ�rr ln �rrþK1 �rr

�LLrrð1� ð �LL��= �LLrrÞÞ
�

2ðK1 �K2Þ�rr

�LLrrð1� ð �LL��= �LLrrÞÞ
2

� �
þ
X1
m¼1

2expð�!2
m�Þ

!m�0
uð!mÞ

� Ai
ðK1 �K2Þ

�LLrr

X1
k¼0

ð�1Þkð1=2Þ2kð�i!mÞ
2k

ðk!Þ2
�rrð2kþ1Þ

ðð2kþ 1Þ2 � �LL��= �LLrrÞ

("

�
K1

�LLrr

X1
k¼0

ð�1Þkð1=2Þ2kþ1
ð�i!mÞ

2kþ2

k!ðkþ 1Þ!

�rrð2kþ3Þ

ðð2kþ 3Þ2 � �LL��= �LLrrÞ

)
þ
Bi

	

�
2ðK1 �K2Þ

�LLrr

X1
k¼0

ð�1Þkð1=2Þ2kð�i!mÞ
2k

ðk!Þ2
ln

1

2
�i!m �rr

� �
�

2ð2kþ 1Þ

ðð2kþ 1Þ2 � �LL��= �LLrrÞ

�(

� ðkþ 1Þ

�
�rrð2kþ1Þ

ðð2kþ 1Þ2 � �LL��= �LLrrÞ

�
K1

�LLrr

X1
k¼0

ð�1Þkð1=2Þ1þ2k
ð�i!mÞ

2þ2k

k!ðkþ 1Þ!
2 ln

1

2
�i!m �rr

� �
� ðkþ 1Þ � ðkþ 2Þ

� �"

�
�rrð2kþ3Þ

ðð2kþ 3Þ2 � �LL��= �LLrrÞ
� 4

X1
k¼0

ð�1Þkð1=2Þ1þ2k
ð�i!mÞ

2þ2k

k!ðkþ 1Þ!

ð2kþ 3Þ�rrð2kþ3Þ

ðð2kþ 3Þ2 � �LL��= �LLrrÞ
2

� �

�2
�rr

ð1� �LL��= �LLrrÞ

���
ð11Þ

with  ðkþ 1Þ ¼
Pk

m¼1ð1=mÞþ �, � ¼�0:5772157 . . . (Euler’s constant), for, �LL��= �LLrr 6¼

ð2kþ 1Þ2, and, �LL��= �LLrr 6¼ ð2kþ 3Þ2.

DISPLACEMENT FIELD IN THE STEADY-STATE CASE
The thermal field within each ply i in the steady-state is reduced to:

�TTið�rrÞ ¼
1

�s
ðA0

i þ B0
i ln �rrÞ ð12Þ

Thus the components ð �uu, �vv, �wwÞ of the displacement field in the steady state can be written as
follows:

�uuð �xx, �rrÞ ¼ � �SSr�xr
R3

�rr
þ �SSxrxrR4 ln �rrþ R1 �xxþ R5

�vvð �xx, �rrÞ ¼ R2 �xx�rr�
�SSr�r�

2

R3

�rr
� �SSr�xrR4 þ R6 �rr

�wwð�rrÞ ¼ R7 �rr
�LL��= �LLrr

p

þ R8 �rr
�LL��= �LLrr

p

þ
ð �LLx� � �LLxrÞR1 �rr

�LLrrð1� �LL��= �LLrrÞ
þ
ð �LLs� � 2 �LLrsÞR2 �rr

2

�LLrrð4� �LL��= �LLrrÞ

þ
ðK1 � K2ÞA

0
i �rr

�LLrrð1� �LL��= �LLrrÞ�s

þ
B0
i

�s

ðK1 � K2Þ�rr ln �rrþ K1 �rr

�LLrrð1� �LL��= �LLrrÞ
�

2ðK1 � K2Þ�rr

�LLrrð1� �LL��= �LLrrÞ
2

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ
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If the temperature is uniform over the thickness of the pipe, we retrieve the expression
previously proposed by Ref. [1]:

�wwð�rrÞ ¼ R7 �rr
�LL��= �LLrr

p

þR8 �rr
�LL��= �LLrr

p

þ
ð �LLx� � �LLxrÞR1 �rr

�LLrrð1� �LL��= �LLrrÞ
þ
ð �LLs� � 2 �LLrsÞR2 �rr

2

�LLrrð4� �LL��= �LLrrÞ
þ

ðK1 �K2Þ�rr

�LLrrð1� �LL��= �LLrrÞ
�TT

ð14Þ

DISPLACEMENT FIELD IN THE CASE OF ISOTROPIC PLIES
The differential equation (10) for isotropic plies is reduced to:

�rr2
@2 �ww

@�rr2
þ �rr

@ �ww

@�rr
� �ww ¼

K1 �rr
2@ð �TTÞ=@�rr
�LLrr

ð15Þ

For the case of isotropic plies the components �uu and �vv become:

�uu ¼ �SSxrxrR4 lnð�rrÞ þ R1 �xxþ R5

�vv ¼ R2 �rr �xx�
�SSr�r�

2

R3

�rr
þ R6 �rr

8><
>: ð16Þ

The radial component of the displacement field, solution of Equation (15), is expressed:

�wwð�rrÞ¼R7 �rrþ
R8

�rr
þ

B0
i

2�s

K1

�LLrr

�rr lnð�rrÞ

�
X1
m¼1

2expð�!2
m�Þ

!m�0
uð!mÞ

K1

�LLrr

Ai

X1
k¼0

ð�1Þkð1=2Þ2kþ1
ð�i!mÞ

2kþ2

k!ðkþ1Þ!

�rr2kþ3

ðð2kþ3Þ2�1Þ

"

þ
Bi

	

X1
k¼0

ð�1Þkð1=2Þ2kþ1
ð�i!mÞ

2kþ2

k!ðkþ1Þ!
2ln

1

2
�i!m

� �
� ðkþ1Þ� ðkþ2Þ

� �
�rrð2kþ3Þ

ðð2kþ3Þ2�1Þ

(

þ2
X1
k¼0

ð�1Þkð1=2Þ2kþ1
ð�i!mÞ

2kþ2

k!ðkþ1Þ!

lnð�rrÞ�rr2kþ3

ðð2kþ3Þ2�1Þ
�

2ð2kþ3Þ�rr2kþ3

ðð2kþ3Þ2�1Þ2

� �
� �rr lnð�rrÞ

)#
ð17Þ

We retrieve, in the permanent case, the solution of Ref. [3]:

�wwð�rrÞ ¼ R7 �rrþ
R8

�rr
þ

B0
i

2�s

K1

�LLrr

�rr lnð�rrÞ ð18Þ

3.2. Determination of the Constants

Finally the displacement field in every ply depends on eight constants which are to be
determined: Ri for i¼ 1.8. Those eight constants are derived from the conditions (19)–(22)
below:

. rigid body motions restrained
Rigid body motions can be suppressed by setting R5 and R6 of the inner ply to zero.
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. traction-free conditions at the inner and outer radii

���1rrð �aaÞ ¼ ���1r�ð �aaÞ ¼ ���1xrð �aaÞ ¼ 0

���nrrð1Þ ¼ ���nr�ð1Þ ¼ ���nxrð1Þ ¼ 0

(
ð19Þ

where the superscript refers to the ply number, ply 1 being the inner ply and ply n being
the outer ply.

. continuity of the displacement components at each interface between adjacent plies

�uuið �xx, �rriÞ ¼ �uuiþ1ð �xx, �rriÞ

�vvið �xx, �rriÞ ¼ �vviþ1ð �xx, �rriÞ

�wwið�rriÞ ¼ �wwiþ1ð�rriÞ

for i ¼ 1 to ðn� 1Þ

8>>>>>><
>>>>>>:

ð20Þ

where ri is the location of the interface between plies i and iþ 1.
. continuity of ���rr, ���r�, ���xr at each interface between adjacent plies

���irrð�rriÞ ¼ ���iþ1
rr ð�rriÞ

���ir�ð�rriÞ ¼ ���iþ1
r� ð�rriÞ

���ixrð�rriÞ ¼ ���iþ1
xr ð�rriÞ

for i ¼ 1 to ðn� 1Þ

8>>>>>><
>>>>>>:

ð21Þ

. global force balance of the pipe

2	
Pn

i¼1

R �rri
�rri 1

���ixx �r d �rr ¼ 0

2	
Pn

i¼1

R �rri
�rri 1

���ix� �rr
2 d �rr ¼ 0

8<
: ð22Þ

The integrals enforce the zero axial force and torsion conditions. Both conditions must
be achieved because no loading is being applied to the pipe.

EXAMPLES

We consider a thick pipe of infinite length composed of five orthotropic unidirectional
carbon/epoxy plies (T300/5208) oriented alternatively at þ55 and �55 degrees versus the
longitudinal axis. The pipe is thermally homogeneous since the ply thermal properties do
not vary in the radial direction, and the stress is applied here on the mechanical
heterogeneity. The objective is to calculate the in-service stress state, due to the time
varying temperature, which should be added to the residual stress state due to the pipe
processing.

8



The thermal properties [7] and the mechanical properties [8] of the composite T300/5208
are presented in Tables 1 and 2.

The Tsai Wu strength criterion allows us to estimate the internal stresses versus the ply
strength. In Table 3 are reported the tensile strengths in the longitudinal, normal
and transverse directions denoted respectively X, Y, Z. The corresponding strengths in
compression are X0, Y0, Z0 and S stands for the plane shear strength. These strengths are
assumed to be independent of the temperature.

R, the strength factor derived from the Tsai Wu strength criterion, stands for the ratio
between the ultimate and the applied stress. Therefore, failure occurs when R is less than
or equal to 1.

Heating Process

The inner and outer radii of the pipe are 100 and 300mm respectively. The heating
process considered here is determined by the three following temperatures, respectively the
reference temperature and the inner and outer temperatures: T0¼ 293K, Tint¼ 313K and
Text¼ 413K.

The time-dependent temperature profiles resulting from the application of the
temperatures above are shown in Figure 2. At the beginning of the heating process
important thermal gradients take place near the outer surface. The logarithmic permanent
solution is reached after 6� 104 s.

Normal in-plane stresses in the fiber direction (Figure 3) can reach 100MPa in tension
and compression in the permanent case, corresponding to 7% only of the longitudinal
strength. It is interesting to note that the maximum value does not necessary occur in the
surface ply.

The normal in-plane stress in the transverse direction to the fibers remains negative,
except during the very initial stages (Figure 4). This means that probably no damage will

Table 1. Thermal properties.

Material k(W/mK) q(kg/m3) c (J/kgK) ha (m 1) hb (m 1)

T300/5208 0.7 1590 857 40 69

Table 2. Mechanical properties in the reference frame linked to the fibers (1, 2, 3).

Material E1 (GPa) E2,E3 (GPa) m12, m13 m23 G12 (GPa) a1 (K�1) a2, a3 (K�1)

T300/5208 181 10.3 0.28 0.43 7.17 0.02�10 6 22.5�10 6

Table 3. T300/5208 strengths (Tsai, 1987).

Strengths (MPa) X, X0 Y, Z Y0, Z0 S

T300/5208 1500 40 246 68
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occur due to that stress which is most critical within unidirectional plies. The stress value
at the outer surface is more or less constant and controlled by the outer temperature.
Finally, the strong temperature gradients close to the pipe surface do not induce any
critical transverse overstress. The calculation of the radial stress (Figure 5) proves that
the pipe wall is in radial compression, therefore delamination will not occur due to the
heating loading. The continuity of the radial stress simply results from the interface
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Figure 3. Normal ply stress in the fiber direction during the heating process.
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Figure 2. Profiles of temperatures at different times during the heating process.

10



equilibrium. The intralaminar shear stress (Figure 6) is characteristic of the ply anisotropy
and stacking sequence. It reaches values close to 10MPa, corresponding to 15% of the
shear strength. This value is significant and should be taken into account when designing
the structure.

The strength factor decreases versus the temperature (Figure 7) showing that the
permanent state seems to be more critical than the transient states in spate of the
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Figure 5. Radial stress during the heating process.
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Figure 4. Normal ply stress in the transverse direction to the fibers during the heating process.
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temperature gradients. This coefficient provides a global measure of the effects of the
stress state; in that case values over 10 mean that the permanent thermal state is not
presenting any risk. This result is induced by the compression state in the radial and
transverse directions. The transient analysis emphasizes the existence of similar strength
factors in the initial stages and for the permanent case on the outer surface.
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Figure 7. Thermal strength factor during the heating process.
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Figure 6. Shear stress during the heating process.
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Cooling Process

The inner and outer radii of the pipe are still 100 and 300mm respectively. The
cooling process is defined by the following temperatures: T0¼ 293K, Tint¼ 233K and
Text¼ 233K.

The temperature field due to the cooling (Figure 8) shows strong spatial gradients
at the beginning of the process. On the inner and outer surfaces the temperature
reaches 260 and 250K respectively, while within the pipe wall the initial temperature
of 293K still prevails. Even if the temperature on the surfaces decreases, the fact
that the cooling diffuses through the whole cylinder finally reduces the thermal
gradients. Eventually, a permanent uniform state is reached due to identical boundary
conditions.

The maximum normal stress in the fiber direction (Figure 9) is quite similar to that of
the heating process but the gradient is opposite. In the first time, the thermal gradients
have a significant effect on the normal in-plane stress transverse to the fibers (Figure 10).
Compared to the heating process, the cooling induces positive stress gradients both for the
radial and in-plane normal stresses (Figures 10 and 11). The normal in-plane stress
transverse to the fibers reaches positive values which are about 50% of the transverse
strength (Table 3). There is no significant change in the shear stress pattern except the sign
of the gradient (Figure 12).

Finally, as one could have forecast, the strength factors (Figure 13) are smaller than
in the heating case. In the permanent case for instance, the factor is comprised between
1 and 2 within the cylinder. Compared to the heating process, the strength factor is
reduced due to the tensile stresses which occurs, since the difference between the curing
and the operating temperatures is increasing.
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Figure 8. Profiles of temperatures at different times during the cooling process.
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Effect of Wall Thickness

In this section, special attention is paid to the particular effect of the wall thickness on
the internal stress development. For the composite pipes considered, which are composed
of five orthotropic unidirectional carbon/epoxy plies (T300/5208) oriented alternatively at
þ55 and �55 degrees, the outer radius is 300mm and the inner radius a take the values of
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200, 220, 240, 260 or 280mm. The boundary conditions are the same as those used for the
cooling process: T0¼ 293K, Tint¼ 233K and Text¼ 233K. When the uniform permanent
temperature fields hold in the composite pipes, the corresponding internal stresses and
strength factors are studied.

For the stresses in the fiber direction (Figure 14) and in the direction transverse to
the fibers (Figure 15), the thickness decrease involves a reduction of the stress gradients.
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The radial stresses are growing functions of the pipe thickness (Figure 16). The
intralaminar shear stress (Figure 17) tends towards constant values within unidirectional
plies when the thickness decreases. Reducing the thickness leads to an increase of the
strength factor except on the external ply and reduces the internal stresses (Figure 18). This
result illustrates the significant influence the wall thickness has on the internal stress
development. For the thin composite pipe with an internal radius of 280mm, we obtain
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Figure 13. Thermal strength factor during the cooling process.
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constant ply stresses and a negligible radial stress. Such stress profiles are similar to what
would be predicted by the classical laminated plate theory.

CONCLUSION

The paper presents a reference analytical solution to compute the thermoelastic stresses
in tubular laminated structures. This solution makes it possible to analyze the influence
of a transient thermal field on thick, laminated, anisotropic pipes and therefore to design
components accounting for internal thermoelastic stresses.
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In this article two thermal loading cases are studied: a heating process and a cooling
process. It was especially observed that the cooling process, involving tensile stresses, is
clearly more dangerous than the heating process, involving compressive stresses only.

Furthermore, this type of solution can be useful to validate or control special FE
approaches since it does not introduce any restrictive assumptions on the thickness nor
the stacking sequence of the laminate. The solution can be extended to hygrothermal time
dependent cases also.
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