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ABSTRACT. Stress probes are simulated with the discrete element method (DEM). From these 
simulations we show that the numerical discrete model presents a non-associative flow rule. 
As the material is non-associate, sign of the second-order work is checked for stress states 
included within the plastic limit condition. Conditions of occurrence of failure when the 
second-order work vanishes are discussed. 
RÉSUMÉ. Des recherches directionnelles en contrainte sont simulées avec la méthode des 
éléments discrets (MED). A partir de ces simulations, nous montrons que le modèle 
numérique discret présente une règle d’écoulement non associée. Par conséquent, le signe du 
travail du second ordre est calculé pour des états de contraintes inclus à l’intérieur de la 
condition limite de plasticité. Les conditions de développement d’une rupture lorsque le 
travail du second ordre s’annule sont discutées. 
KEYWORDS: failure, second-order work, control parameter, flow rule, stress probes, discrete 
element method. 
MOTS-CLÉS : rupture, travail du second ordre, paramètre de contrôle, règle d’écoulement, 
recherche directionnelle, méthode des éléments discrets. 
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1. Introduction

Classically in geomechanics, failure phenomenon is associated with the existence
of limit stress states. Experimental observations show that these limit stress states
cannot be exceeded. If an operator tries to impose an additional stress loading in-
crement from a limit stress state, the strain response will be very “large” (or even
“unbounded”), the material fails. Notions of limit state and failure have been gener-
alized by Darve et al. (2004) for stress states strictly included within the plastic limit
condition. In the framework of rate-independent materials, generalized limit states
are interpreted as homogeneous bifurcation states: according to the control parame-
ters chosen, different responses are possible from the bifurcation state, some of the
responses could correspond to the failure of the material. These bifurcation states (or
equivalently, mixed limit states) are detected when the second-order work is zero or
negative:

d2W = dσ
∼

: dε
∼

≤ 0 [1]

As shown by Darve et al. (2004), d2W is essentially a directional quantity. In
other words, a value of d2W does not correspond to a given mechanical state, but
corresponds to a given loading direction (in stress or strain space) from a given stress-
strain state. In addition, d2W can vanish inside the plastic limit condition only for
non-associated materials, for associated materials d2W vanishes on the plastic limit
condition. Darve et al. (2004) have shown that a whole bifurcation domain in stress
space (including stress states for which d2W ≤ 0 for one or several stress directions)
exist for the Hostun sand.

From different basis and approaches, Nicot et al. (2007), with the notion of “sus-
tainability”, and Nova (1994) (or Imposimato et al. (1998)), with the notion of “con-
trollability”, also discussed the occurrence of failure for stress states inside the plastic
limit condition. All these approaches are not detailed in this paper and we encour-
age readers to refer to the quoted papers. However these approaches converge toward
identical conditions to be fulfilled together, for the occurrence of failure: (i) stress state
belongs to the bifurcation domain; (ii) loading direction is characterised by d2W ≤ 0;
(iii) control parameters are the ones allowing to trigger the failure. These conditions
have been deduced from analytical analyses, and their necessity in failure occurrence
has not been systematically verified. Therefore, we present in this paper a numerical
verification of these conditions, from direct simulations based on the discrete element
method (Cundall et al., 1979). Non-associativeness of the numerical discrete model
is first discussed, since it is a necessity for vanishing of d2W within the plastic limit
condition.

2. Numerical discrete model

Direct simulations were performed on a numerical discrete model with the code
SDEC developed by Donzé et al. (1997), and based on the discrete element method
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Cundall et al. (1979). The 3D numerical model has a cubical shape, it is composed of
about 10,000 polydisperse spheres (Figure 1a). Let’s denote ds the sphere diameter,
then dmax

s /dmin
s = 4.75. Spheres are rigid, they can slightly overlap according to an

interaction contact law presented in Figure 1b. In the direction normal to the tangent
contact plane, the relation is purely elastic and no tensile force is allowed. In the
direction included in the tangent contact plane, the relation is elastic perfectly plastic.
Only three mechanical parameters are introduced in the model at the contact scale;
the normal kn and tangential kt stiffnesses, and the friction angle ϕc. From sphere
positions and the interaction contact law, contact forces are computed at each time
step. Then, new sphere positions and orientations are determined by applying the
Newton’s second law from resultant forces and torques acting on each sphere. An
explicit scheme is used to integrate the Newton’s second law.

a)

ck
n

k
t

b)

Figure 1. a) numerical model with frictionless walls and frame axes; b) sketch of the
intergranular interaction law

The macroscopic stress-strain state of the numerical model (or numerical sample)
is imposed through six frictionless walls whose positions are controlled at each time
step to follow the prescribed loading programme. Since there is no tangential forces
in wall-grain contacts, stress and strain principal directions coincide with the normals
to the walls (Figure 1a). Each principal value of stresses or strains can be controlled;
either directly for strains by adjusting the wall displacements, either indirectly for
stresses thanks to a closed-loop control (since only wall positions or displacements
are controlled). Consequently, all loading programmes defined with principal values
of stresses (σ1, σ2, σ3) and/or strains (ε1, ε2, ε3) can be applied. The strain state is
determined from wall positions and the stress state from wall-grain contact forces.

In this paper, analyses are carried out from simulations performed on two numeri-
cal samplesE1 andE3. The samples differ only in their initial density, their character-
istics are given in Table 1. During an axisymetric triaxial compression (characterised
by a constant radial stress), the densest sample E1 is dilatant, whereas the sample E3
is essentially contractant. All simulations presented hereafter are performed in axisy-
metric conditions (σ2 = σ3 and ε2 = ε3), thus stress states and strain states can be
represented in the Rendulic (or axisymetric) planes of stresses (σ1,

√
2 σ3) or strains

(ε1,
√

2 ε3).
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Table 1. Characteristics of the numerical samples

Sample kn/ds kt/kn ϕc Void ratio Coordination number
(MPa) (deg) e z

E1 356 0.42 35.0 0.618 4.54
E1 356 0.42 35.0 0.693 4.42

3. Non associative flow rule

To investigate the incremental constitutive behaviour of the numerical samples,
it is useful to plot the response envelopes to strain or stress probes as suggested by
Gudehus (1979). Stress probes, defined in the Rendulic plane of stress increments by
the norm ‖d�σ‖ =

√
(dσ1)2 + (dσ3)2 and the orientation angle α (see Figure 2a), are

performed from initial stress-strain states reached after drained triaxial compressions.
The initial stress states are characterised by the confining pressure σ3 and the shear
stress ratio η = q/p (with q = σ1 − σ3 and p = (σ1 + 2σ3)/3). The norm of the
incremental stress loading ‖d�σ‖ is set equal to 1 kPa (i.e. of the order of 10−2 times
the mean pressure p imposed for the simulations). Since the response of the numerical
model to a given loading is non-linear, the choice of the norm of d�σ is a tricky point.
‖d�σ‖ should be chosen as small as possible to limit the influence of the non-linearity of
the strain response on the shape of the response envelope. Nevertheless the response
of a discrete element model to a given loading is marked by successive quasi-static
phases followed by inertial phases (related to a modification of the contact network)
(Combe et al., 2000). Hence ‖d�σ‖ should be large enough to include some of these
inertial phases (Sibille, 2006) directly involved in the macroscopic constitutive be-
haviour of the numerical model. For each stress probe, orientation α is constant, and
strain response is computed and characterised in Rendulic plane of strain increment
by ‖d�ε ‖ =

√
(dε1)2 + (dε3)2 and the orientation β (see Figure 2b). The envelope

of the set of strain responses d�ε computed for 0 ≤ α ≤ 360 deg (by step of 10 deg)
from a given initial stress-strain state is called the response envelope. Such a response
envelope is shown with crosses in Figure 3.

In the following, the computed response envelopes are discussed by making refer-
ence to the classical elasto-plasticity framework. Thus, we assume:

– the classical decomposition of strains into an elastic part d�εe and a plastic part
d�εp such as:

d�ε = d�εe + d�εp [2]

– the existence of an elastic limit surface f , of normal �n, separating an elastic
tensorial zone and an elasto-plastic tensorial zone,

– the existence of a plastic potential g, of normal �m.

To compute the elastic responses to stress probes, the sliding at intergranular contacts
is inhibited by imposing ϕc → 90 deg. For the size of the stress increments imposed,
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this later condition is confirmed to be sufficient, by verifying the vanishing of residual
strains after a cycle of loading/unloading, and by checking the lack of sliding and
opening contacts. Once the elastic strain response is determined, the plastic strain
response is computed from Equation [2].

a)

d�

d�3

d�1

�

b)

Figure 2. Stress probes a) and strain responses b) defined in the Rendulic plane of
stress and strain increments, respectively
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Figure 3. Decomposition of the strain response envelope into an elastic part and a
plastic part; sample E1, σ3 = 200 kPa and η = 0.77

In Figure 3 are presented a total response envelope, computed with sampleE1, and
its decomposition into elastic and plastic response envelopes. The elastic response en-
velope with an elliptical shape centered with respect to the axis origin is typical of
a purely elastic behaviour (Gudehus, 1979). The plastic response envelope (repre-
sented with black points) forms a straight line meaning that the direction βp of plastic
strain increments d�εp is constant and independent of stress loading directions α (for
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a given initial stress-strain state). Therefore, this plastic response envelope shows the
existence of a flow rule for the numerical samples used.
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Figure 4. a) norms of plastic, ‖d�εp‖, and elastic, ‖d�εe‖, strain responses; b) direc-
tions of plastic, βp, and elastic, βe, strains; sample E3, σ3 = 200 kPa and η = 0.63

Another way to represent a strain response envelope consists in plotting the norm
and the direction of strain responses versus the stress loading direction. Figures 4a
and 4b display such representations for elastic and plastic strain response envelopes
computed with sample E3. Figure 4b shows clearly that βp is quasi constant (for
‖d�εp‖ �= 0) confirming the existence of a flow rule, and with βp = 129 deg corre-
sponding to the direction of the normal �m to the plastic potential.

In Figure 5 are presented the stress directions corresponding to an elasto-plastic
response in the sense of classical elasto-plasticity. By following these directions
counter-clockwise, the first and the last directions are tangent to the elastic limit sur-
face f . Right and left tangents to the elastic limit surface can be deduced from Fig-
ure 4a: first plastic strains are found for α = 60 deg and last ones for α = 240 deg.
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Right and left tangents are collinear and the normal �n to the elastic limit surface is
aligned along the direction α = 150 deg. This latter direction corresponds to the max-
imum of ‖d�εp‖ as shown in Figure 4a. By this way we obtain a rough estimation of the
direction of �n, but this estimation is enough to conclude about the non-associativeness
of the numerical model (see also Bardet (1994) and Calvetti et al. (2003)). There-
fore the second-order work should vanish for stress states included in the plastic limit
surface.

Figure 5. Definition of stress directions leading to an elasto-plastic response in the
framework of classical elasto-plasticity

Figure 6 shows directions of �n and �m for different stress states and for samples
E1 and E3. We remark for high value of η that the elastic limit surface tends to align
with the Mohr-Coulomb criterion (plotted with a thin continuous line).

4. Occurrence of diffuse failure

Since the second-order work d2W is essentially a directional quantity, it is useful
to perform stress probes (as defined in Section 3) to check values of d2W with respect
to stress loading directions. Values of second-order work are normalized to allow
comparisons between different stress-strain states and different sample densities. The
normalized second-order work d2Wnorm is defined as (Darve et al., 2000):

d2Wnorm =
d�σ . d�ε

‖d�σ‖ ‖d�ε ‖ [3]

d2Wnorm is equal to the cosine of the angle between d�σ and d�ε, consequently from
Figure 5 it appears clearly that d2Wnorm (and thus d2W ) can take negative values
before the plastic limit condition only if the material is non-associated.
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Figure 6. Comparison of directions of the plastic flow, �m, and of the normal �n to the
elastic limit surface

Figure 7 shows a circular diagram of d2Wnorm versus the stress direction α com-
puted with samples E1 and E3 for a confinement of 100 kPa. In a such diagram, an
arbitrary constant ρ is added to polar values of d2Wnorm to verify:

∀α, d2Wnorm(α) + ρ > 0 [4]

A dashed circle drawn in Figure 7 represents vanishing values of d2Wnorm. Inside
the dashed circle d2Wnorm is negative, outside it is positive. For both samples, we
remark negative values of d2Wnorm (or d2W ) for stress directions α grouped in a
cone of unstable stress directions (Imposimato et al., 2001; Darve et al., 2004). Cones
shown here are the first ones found with respect to the shear stress level η (η = 0.82
and 0.46 for E1 and E3 respectively, below these η values d2W > 0 for all stress-
strain states and stress directions checked (Sibille et al., 2007; Sibille et al., 2008)).
These shear stress levels (corresponding to mobilized friction angles φm = 21.0˚ and
12.3˚) are included within the Mohr-Coulomb criterion (defined by φ = 24.7˚ and
21.2˚ for E1 and E3 respectively).

Through Figure 7 are summarized the three main characteristics of the influence
of density on cones of unstable stress directions. (i) the cone is more opened for the
loosest sample, (ii) for the loosest sample lower α values are included in the cone than
for the densest sample, (iii) first cone is found for a lower value of φm with the loosest
sample than with the densest one. An identical qualitative influence of the density on
cones has been highlighted by computations made with a phenomenological consti-
tutive relation fitted on dense and loose Hostun sands (Darve et al., 2004; Sibille et
al., 2007). This simple comparison of cones of unstable stress directions with respect
to the density, corroborates the fact that, experimentally failure of a loose sand sam-

8



ple from a stress state included within the Mohr-Coulomb criterion is much easier to
observe than with a dense sample (the bifurcation domain and the range of unstable
stress directions are wider).
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Figure 7. Normalized second-order work, d2Wnorm, versus stress probe direction α,
for samples E1 and E3 at the same confining pressure σ3 = 100 kPa

For simulations of stress probes, numerical samples were fully stress controlled.
The loading programme was defined for a given stress direction α by the control pa-
rameters dσ1 = cst1 and dσ3 = cst3 (plus dσ2 = dσ3 to verify the axisymetric
condition), where cst1 and cst3 are chosen such that the stress direction α is verified.
The corresponding response parameters are dε1 and dε3. With these control parame-
ters vanishing or negative values of d2W are found but no failure was observed (after
a stress probe the numerical sample reach a new equilibrium state).

We verify hereafter that the control mode plays a fundamental role in failure oc-
currence. The objective is to impose a given stress direction to numerical samples
through different control parameters than previous one. The ratio between σ1 and
σ3 can be imposed for instance through the condition dσ1 − dσ3/R = 0, where
R = cos α /

(√
2 sin α

)
for α ∈ ]180 deg; 270 deg]. By restricting our analysis to con-

jugated parameters in the sense of energy (Nova, 1994), then:

σ1ε1 + 2σ3ε3 = ε1

(
σ1 − σ3

R

)
+ (ε1 + 2R ε3)

σ3

R
[5]

Thus the loading programme can be defined for instance by:

dσ1 − dσ3

R
= 0 and dε1 + 2R dε3 < 0 [6]

and the response parameters are dε1 and dσ3/R. This loading programme ensures
a mixed control mode (in stress and strain) with control parameters defined as linear
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combinations of principal stress or strain components. Such control modes are en-
countered in very classical laboratory test, for instance a drained triaxial compression
corresponds to a mixed control mode (σ3 = 0 and dε1 > 0), and for an undrained
triaxial compression a condition is imposed on a linear combination of principal strain
components (dεv = dε1 + 2 dε3 = 0).

Numerically, to impose the loading programme defined by [6] to the sample, sev-
eral time steps are necessary (even if increments of control parameters are “small”).
At each time step t of the discrete element method (DEM) the following conditions
are verified:

Ct
σ = σt

1
− σt

3

R
and Ct

ε = εt
1

+ 2R εt
3

[7]

where Ct
σ and Ct

ε are constants set at each step t such that conditions defined in [6]
are verified when the simulation ends; σt

1
, σt

3
, εt

1
and εt

3
correspond to the stress-strain

state computed at step t. Figure 8 presents a simplified diagram of the numerical
loop followed, involving conditions defined in [7]. Full details can be found in Sibille
(2006).

Figure 8. Principle of the loop to control linear combinations of principal stress or
strain components

In a first time we consider the stress direction characterised by R = 1
(α = 215.3 deg). This direction is included in the cone of unstable stress directions
for sample E3 at the stress state considered (Figure 7). For R = 1 control parameters
defined in [6] write: dq = 0 and dεv < 0 (dilatancy imposed). Thus the sample fol-
lows a constant shear stress path (for instance, such a stress path can be followed by
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a material point in a slope when pore-water pressure increases: dq = 0 and dp < 0).
Figure 9 shows a comparison of responses of E3 between a full stress control and
a control defined by [6] in terms of kinetic energy and stresses. The kinetic energy
of the sample is computed as the sum of the kinetic energy of each grain. When the
sample is fully stress controlled the kinetic energy stays very low and finally vanishes,
the sample reaches a new equilibrium at a stress state close to the initial one. When
the sample is controlled by dq = 0 and dεv < 0 a burst of kinetic energy is computed
characterised by a monotonic increase until values of two order of magnitude larger
than maximum kinetic energy computed during fully stress controlled probes. We ob-
serve a sudden vanishing of stresses (as a sudden liquefaction). Due to the dynamic
response, the importance of inertial terms can by visualized in the evolution of the
axial σ1 and radial σ3 stresses; when σ3 vanishes, σ1 is about 40 kPa.

This result verifies that failure occurrence from a bifurcation point, detected with
the second-order work criterion, depends on the choice of the control parameters. For
instance, when the sample is fully stress controlled no failure can occur before the
plastic limit condition as shown by Nova (1994). Darve et al. (2004) have shown
that generalized limit states exist strictly inside the plastic limit condition. For the
particular case of constant shear stress paths on loose sand, the authors have shown that
a maximum dilatancy cannot be exceeded (as a stress state corresponding to the plastic
limit condition cannot be exceeded). The choice of the loading condition dεv < 0
has been motivated by this demonstration. We verify, for this very particular loading
programme, that effectively a generalized limit state cannot be exceeded (note that if
dεv > 0 was imposed no failure would be observed, in the same way as a “stress
unloading” applied from a plastic limit state does not lead to the failure).

In the following, we pay attention to the importance of the stress direction, to-
gether with the influence of density, on failure occurrence. Four stress directions are
considered and their belonging to cones of unstable stress directions for sample E1
and E3 (see Figure 7) are summarized in Table 2. The control parameters are those
defined in expression [6], but no variation of loading parameters is imposed. Thus the
loading programme is defined by:

dσ1 − dσ3

R
= 0 and dε1 + 2R dε3 = 0 [8]

and apply to numerical samples through the algorithm presented in Figure 8.

If simulations are run in these conditions there is no evolution of the samples, they
stay at their initial mechanical state governed by the prescribed control parameters.
A perturbation is necessary to conclude about the importance of the stress direction.
Simulations are performed without gravity. Therefore, at a given mechanical state,
some spheres float within the pores. Samples are perturbed by imposing, at a given
time step t, an instantaneous velocity in a random direction to eight floating grains.
Samples are virtually split into eight sub-parallelepipeds, each perturbed floating grain
is chosen randomly in each sub-parallelepiped respectively. The velocity imposed to
each grain is computed such that the value of kinetic energy provided is equal for each
grain. The total value of external input of kinetic energy is 10−5 J, which is small with

11



respect to the maximum value of kinetic energy computed for fully stress controlled
probes: 10−4 J.
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Figure 9. Comparison of reponses of sample E3 along a constant shear stress loading
path control by dσ1 = dσ3 < 0 or by dq = 0 and dεv < 0

Table 2. Stress directions and belonging to cones of unstable stress directions
(σ3 = 100 kPa)

α R ∈ cone of unstable stress directions?
(deg) sample E1 (η = 0.82) sample E3 (η = 0.46)
200 1.94 no no
220 0.843 no yes
230 0.593 yes yes (close to the limit of the cone)
250 0.257 no no

Responses of samples E1 and E3 to the perturbation with respect to R value are
presented in Figures 10 and 11 in terms of kinetic energy and radial stress, σ3, evo-
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lutions. For R = 1.94 and 0.257 (α = 200 and 250 deg respectively) samples E1
and E3 reach a new equilibrium at a stress state close to the initial one. These di-
rections are not included in cones for both samples. For R = 0.843 (α = 220 deg)
failure is observed only for sample E3, this direction is not included in the cone for
sample E1. For R = 0.593 (α = 230 deg), failure is observed for both samples, this
direction corresponds to negative values of d2W for both samples. However the burst
of kinetic energy is not obvious for sample E3, for which direction α = 230 deg is
close to the limit of the cone. These results verify that failure can occur only along
loading directions included in the cone of unstable stress directions. These unstable
stress directions are closely related to the density of the granular material.

α = 200 deg; R = 1.94
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Figure 10. Comparison of responses, to a perturbation in kinetic energy, computed
with samples E1 and E3, for α = 200 and 220 deg

5. Conclusion

Since the discrete element method involves few hypotheses, it constitutes a good
tool to verify prediction deduced from analytical developments. Moreover, for very
particular loading programmes, as those defined in this paper, simulations are easier
to realize, than real experiments. The presented results confirm that from bifurcation
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points detected with the second-order work criterion, for stress directions included in
cones of unstable stress directions, and for particular control parameters, failure can
develop suddenly, characterised by a dynamic response of the material and the van-
ishing of stresses. These failures occur from stress states inside the Mohr-Coulomb
criterion and could explain, for instance, landslides not predicted by a classical ap-
proach.

α = 230 deg; R = 0.593
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Figure 11. Comparison of responses, to a perturbation in kinetic energy, computed
with samples E1 and E3, for α = 230 and 250 deg
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