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We present a novel algorithm to simulate free-surface fluid dynamics phenomena at low Reynolds numbers in an 
updated Lagrangian framework. It is based on the use of one of the most recent meshless methods, the so-called natural 
element method. Free-surface tracking is performed by employing a particular instance of ‘‘shape constructors’’ called 
a-shapes. This means that at each time step the geometry of the domain is extracted by employing a particular member 
of the finite set of shapes described by the nodal cloud. The Lagrangian framework allows us to integrate the inertial terms 
of the Navier–Stokes equations by employing the method of characteristics which are, precisely, the nodal pathlines. A 
theoretical description of the method is included together with some examples showing its performance.

Keywords: Meshless; Natural element method; a-Shapes; Free-surface flows; Fluid Dynamics
1. Introduction

The Eulerian approach has been the most extended framework to represent the equations governing the
dynamics of a Newtonain fluid. In this approach, the computational mesh is fixed and the fluid moves with
respect to the grid. This formulation has the obvious advantage of an easy treatment of large distortions in
the fluid motion and is indispensable in the treatment of turbulent flows, for instance [20]. However, the pres-
ence of free boundaries extremely complicates the formulation of flow problems in Eulerian frameworks. This
is so since the free boundary must be located somewhere within an element. Volume of fluid (VoF) techniques
rely on the employ of an implicit function called the presence of fluid function, that takes unity value in the
region filled with fluid and vanishing in the empty domain. This function is advected with the velocity of
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the fluid throughout the computation. Other techniques, known as tracking methods rely on the use of mark-
ers, whose position is updated with the just computed fluid velocity field [43].

Arbitrary Lagrangian–Eulerian formulations [19], in which an artificial velocity of the computational mesh
is introduced, somewhat alleviates this problem. However, finding the most adequate velocity of the mesh for
a particular problem is far from being straightforward. Also, the positioning of the nodes on the free surface
deserves some analysis [9].

In the last decade, the irruption of meshless or meshfree methods (see [35] or [7] just to cite some of the first
works on the topic) in the field of computational mechanics renewed the interest on (updated) Lagrangian
approaches to fluid flows problems involving free-surfaces. Recently, a number of works have been published
in this area. See, for instance, [32] for an application of the Meshless–Local Petrov–Galerkin method [1] to
non-linear water-wave problems or [28] for an application of the particle finite element method to free-surface
problems.

In essence, meshless methods are less dependent on the regularity of the mesh than finite elements [3]. In
general, they are based on the employ of scattered data interpolation techniques in a Galerkin framework,
although collocation approaches exist. Moving least squares interpolation, for instance, is the basis of some
of the most popular meshless methods [35]. Other meshless methods have demonstrated to posses an equiv-
alent structure, although not initially based on MLS approximations [31]. This lower dependency on mesh dis-
tortion allows us to employ updated Lagrangian strategies for fluid mechanics problems, in which the nodes
move with their respective material velocity, regardless of the regularity of their resulting position at each time
step. Nodal connectivity is then found by a search algorithm transparent to the user.

However, most meshless methods present some problems that, despite the vast effort of research made dur-
ing the last years, is still an open issue. For instance, those methods based on MLS approximants (or, in gen-
eral, those based on circular, square or elliptically supported shape functions) lack of appropriate
interpolation along essential boundaries.

The vast majority of meshless methods—at least those based on Galerkin strategies—also present some
problems in the numerical integration of the weak form of the problem. Since they employ non-polynomial
shape functions, numerical integration of the resulting stiffness or mass matrices presents some deficiencies
if traditional Gauss quadratures are used. Other important factor in the numerical integration error is the
non-conformity of integration cells and shape functions’ supports, as reported in [18].

Among the newest meshless methods, the natural element method (NEM) presents some interesting fea-
tures [40,16]. For instance, it has been demonstrated that exact interpolation of essential (Dirichlet) bound-
ary conditions is possible under very weak conditions [15,14]. Also, it has been recently demonstrated [23]
that the NEM possesses a particularly well-suited structure for the application of stabilised conforming
nodal integration schemes [12], thus leading to a very accurate nodal method with great accuracy in numer-
ical integration.

In this paper, we present a scheme based on the use of the method of characteristics [36] for the integration
of the inertia terms of the Navier–Stokes equations. A salient feature of the method is the use of a-shapes in
order to track the free surface of the domain as it evolves. After a theoretical description of the NEM in Sec-
tions 2 and 3, the proposed algorithm is described in Section 4. Some numerical examples demonstrating the
capabilities of the proposed method are shown in Section 5. Finally, we conclude with some discussions and
some concluding remarks.

2. The natural element method

2.1. Natural neighbour interpolation

As mentioned before, the vast majority of meshless methods are based on the employ of scattered data
approximation techniques to construct the approximating spaces of the Galerkin method. These techniques
must have, of course, low sensitivity to mesh distortion, as opposed to FE methods. Among these techniques,
the natural element method employs any instance of natural neighbour interpolation [39,26] to construct trial
and test functions. Prior to the introduction of these interpolation techniques, it is necessary to define some
basic concepts.
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Fig. 1. Delaunay triangulation and Voronoi diagram of a cloud of points.
The model will be constructed upon a cloud of points with no connectivity on it. We will call this cloud of
points N ¼ fn1; n2; . . . ; nMg � Rd , and there is a unique decomposition of the space into regions such that each
point within these regions is closer to the node to which the region is associated than to any other in the cloud.
This kind of space decomposition is called a Voronoi diagram of the cloud of points and each Voronoi cell is
formally defined as (see Fig. 1):
1 Ev
majori
T I ¼ fx 2 Rd : dðx; xIÞ < dðx; xJ Þ 8J 6¼ Ig; ð1Þ

where d(Æ, Æ) is the Euclidean distance function.

The dual structure of the Voronoi diagram is the Delaunay triangulation1, obtained by connecting nodes
that share a common (d � 1)-dimensional facet. While the Voronoi structure is unique, the Delaunay tri-
angulation is not, there being some so-called degenerate cases in which there are two or more possible Del-
aunay triangulations (consider, for example, the case of triangulating a square in 2D, as depicted in Fig. 1
(right)). Another way to define the Delaunay triangulation of a set of nodes is by invoking the empty cir-

cumcircle property, which means that no node of the cloud lies within the circle covering a Delaunay tri-
angle. Two nodes sharing a facet of their Voronoi cell are called natural neighbours and hence the name of
the technique.

In order to define the natural neighbour co-ordinates it is necessary to introduce some additional concepts.
The second-order Voronoi diagram of the cloud is defined as
T IJ ¼ fx 2 Rd : dðx; xIÞ < dðx; xJ Þ < dðx; xKÞ 8J 6¼ I 6¼ Kg: ð2Þ

The simplest of the natural neighbour-based interpolants is the so-called Thiessen’s interpolant [42]. Its inter-
polating functions are defined as
wIðxÞ ¼
1 if x 2 T I

0 elsewhere:

�
ð3Þ
The Thiessen interpolant is a piece-wise constant function, defined over each Voronoi cell. It defines a method
of interpolation often referred to as nearest neighbour interpolation, since a point is given a value defined by its
nearest neighbour. Although it is obviously not valid for the solution of second-order partial differential equa-
tions, it can be used to interpolate the pressure in formulations arising from Hellinger–Reissner-like mixed
variational principles.

The most extended natural neighbour interpolation method, however, is the Sibson interpolant [38,39].
Consider the introduction of the point x in the cloud of nodes. Due to this introduction, the Voronoi diagram
will be altered, affecting the Voronoi cells of the natural neighbours of x. Sibson [38] defined the natural neigh-
bour coordinates of a point x with respect to one of its neighbours I as the ratio of the cell TI that is trans-
ferred to Tx when adding x to the initial cloud of points to the total volume of Tx. In other words, if j(x) and
jI(x) are the Lebesgue measures of Tx and TxI respectively, the natural neighbour coordinates of x with respect
to the node I is defined as
en in three-dimensional spaces, it is common to refer to the Delaunay tetrahedralisation with the word triangulation in the vast
ty of the literature.
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/IðxÞ ¼
jIðxÞ
jðxÞ : ð4Þ
In Fig. 2 the shape function associated to node 1 may be expressed as
/1ðxÞ ¼
Aabfe

Aabcd
: ð5Þ
It is straightforward to prove that NE shape functions (see Fig. 3) form a partition of unity [4], as well as some
other properties like positivity (i.e., 0 6 /I(x) 6 1"I,"x) and strict interpolation:
/IðxJ Þ ¼ dIJ : ð6Þ

A third type of natural neighbour interpolation was independently established by Belikov [6] and Hiyoshi [26].
It is referred to as non-Sibsonian or Laplace interpolation. It has not been used in this work.

2.2. Properties of natural neighbour interpolation

Sibson interpolants have some remarkable properties that help to construct the trial and test functional
spaces of the Galerkin method (see [40,26] for proofs of the following properties).

Besides properties like continuity and smoothness (everywhere except at the nodes for Sibson interpolants
and at some other lines of zero measure for the Laplace interpolant), Sibson and Laplace interpolants posses
linear completeness (i.e., exact reproduction of a linear field).
Fig. 3. Typical function /(x). Courtesy N. Sukumar.
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Fig. 2. Definition of the natural neighbour coordinates of a point x.
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Sibson and Laplace interpolants can also reproduce linear functions exactly along convex boundaries. This
is in sharp contrast to the vast majority of meshless methods. In addition, in [15,14,47] distinct methods of
imposing linear displacement fields along non-convex boundaries were developed. These are based on the
use of a-shapes, e-samplings or visibility criteria, respectively. So, essential boundary conditions can be
imposed directly, as in traditional finite element methods. In [15,13] it was demonstrated that the construction
of the Sibson interpolant over an a-shape [22] of the domain allows us to accurately extract the shape of the
domain, defined in terms of nodes only, while ensuring linear interpolation along any kind of boundaries (con-
vex or not). This property was later generalised for arbitrary clouds of points and a explicit definition of the
domain through CAD techniques in [14].

As mentioned before, Laplace interpolants were initially supposed to reproduce linear essential boundary
conditions exactly [41], although it was later demonstrated that some criteria must be met in order to ensure it
[14]. The a-shape approach mentioned before was later adopted in [27] in the so-called meshless Finite Element
method, which consists, essentially, in adopting FE approximation for well-shaped triangles or tetrahedra, and
Laplace interpolation for badly-shaped tetrahedra grouped forming a polyhedron.

In the next section, we study the implication of a-shapes in the development of the method here proposed.

3. The a-shapes-based natural element method

The identification of the free surface in an updated Lagrangian flow simulation deserves some comments. In
many prior works, location of boundary nodes is performed by flagging coincident element faces [30], for
instance. Once the updating of nodal positions has been performed, a recursive check must be done in order
to find overlapping boundary segments, thus generating ‘‘air’’ bubbles, holes or cavities in the domain, splash-
ing drops, etc. In three dimensions this technique is obviously much more expensive. Splashing and similar
phenomena is usually not considered with this approach.

With the irruption of meshless methods, in which models are constructed by a set of nodes only, boundary
tracking can be performed by employing different strategies. In particular, we have employed shape construc-

tors to perform this task. Shape constructors are geometrical entities that transform finite point sets into a
multiply connected shape in general. Due to their importance in many areas, they have attracted much atten-
tion in computational geometry in the last years. In particular, we employ a-shapes [22]. Other shape construc-
tors giving homotopy-equivalent shapes have been recently proposed [17]. a-Shapes define a one-parameter
family of shapes Sa (being a the parameter), ranging from the ‘‘coarsest’’ to the ‘‘finest’’ level of detail. a
can be seen, precisely, as a measure of this level of detail.

Details about the formal definition of the family of a-shapes can be found in [22]. In brief, the use of
a-shapes to define the boundary of the domain relies in the choice of the level of detail needed to represent
the domain, which is always an analyst’s decision. It is obvious then that the minimum nodal spacing param-
eter, say h, should be chosen so as to reproduce at least that level of detail a.

a-Shapes provide a means so as to eliminate from the triangulation those triangles or tetrahedra whose size
is bigger than the before-mentioned level of detail. This criterion is very simple: just eliminate those triangles
(tetrahedra) whose circum-radius is bigger than the level of detail, a.

In Fig. 4 an example of the previously presented theory is presented. It represents some instances of the
finite set of shapes for a cloud in a intermediate step of the simulation of a wave breaking in a beach.

Note that the key question in using a-shapes is not to find the precise value of a for a given configuration of
the nodal cloud. Instead, we must set the problems in terms of what level of detail are we interested in taking

into account for a particular geometry.
But the use of shape constructors, and particularly, the use of a-shapes has another relevant influence in

the natural element method (also in the meshless finite element method [27], although it was not initially
pointed out by Idelsohn and co-workers). As demonstrated in [15], the construction of natural neighbour
interpolation (Sibson or Laplace) on an a-shape of the domain alters the distance measure. Natural neigh-
bour interpolation is performed on the basis of Voronoi diagrams, which employ euclidean distance mea-
sure in their most general form. This leads to some lack of interpolation along non-convex boundaries.
This interpolation is recovered if we construct the natural neighbour interpolants over an a-shape of
the domain.
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Fig. 4. Evolution of the family of a-shapes of a cloud of points representing a wave breaking on a beach. Shapes S0 (a), S0:5 (b), S1:0 (c),
S2:0 (d), S3:0 (e) and S1 (f) are depicted.
Thus, the use of a-shapes in the construction of updated Lagrangian simulations of fluid flow provides an
appealing way to track the boundary of domain while ensuring appropriate interpolation of essential bound-
ary conditions, that can be imposed directly in the discrete system of equations, as in the Finite Element
Method.

4. Governing equations and discretisation

4.1. Governing equations

We consider here the problem of fluid dynamics at moderate Reynolds number. By moderate we mean that
we are far from the limit of infinite Re (in the examples presented here, Re is among 10 and 2000). Thus, the
governing equations can be set as follows. Consider a fluid in a region X of the space R2 or R3. The fluid flow is
governed by the following mass and momentum conservation equations:
qðv;t þ ðv � rÞvÞ ¼ r � rþ qb in X� ð0; T Þ; ð7Þ
r � v ¼ 0 in X� ð0; T Þ; ð8Þ
where v represents the fluid velocity, r the stress tensor, q represents fluid density and b the volumetric forces
acting on the fluid.

The constitutive equation for a Newtonian fluid is given by:
r ¼ �pI þ s ¼ �pI þ 2lDþ kðr � vÞI ; ð9Þ

where D is the strain rate tensor, p the pressure, l is the dynamic viscosity of the fluid and k the second coef-
ficient of viscosity. For incompressible fluids $ Æ v = 0 and consequently the before-mentioned Eq. (9), is
reduced to the so-called Stokes law
r ¼ �pI þ 2lD: ð10Þ

Substituting into Eqs. (7) and (8) we arrive to
qðv;t þ ðv � rÞvÞ � 2lr �Dþrp ¼ qb: ð11Þ

It is usual to rewrite this last equation as
qðv;t þ ðv � rÞvÞ � lr2v� lrðr � vÞ þ rp ¼ qb: ð12Þ

Under the incompressibility assumption (8), this last Eq. (12) is transformed into
qðv;t þ ðv � rÞvÞ � lr2vþrp ¼ qb; in X� ð0; T Þ: ð13Þ

To solve the problem we must prescribe an initial state as well as boundary conditions given by
vðx; tÞ ¼ vDðx; tÞ; x 2 CD; t 2 ð0; T Þ; ð14Þ
6



where CD stands for the Dirichlet (essential) portion of the boundary and CN represents the Neumann or nat-
ural portion of the boundary:
rðx; tÞ � n ¼ tðx; tÞ; x 2 CN; t 2 ð0; T Þ: ð15Þ
4.2. Time discretization

The motion equations can be grouped to
r � rþ qb ¼ q
dv

dt
¼ q

ov

ot
þ vr � v

� �
; ð16Þ

r � v ¼ 0; ð17Þ
r ¼ �pI þ 2lD: ð18Þ
The weak form of the problem associated to Eqs. (16)–(18) is:
Z
X

2lD : D� dX�
Z

X
pI : D� dX ¼ �

Z
X

qb � v� dXþ
Z

X
q

dv

dt
� v� dX; ð19Þ
and
 Z
X
r � v p� dX ¼ 0; ð20Þ
where ‘‘:’’ denotes the tensor product twice contracted and b the vector of volumetric forces applied to the
fluid. D* represents and admissible variation of the strain rate tensor, whereas v* represents equivalently an
admissible variation of the velocity.

The second term in the right-hand side of Eq. (19) represents the inertia effects. Time discretization of this
term represents the discretization of the material derivative along the nodal trajectories, which are precisely the
characteristic lines related to the advection operator. Thus, assuming known the flow kinematics at time
tn�1 = (n � 1)Dt, we proceed as follows:
Z

X
q

dv

dt
v� dX ¼

Z
X

q
vnðxÞ � vn�1ðXÞ

Dt
v� dX; ð21Þ
where X represents the position at time tn�1 occupied by the particle located at position x at present time tn,
i.e.:
x ¼ X þ vn�1ðXÞDt: ð22Þ

So we arrive to
Z

X
2lD : D� dX�

Z
X

pI : D� dX�
Z

X

v � v�
Dt

dX ¼ �
Z

X
qb � v� dX�

Z
X

q
vn�1 � v�

Dt
dX; ð23Þ
and
 Z
X
r � v p� dX ¼ 0; ð24Þ
where we have dropped the superindex in all the variables corresponding to the current time step.
4.3. Algorithmical issues

The most difficult term in Eq. (23) is the second term of the right-hand side. The numerical integration of
this term depends on the quadrature scheme employed.

If we employ traditional Gauss-based quadratures on the Delaunay triangles, it will be necessary to find the
position at time tn�1 of the point occupying at time tn the position of the integration point nk (see Fig. 5):
7



v ( )n-1
v ( )n ξ Ξ

Fig. 5. Determination of the position of quadrature points at time step tn�1.
Z
X

q
vn�1 � v�

Dt
dX ¼

X
k

q
vn�1ðNkÞ � v�ðnkÞ

Dt
xk; ð25Þ
where xk represent the weights associated to integration points nk, and Nk corresponds to the position occu-
pied at time tn�1 by the quadrature point nk, see Fig. 5.

If we employ some type of nodal integration, as in [23], this procedure becomes straightforward, with the only
need to store nodal velocities at time step tn�1. We discuss here the procedure to follow when employing Gauss
quadratures on the Delaunay triangles. We proceed iteratively. Denoting by i the current iteration, we apply
xk ¼ X i
k þ vn�1ðX i�1

k ÞDt; with xk ¼ X0
k ; i P 1;
until X i
k � X i�1

k .
Since we are using an updated Lagrangian strategy, the computation of the term vn�1ðX i�1

k Þ requires a pro-
jection from the stored nodal velocities at time tn�1. One problem related to this projection is that the Dela-
unay triangulation is highly sensible to small nodal movements. However, the resulting interpolation is not
sensible to these changes (the associated Voronoi diagram is also non-sensible, see [44]) so it is a reasonable
assumption to consider the neighbourhood of a given integration point as fixed (and therefore equal to that of
the time step tn). Many FE or meshless codes do not consider the possibility of storing a previous nodal con-
nectivity. We have assumed that the number of natural neighbours of a given integration point does not
change during a time step, thus needing the storage of nodal velocities at time tn�1 only. It can occur that some
of the nodes neigbouring the integration point at time tn were not actually its neighbours at time tn�1, but this
does not constitute a problem, since the number of natural neighbours of a point is usually high (much bigger
than three). The quality of the interpolation is thus guaranteed. In fact, this procedure has shown to converge
at a high speed, with no more than 3 iterations, at least for reasonable time steps.

Remark 1. The opposite assumption, i.e., to recompute the neighbourhood of a given evaluation point from
the stored velocities at time tn�1 is a more time-demanding scheme and has proven to render very similar
results. No appreciable gain in accuracy has been found.

Remark 2. We have found that the use of direct nodal integration in the computation of Eq. (25)—i.e., by
assigning to each node the area of its related Voronoi cell as integration weight—leads to instabilities.
Higher-order nodal integration schemes should be used.

Remark 3. In [28] a Lagrangian method that employs natural neighbour interpolation to construct the dis-
crete form of the problem was presented. In that case, however, an implicit three-step fractional method
was employed to perform the time integration. This approach needs for a stabilization if small time increments
are chosen. See [28] for more details. In addition, in that approach, the nodes are real material points, with
velocity and mass, as required in the fractional algorithm used for solving the motion and mass conservation
equations. In the method proposed in the present paper the nodes are used to define the functional interpo-
lation of trial and test functions in a characteristics-Galerkin weighted residual formulation that can be
applied to any partial differential equation.

Remark 4. The resulting system of equations is solved by employing an in-house conjugate gradient method.
No special difficulties have been found in the resolution of the equations.
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4.4. Mixed approximation

It is well known that not all of the displacement–pressure approximations for the weak form of the prob-
lem, Eqs. (23) and (24), lead to stable and convergent results [5]. The conditions to be fulfilled by the chosen
approximation are determined by the inf–sup or Ladyzhenskaya–Babuška–Brezzi (LBB) condition [2,10],
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together with the ellipticity condition of the resultant formulation. This last condition is trivially met if no
reduced integration is used in this class of problems. The LBB condition may be written as
inf
ph2Ph

sup
uh2Uh

R
X phr � uh dX

jjphjj0jjuhjj1
¼ ch P c > 0; ð26Þ
where c is a positive constant independent of the mesh size, h. Uh and Ph represent, respectively, the velocity
and pressure approximation spaces whose norms are defined as
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k � k2
0 ¼

Z
X
ð�Þ2 dX; ð27Þ

k � k2
1 ¼

Z
X
ð�Þ2 dXþ

Z
X

X2

i;j¼1

oð�Þi
oxj

� �2

dX: ð28Þ
This condition is rarely proved analytically. Instead, its fulfillment is usually checked numerically. In [24] the
stability of mixed natural neighbour approximations was deeply studied.

In order to evaluate expression (26), an equivalent form is developed:
inf
Wh

sup
Uh

WT
h GhUhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WT
h GhWh

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT

h ShUh

q ¼ ch P c > 0; ð29Þ
where Wh and Uh are vectors of the nodal displacements corresponding to wh and uh. Gh and Sh are the matri-
ces associated with the norms
jjphjj
2
0 ¼WT

h GhWh; ð30Þ
jjuhjj21 ¼ UT

h ShUh; ð31Þ
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Fig. 11. Evolution of the vertical velocity (mm/s) for the broken dam problem. Time steps 1, 25, 50, 75 and 100.
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Gh and Sh are positive semidefinite and positive definite [11], respectively. It is then demonstrated that the first
non-zero eigenvalue, kk, of the problem
Fig. 13
near th
Gh/h ¼ kSh/h; ð32Þ

is related to the searched value ch through the expression
ch ¼
ffiffiffiffiffi
kk

p
: ð33Þ
If the constructed approximation for a given problem consists of np pressure degrees of freedom and nu dis-
placement degrees of freedom, the number of spurious pressure modes is given by
kpm ¼ k � ðnu � np � 1Þ; ð34Þ

where k represents, as mentioned before, the order of the first non-zero eigenvalue of the problem (32). Bathe
[5] proposed the use of sequences composed of three or more meshes in order to test a given approximation. If
the ch value is not bounded away from 0, the LBB condition is not satisfied.

In the work here presented we employed Sibson interpolation for the velocity field and Thiessen (and thus
discontinuous) interpolation for the pressure field. In a series of tests we checked a sequence of three meshes
composed of 3 · 3, 4 · 4 and 5 · 5 nodes, regularly and irregularly distributed over a square of side unity. The
eigenvalue ch did not show any appreciable decrease, and thus the LBB condition seems to be fulfilled.
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Although the results for a single problem can not be extrapolated, no spurious oscillations were found
throughout the development of this work, nor in many other applications performed by the authors.

A very special case exists nevertheless. If we place the nodes on a regular lattice and few Gauss integration
points are used, bilinear approximation for the velocity can be obtained (see [40] for more details, in that case
bilinear approximation would be obtained at the Gauss points only). In this case, the resulting approximation
will be equivalent to that of the bilinear-velocity, constant pressure quadrilateral FE, that does not verify the
LBB conditions under certain boundary conditions (see [5]) This case is, however, very rare in a real
application.
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Fig. 14. Convergence of the error in the maximum height reached by the wave at the right wall.

X

Y

0 50 100 150
0
5

10

X

Y

0 50 100 150
0
5

10
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height, R = 4.2025. Results for the cloud of 3815 nodes.

13



5. Numerical examples

5.1. Broken dam problem

The simulation of the broken dam problem is a classical example in free-surface simulations with large
motions, which is the expected field of application of the proposed method. We consider a rectangular column
of water, initially retained by a door that is instantaneously removed at time t = 0 (see Fig. 6).

When the door is removed, water flows under the action of gravity, considered as 9.81 m/s2. Density of
water is 103 kg/m3, and a viscosity of 10�3 Pa s was assumed. The mathematical model was composed of
3364 nodes. No remeshing, addition or deletion of nodes was performed throughout the computation. The
time step size for this simulation was 0.0015 s.

Fig. 7 shows a comparison between numerical results and experimental ones, obtained from the literature
[33]. All results are depicted in non-dimensional form. Initial water width, a, is taken as the reference length.
Non-dimensional time scale is thus given by t

ffiffiffiffiffiffiffiffi
g=a

p
, and the vertical axis shows the horizontal position of the

water front, given by z/a. Experimental results are taken as a mean of the results found in [33].
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As can be noticed, excellent agreement is found between experimental and numerical results, despite the
distortion of the triangulation. A detail of the triangulation is shown in Fig. 8.

In Fig. 9 the error in mass conservation is depicted, which remains always below 3%. Note that this example
is especially exigent to the behaviour of the a-shape technique, since the circumradius of the triangles is con-
tinuously growing during the simulation, due to the particular form of fluid motion, that moves from a com-
pacted geometry to a very flat and wide one. This makes the model to loose level of detail. This constitutes
maybe the worst-case scenario for this technique. The subsequent simulations in this paper present much bet-
ter conservation properties in this aspect, as will be seen. The influence of the relationship between the param-
eter a and the nodal parameter h on this error is deeply analyzed in [34]. If the error is judged to be too big, by
simply adding new nodes we can reproduce again finer levels of detail. In addition, note that there is no restric-
tions in the positions of the new nodes in the cloud. In Figs. 10 and 11 the evolution of the horizontal and
vertical components of the velocity, respectively, are depicted.

Despite the before-mentioned aspects, the resulting simulations show excellent accuracy, as can be seen in
Fig. 7.

5.2. Analysis of the propagation of a solitary wave

In many branches of science and engineering, such the design of harbours, for instance, the analysis of the
propagation of a solitary wave has utmost importance. In 1834, Russell studied experimentally the problem of
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a propagating wave in a constant-deep channel. Some analytical results exist on the shape of the wave, prop-
agating along an ideally infinitely long channel [29].

Equations governing the behaviour of such a wave, due to Laitone, are the following:
u1 ¼
ffiffiffiffiffiffi
gd

p H
d

sech2

ffiffiffiffiffiffiffiffiffi
3

4

H

d3

r
ðx� ctÞ

" #
ð35Þ

u2 ¼
ffiffiffiffiffiffiffiffi
3gd

p H
d

� �3=2 y
d

� �
sech2

ffiffiffiffiffiffiffiffiffi
3

4

H

d3

r
ðx� ctÞ

" #
tanh

ffiffiffiffiffiffiffiffiffi
3

4

H

d3

r
ðx� ctÞ

" #
ð36Þ

g ¼ d þ Hsech2

ffiffiffiffiffiffiffiffiffi
3

4

H

d3

r
ðx� ctÞ

" #
ð37Þ

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gd 1þ H

d

� �s
; ð38Þ
where H and d represent the initial height of the wave and the deep of the channel at a position where the
water possesses null velocity, respectively. u1 and u2 represent the horizontal and vertical components of
the velocity and, finally, g represents the free surface elevation. c is a parameter. See Fig. 12 for a schematic
representation of the problem.

Laitone’s formulae are valid only for an infinitely long channel and ideally for an inviscid fluid. In our
case, the simulations we performed include some (very low) viscosity. So, if we perform the simulation with
Fig. 22. Evolution of the free surface in the formation of the jet. Post-processing after axisymmetric results.
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a very long channel, a decrease of the wave height is observed due to numerical an physical dissipations,
both very low. However, since points lying at a moderate distance from the crest of the wave are essentially
at rest, we have considered only a finite longitude for the channel. The effective longitude of the wave, L, is
obtained under the assumption that L/2 is at a position where g = 0.01H, according to Laitone’s formula
[37]:
F

L
d
¼ 6:90

d
H

� �1=2

: ð39Þ
Taking H/d = 0.2, the effective length L/2 results approximately 8d from Eq. (39).
The height reached by the wave when arriving to the right wall, R, can be obtained after an approximation

due to Laitone [37]:
R
d
¼ 2

H
d

� �
þ 1

2

H
d

� �2

: ð40Þ
With H/d = 0.2, R/d takes a value 0.42. The dynamic viscosity employed for water was 10�3 Pa s.
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Fig. 23. Horizontal and vertical velocity plots (cm/s) for the initial configuration and for time t = 0.015 s.

ig. 24. Sequence of the drop deformation under very low ambient pressure. Photos courtesy of Lei Xu and Sidney Nagel.
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Three different clouds of points were used to test the convergence of the proposed method. The clouds con-
tained 1328, 2157 and 3815 nodes, respectively, and are shown in Fig. 13. Convergence of the relative error in
the height reached by the wave at the right wall is shown in Fig. 14. The numerical result obtained in our sim-
ulation for 3815 nodes was R/d = 0.42025, see Figs. 15 and 16.

In Figs. 17(a)–(c) and 18(a)–(c) the vertical and horizontal component, respectively, of the velocity field is
depicted for some intermediate time steps.

The error in volume for the simulation is shown in Fig. 19. In this case the error is much less than in the
broken dam example. The level of detail is conserved constant throughout the simulation.

5.3. Jet formation in bubbles bursting at a free surface

When a bubble gets onto the surface of a liquid a variety of physical phenomena occurs. These phenomena
have been deeply studied from a numerical point of view in [21] by employing a method of marker and cells
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Fig. 25. Evolution of the free surface in the drop impact.
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and an Eulerian approach. The schematic sequence of the process is shown in Fig. 20. When the bubble
reaches the free surface the thin film breaks, usually spreading out small drops of liquid. Then, the small cavity
produced collapses under the action of surface tension and buoyancy, thus generating a jet. In this example,
we will only consider the effect of buoyancy in the development of the jet.

For this purpose an axisymmetric formulation of the Navier–Stokes equations has been employed. The ini-
tial cloud of points is depicted in Fig. 21. The model is composed by 2146 nodes. Again, neither addition nor
deletion of nodes was done during the simulation. Viscosity of the liquid was assumed to be 10�3 Pa s, with
density 1000 kg/m3. Time steps of 0.001 s were employed. Some snapshots of the geometry of the free surface
are depicted in Fig. 22. In Fig. 23 contour plots of the horizontal and vertical velocity are shown for the initial
configuration and for time t = 0.015 s.
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Fig. 26. Vertical velocity field during the drop impact. Snapshots are taken each 0.01 s.
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It can be noticed the great similitude between these results and those in [21]. Although no analytical solu-
tion exists for this problem, the overall behaviour of drops approaching the free surface and consequent jet
formation are captured accurately.

5.4. Drop impacting on a rigid surface

Impact of drops into rigid dry surfaces has been an active topic of research since the early stages of high
velocity photography. Worthington [45] can be cited as the first in investigating the shape of the crown-shaped
jet produced by the impact of a drop. It is now well known that this shape strongly depends on the surround-
ing pressure. This phenomenon has been recently studied in [46], although other references can be cited (see
[25], for instance).
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It was argued in [46] that below a threshold in the ambient pressure, no drop is ejected from the main drop,
nor jet formation is observed (see [46, pp. 184505–184502, Fig. 1], reproduced in Fig. 24). Instead, the forma-
tion of a ‘‘shoulder’’ in the drop is observed as it spreads on the surface [25].

By applying the just introduced technique, we have simulated the splashing of a drop on an infinitely rigid
surface. The model is composed by 595 nodes. A viscosity of 10�3 Pa s was assumed and the usual density of
1000 kg/m3. A time increment of 0.002 s was considered in this simulation. The drop has an initial radius of 1
mm and is initially located at a position 10 mm above the surface. Then, the drop is left to the action of
gravity.

In Fig. 25 the sequence of deformation of the drop is depicted. Note how, in spite of the large deformation
of the drop, which becomes a thin film at the end of the simulation, the proposed method is able to reproduce
the physical phenomena occurring during the impact. The velocity field is depicted in Figs. 26 and 27.

The volume conservation through the simulation is analyzed in Fig. 28. Note how the predicted volume is
very close to the initial one, with a relative error of less than 0.2%.

6. Conclusions

In this paper, we have presented a method for the numerical simulation of free-surface dynamics of flows
within an updated Lagrangian treatment. The method is based on the use of a natural neighbour character-
istics-Galerkin method in conjunction with a-shapes. Time integration of the advection term in the Navier–
Stokes equations is made by employing the method of characteristics, thus taking advantage of the lagrangian
character of the method.

This technique has some remarkable properties within meshless methods, such as strictly interpolant char-
acter and exact imposition of essential boundary conditions. The method has been applied to the numerical
simulation of some well-known physical phenomena, such as the so-called broken dam problem, a bubble
bursting at a free surface or the impact of a drop on a rigid surface.

In all these examples the proposed method has behaved with reasonable accuracy, even in situations with
extremely large deformations. We believe that its extension to three-dimensional problems, where methods
based on Eulerian approaches such as markers or level set techniques, can become much more burdensome,
will definitely show its potential of use.
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[15] E. Cueto, M. Doblaré, L. Gracia, Imposing essential boundary conditions in the natural element method by means of density-scaled

a-shapes, International Journal for Numerical Methods in Engineering 49-4 (2000) 519–546.
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