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In atable structures made of modern textile materials with important mechanical characteristics can be in ated at high pressure (up to several hundreds kPa). For such values of the pressure they have a strong mechanical strength. The aim of the paper is to construct a new in atable beam ÿnite element able to predict the behaviour of in atable structures made of beam elements. Experiments and analytical studies on in atable fabric beams at high pressure have shown that their compliance is the sum of the beam compliance and of the yarn compliance. This new ÿnite element is therefore obtained by the equilibrium ÿnite element method and is modiÿed into a displacement ÿnite element. The sti ness matrix takes into account the in ation pressure. Comparisons between experimental and numerical results are shown and prove the accuracy of this new ÿnite element for solving problems of in atable beams at high pressure.

INTRODUCTION

This paper presents results from research on the mechanics of in atable beams at high pressure. Such structures have many interesting properties: they are light, easily folding and present reversible behaviour after failure. In ation gives tension prestressing in the fabrics and imply an important mechanical strength when the pressure reaches several hundreds kPa. A high pressure is interesting because their limit load is proportional to the applied pressure and their de ections are inversely proportional to the constitutive law of the fabrics and to the applied pressure [START_REF] Wielgosz | De ections of in atable fabric panels at high pressure[END_REF]. Analytical developments have been done to calculate wrinkling loads and de ections of cantilever beams [START_REF] Comer | De ections of an in ated circular cylindrical cantilever beam[END_REF][START_REF] Main | Load-de ection behaviour of space-based in atable fabric beams[END_REF]. The pressure used in Reference [START_REF] Main | Load-de ection behaviour of space-based in atable fabric beams[END_REF] was less than 70 kPa. We have studied the case of simply supported beams [START_REF] Wielgosz | De ections of in atable fabric panels at high pressure[END_REF] for values of the pressure going up to 300 kPa. The results on the wrinkling or collapse load are directly connected to the applied pressure and independent on the materials characteristics. Analytical results on the de ections are only relative to isostatic in atable beams. The aim of this paper is to
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Local and global equilibrium of the panel.

construct an in atable beam ÿnite element able to give the values of the displacement ÿeld for hyperstatic in atable beams.

MECHANICS OF INFLATABLE BEAMS

The mechanics of in atable beams will be developed for in atable panels. These structures are prototypes constructed by Tissavel Inc. They are made of two parallel-coated woven fabrics connected by yarns. Their behaviour depends on the in ation pressure p that leads the fabrics and the yarns to be prestressed and then to support local compression loads. Experimental and analytical results on the behaviour of these structures can be found in Reference [START_REF] Wielgosz | De ections of in atable fabric panels at high pressure[END_REF].

Let us consider a cantilever panel submitted to a concentrated force F. The width and height are named b; h and ' is the length of the beam. The mechanical strength of the panel is obtained by use of its equilibrium equations, the constitutive law of the fabrics, and kinematics assumptions on its deformation pattern.

Equilibrium equations

Let us come back on the main results of [START_REF] Wielgosz | De ections of in atable fabric panels at high pressure[END_REF]. Equilibrium equations are written for an element in its deformed position to take into account the geometrical sti ness and the following forces. The initial position refers to the in ated beam, without any load. The panel is supposed to present large straight parts. We must use a Timoshenko's beam theory because the straight section of the panel does not stay orthogonal to the neutral ÿbre (see Figure 5. In Reference [START_REF] Wielgosz | De ections of in atable fabric panels at high pressure[END_REF]). Denotes the rotation of the straight section and  denotes the rotation of the neutral ÿbre. The pressure e ects are supposed to be replaced by forces normally applied to the membranes, because they are following forces. N i and N s denote the resultant stresses, respectively, in the lower and upper membrane; T is the shear stress. All the theory is based upon the hypothesis that the structure's behaviour depends mainly on the values of N i and N s . Figure 1 presents a sheet of the pressurized panel.

The local equilibrium equations allows to write N i + N S and that the shear stress T is constant. The global equilibrium equations are given for a cantilever beam:

N s + N i = pbh 2 b + h (1) 
T = F -pbh(Â -) (2) 
F(' -x) + h 2 (N S -N i ) = 0 (3) 
And the stresses in the membranes are:

N i (x) = pb 2 h 2(b + h) - F h (' -x) (4) N s (x) = pb 2 h 2(b + h) + F h (' -x) (5)

De ections

If P is a point of the neutral ÿbre and if Q i and Q s are two points of the lower and upper membranes, their displacements are obtained by the following relations:

u(P) = u(x)e x + v(x)e y ; u(Q) = u(P) + ∧ PQ with = e z (6) 
The horizontal displacement u(x) and the de ection v(x) are only functions of x. The local strains i (x) and s (x) in the two membranes are therefore:

i (x) = u ; x + h 2 ; x s (x) = u ; x - h 2 ; x (7) 
Resultant stresses are obtained from the constitutive law of the fabric and are given by

N i (x) = pb 2 h 2(b + h) + E * bh 2 ; x and N s (x) = pb 2 h 2(b + h) - E * bh 2 ; x (8) 
where E * is the membrane modulus (product of the Young modulus E by the thickness e of the fabric). E * is obtained from uniaxial traction experiment on a sample fabric. In fact, fabrics are orthotropic materials and the membrane moduli are di erent in warp and weft directions.

In this beam formulation, the warp direction is mainly concerned, and we will suppose that an isotropic constitutive law can be used to give a 'beam answer' to the engineering problem. Moreover, the viscous properties of the fabrics are not taken into account in our theory, hence all the measurements have been done after the creep has stopped. The comparison between formulas (4), ( 5) and (8) gives:

d dx = 2F E * bh 2 (' -x) (9) 
By using Equation ( 2), and assuming that for these in atable panels, the shear stress can be neglected with respect to the in uence of the normal stress [START_REF] Wielgosz | De ections of in atable fabric panels at high pressure[END_REF], we can write:

dv dx = F pbh + ( 10 
)
The boundary conditions at the clamped end give the closed form of de ection, where I * is equal to the second moment of area divided by the thickness:

v(x) = F pbh x + 2F E * bh 2 ' x 2 2 - x 3 6 = F pbh x + F E * I * ' x 2 2 - x 3 6 (11)
which is nothing but the sum between the tight yarn and the beam de ections. In an other word, the compliance of the in atable panel is the sum of the yarn compliance and of the beam compliance.

CONSTRUCTION OF THE INFLATABLE FINITE ELEMENT

Let us consider an in atable beam and denote by V and F the total displacement and load vectors:

V T = [v 1 1 v 2 2 ] ( 12 
)
F T = [F 1 1 F 2 2 ] ( 13 
)
The deÿnition of nodal unknowns is usual: v i and i denote displacement and rotation at node i, and F i and i denote load and torque at the same node. When this element is a cantilever in atable beam submitted to a load and a torque at node 2, its compliance matrix is simply obtained by adding the usual matrices of beam and yarn:

v 2 2 = F 2 2 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ' 3 3E * I * + p' S ' 2 2E * I * ' 2 2E * I * ' E * I * ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ F 2 2 (14)
where S is the area of the section of the extremity (S = pbh).

The global equilibrium equations are:

F 1 1 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -1 0 -1 -' 1 0 0 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ F 2 2 = B F 2 2 ( 15 
)
The usual theory of the equilibrium ÿnite element method shows that the sti ness matrix K of the free ÿnite displacement element is obtained from the sti ness matrix of the reduced isostatic ÿnite element K r by using the following equations:

K = BK r B T (16) 
where the reduced matrix K r is the inverse of the compliance matrix : The free sti ness matrix of the in atable fabric beam element is therefore:

K r = -1 (17)
K = 12E * 2 I * 2 pS ' 2 (12E * I * + pS' 2 ) ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ' E * I * ' 2 2E * I * - ' E * I * ' 2 2E * I * ' 2 2E * I * ' 3 3E * I * + ' pS - ' 2 2E * I * ' 3 6E * I * - ' pS - ' E * I * - ' 2 2E * I * ' E * I * - ' 2 2E * I * ' 2 2E * I * ' 3 6E * I * - ' pS - ' 2 2E * I * ' 3 3E * I * + ' pS ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (18)
One can see that the pressure appears in the sti ness matrix.

COMPARISONS BETWEEN EXPERIMENTAL AND FINITE ELEMENT RESULTS

Figure 2 shows comparisons between ÿnite element modelling (FE) and experimental results (exp.) for a simply supported panel pressurized at 200kPa (b = 0:2m; h = 0:055m; ' = 1:6m). The usual beam solution (Euler assumptions) is presented too for 47 and 106 N and is inaccurate. The average value of E * is 650 000 Pa m. De ections are obtained for loads varying from 47 to 106 N, just lower than the wrinkling load.

The main advantage of a beam ÿnite element is to be used for solving problems of hyperstatic beams. A panel clamped at one end and simply supported at the other end has been tested up to its wrinkling load. Figure 3 shows one of the experiments made on this panel. Comparisons between experimental and ÿnite element results is shown in Figure 4. Even if the section of the panel is vertical at the clamped end, the angle of the neutral ÿbre is not equal to zero, in accordance with Timoshenko's beam theory. One can see that the results obtained with the in atable beam ÿnite element are close to the experimental ones. Moreover, values of the resultant stresses, according to formula (8), give the wrinkling load of the panel. 

CONCLUSION

A new ÿnite element devoted to the study of in ated panels has been constructed taking into account the geometrical sti ness and the following forces. The sti ness matrix takes into account the internal pressure of the beam. Comparisons between experimental and numerical results for isostatic and hyperstatic panels prove the accuracy of this theory on the mechanical strength of in atable beams at high pressure and the e ciency of this in atable ÿnite element.
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 34 Figure 3. Experiment on in atable panel: hyperstatic case.