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Abstract 

In this paper, we present a new one-point integration method generalizing Flanagan and Belytschko's method (Internat. J. 
Numer. Methods Engrg. 17 (1981) 679-706) and a modification of Belytschko and Bindeman's method (Comput. Methods Appl. 
Mech. Engrg. 88 (1991) 311-340), both in the frame of large deformation elastoplastic analysis. These stabilization methods are 
combined with the radial return method used to integrate the constitutive law. P lane strain problems are first considered, and the 
method is then generalized to axisymmetrical situations. The explicit time integration scheme with its critical timestep is also 
considered. A few examples are presented that show the great time savings that can be obtained with reduced integration without 
any loss of accuracy, and even with a gain in the solution quality, since the underintegrated elements prove to be 'ftexurally 
superconvergent'. 

l. Introduction 

The use of one-point integration rules in modelling large inelastic strains via finite elements provides 
two advantages: (i) it prevents locking from appearing in nearly incompressible media (NIM), (ii) it 
reduces the number of operations in the integration of the constitutive laws for each element. 
Unfortunately, drawbacks are generated: spurious zero energy modes develop that can ruin the quality 
of the numerical solution. Hence, it is mandatory to add stabilization forces to the nodal internal forces 
to preserve the advantages of the one-point integration system. 

Pioneer work in one-point integration elements and their stabilization was carried out by Flanagan 
and Belytschko (1, 3, 4). They presented two-dimensional and three-dimensional small strains elements 
with stabilization by artificial damping or by artificial stiffness, the latter being preferred. Un
fortunately, these stabilization methods necessitate a parameter to control their amplitude. Liu and 
Belytschko [5] extended the method to a heat conduction element. In the following years, the efforts 
focm;ed on determining this control parameter and even getting rid of it. For that purpose, Relytschko 
et al. [6) introduced the idea of using a variational principle while Liu et al. [7, 8] proposed using a 
Taylor development of the strain rate. 

Later, Belytschko and Bachrach [9] presented a quintessential bending element (QBE), with no 
locking for NIM. This element is based on a first order development of the strain field and on the use of 
the Hu-Washizu variational principle for determining the stress field. They propose several formula
tions for the linear shear field and compare them. It is also worth noting the work of Koh and Kikushi 
[10], who review different full or selective reduced integration methods. Later, Liu et al. [11] developed 
a QBE using the Hu-Washizu variational principle for non-linear problems. Jetteur and Cescotto [12] 
also used this variational principle to develop an element for the analysis of large inelastic strains 
without locking for NIM. Belytschko and Bindeman [2] used the assumed strain method of Simo and 
Hughes [13] and built a strain field avoiding the locking phenomenon. They alfio extended their element 
to non-linear problems. 
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In the present paper, after a brief review of the hourglass phenomenon (Section 2), we first extend 
the artificial stiffness method in [ 1] for small elastic strains to large elastoplastic deformation (Section
3). In Section 4, starting with the strain field established in [2], we also propose a straightforward use of 
the constitutive law ( instead of a variational principle) and a modification of the stabilization forces in 
order to insure frame-independency. All these developments (Sections 3 and 4) are made in the context 
of the radial return method of Wilkins [14] for the integration of the elastoplastic constitutive law. In 
Section 5, we generalize these methods for the previously considered 2-D plane strain situation to the 
axisymmetrical one. Some attention is paid in Section 6 to the time dependent problems where an 
explicit scheme with a critical timestep is used. Finally, we present some examples illustrating the 
excellent behaviour of our one-point integration elements in Section 7. 

2. The existence of hourglass modes in one-point integration for quadrilateral elements [1,3) 

The strain rate E;; can be written as the symmetric part of the material velocity gradient, 

e .. =-21(u .. +u .. ) ,I/ I,/ /,I (2.1) 

where u; is the velocity component in spatial direction i, and where the notation,; denotes a derivative 
with respect to spatial coordinates X; and a superposed dot the material rate of change. In the context of
a Lagrangian formulation, we can write 

Ii = N11i1 (2.2) 

since the material derivative of shape functions N1 equals zero. Note that the Einstein convention on 
summation indices is assumed and that Latin capitals (e.g. /) are relative to each of the four vertices.
The shape functions of an isoparametric bi-linear element are given by 

N,=-!(1+€1€)(1+11111) (2.3) 

where � and 11 are the reference square coordinates (no summation on the indices in this case).
If we write the strain rate tensor in a vectorial form, we have 

[E 11 ] [b� 0 ] [ . ] 
E22 = 0 b� �1 =B·d,
2. b' b' d2 

e 12 2 I 

(2.4) 

where the shape functions derivatives are denoted by bu= Nl.i. Working with one integration point 
only, all values will be calculated at the centroid of the element, i.e. at € = 17 = O. The central shape
functions gradients can then be written as 

I 1 
bi= 2A [Y24

I 1 
b2 = 2A (X42

Y3t Y42 

X13 X24 

where A is the element area 

Y13] • 

X3i)' (2.5) 

A= Hx31Y42 + X24Y31), (2.6) 

and where X1; and Yi; are written for x, - x1 and Y; - Yr respectively.
The null-space of the B matrix NS(B) is the set of all non-zero displacement vectors d that do not 

produce any strain, i.e. B · d = 0. Since B is of size 3 x 8 and of rank 3 and there are 8 degrees of
freedom, this null-space is of size 5 and is given by 

NS(B) = [ � � ��2 � �] , (2.7) 

where 
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Fig. 1. The null-space of B. 

tt == [1 1 1 1] , ht= [l -1 1 -1] '

and where the nodal coordinates vectors are respectively 

4 

n=3
3 

2 

(2.8) 

x� = [x1 X2 X3 X4 ) , x� = [Y1 Y2 YJ y4] · (2.9) 

The first three columns of NS(B) (n = 1, 2, 3) are rigid body displacements (see Fig. 1), but the two 
additional ones (n = 4, 5) are spurious modes. They are called hourglass modes (because of their 
trapezoidal shape) and imply a non-zero strain except at the centroid, precisely where it is measured. 
If no care is taken, these modes become unbounded and can develop until the solution loses any 
physical significance. Thus, our goal will be to determine stabilization forces that prevent these modes 
developing without hampering the effective displacement modes. 

Note that these vectors have the following fundamental properties: 

tt. h = 0 ' (2.10) 

The first two of these relations signify that neither translation nor hourglass modes produce any strain at 
the centroid of the element while the third one shows the orthogonality between these two displacement 
modes. The fourth one is readily demonstrated, recalling that the b; are the shape functions derivatives. 

3. Generalization of Flanagan and Belytschko's method to large elastoplastic strains

3.1. Flanagan and Belytschko's artificial stiffness method [l, 3) 

To control the hourglass modes, these authors propose introducing stabilization forces proportional 
to the amplitude of these modes for the element considered by the mean of an artificial stiffness. This 
leads to the following expression for the stabiliz:ation forces: 
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(3.1) 

where K is a user defined control parameter, K is the material bulk modulus, µ, its shear modulus, A 
and b; are respectively defined in (2.6) and (2.5). The Q; can be considered as hourglass stresses, and 
the size q; of the hourglass mode in direction i is given by 

HG h Uil = qi I' 

with the hourglass shape vector 

'Yi= Hh1 - (h1xu )bil] .

(3.2) 

(3.3) 

This vector corresponds to the hourglass mode for an element of arbitrary shape, while h is relative to 
the reference square element. 

The main disadvantage of this method is the presence of the control parameter Kin (3.1). That is the 
reason why many authors [2, 6-12] have tried to develop stabilization methods without any parameter, 
most of these methods being based on a linearized expression of the displacement field. 

3.2. Extension of the method to large elastoplastic strains 

In a non-linear situation, the hourglass stresses in (3.1) are incrementally computed, but there is no 
problem of objectivity, since the expression (3.1) is frame independent. 

In the case of deviatoric plasticity (Von Mises yield surface for example), a simple and efficient 
method for the integration of the constitutive law over a load increment is the radial return of Wilkins 
[14]. This method consists of finding an approximate plastic stress along the radius issued from an 
elastic predictor (see Fig. 2 for the case of the Von Mises yield criterion with isotropic hardening). In 
practice, we first compute the equivalent elastic stress at the centroid of the element 

(3.4) 

where s�1 is the elastic deviatoric stress. If this equivalent elastic stress exceeds the yield stress u� (the
superscript n recalls that it is the value obtained in the reference state, i.e. at the end of timestep n), 
then we need to calculate a plastic corrector. In the radial return method, the plastic deviatoric stress is 
supposed to lie along the radius issued from the elastic predictor 

s,1 = {3s�1 ( {3 E )0,1] ) , (3.5) 

Fig. 2. The radial return method.
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where� is computed such that the plastic stress be on the updated yield surface. For a linear isotropic 
hardening, we have 

e ... fi. n ueq - V3 Uv � = 1- H ' 
u�.(1+ 31

J 
where H is the hardening coefficient. 

(3.6) 

This radial return method is nearly equivalent to using an 'effective shear modulus' �µ throughout 
the current step. This suggests to compute the hourglass stresses as follows: 

(3.7) 

the hourglass strains q, being computed from the displacements relative to the reference configuration 
(the previous equilibrium one since we work in updated Lagrangian formalism, ULF): 

(3.8) 

4. An improvement of Be!ytschko and Bindeman's stabilization forces [2]

4.1. Small elastic strains case 

In [2], it is shown that the following expression for the strain field leads to a stabilization without
shear or volumetric locking: [e�1 + eq1h,1 - eq2h,2]

E = e0 + EHG = E� 2 - eq1h� + eq2h,2 '

2E12 

(4.1) 

where e� are the strains computed at the center, the q, are again the hourglass modes amplitudes and
h = �"IJ· The best value for thee parameter is shown to be one half in [2]; this will be confirmed in the
examples in Section 7. 

Let us associate with ( 4.1) a stress field through a plane strain elastic constitutive law represented by
the C matrix (Hooke matrix), 

u=C·e, (4.2) 

with 

(4.3) 

where ,\ and µ are the Lame's constants. 
The stress field is then written 

(4.4) 

where the Q. = 2eµq. are the hourglass stresses associated with the hourglass strains q;. 

Now, let �s define'the B matrix as the matrix relating the strainf; and the nodal displacements: 
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[I h I h I ] b1 + e .11' -e .21' 
- t I I 

B = -eh.1y b2 + eh.21' ,
bl b' 2 I 

Following the ii method of Simo and Hughes [13], the nodal forces are then obtained by

f= f ii1·udV=f0+fHG.
v 

where 

Jo = I jjO' • uo dV
v 

/HG= J jjHG1, U'HG dV.
v 

(4.5) 

(4.6) 

(4.7) 

The uncoupling between the central and hourglass parts of the forces is due to the following property of 
h, which can be easily checked: 

f h,;dV=O.
v 

If we introduce in (4.7) the expressions (4.4) and (4.5), we obtain for the nodal forces 

and 

where 

H11 = f h,1h.1 dV
v 

2 2 
H -�Y31 +Y42 

i1-3 A '

(4.8) 

(4. 9) 

(4.10) 

(4.11) 

Note that we have assumed tht� Jacobian matrix determinant to be constant over the element when 
computing the integrals. An intc�resting feature of these stabilization forces is that they do not depend 
on the bulk modulus K, thus allowing them to be used in the analysis of incompressible materials (e.g. 
rubber). 

4.2. Extension to the case of large strains and rotations 

Let us now check if these forces are objective, i.e. independent of tlie orientation of the reference 
frame, by assuming a rigid rotation of an angle 6 described by 

[n = [�?�! ���n0°] [;], x=R·x. (4. 12) 

Replacing the old nodal positions by the new ones given by (4.12), we can see that the forces (4.10) are 
frame dependent. Thus, we have to modify their expression. Starting from the general expression: 
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(4.13) 

-HG HG and stating that f = R · f , we find that the only possible frame invariant expression of the
hourglass nodal forces is 

r /�:] 
= 
[2e(H11 + H2,)Q,y] . 

( 4.14) lf 2 2e(H11 + H22)Q2'Y 
By comparison to (4.10), it means that we take H12 = 0 and replace both H11 and H22 by a global value 
Hll + H22· 

Thus, we shall use the following nodal forces, where we have replaced H11 + H22 by its expression in 
function of the b;: 

o _ [b1U�1 + bzT�z] 
I -A 0 0 ' b2U22 + b1T12 

(4.9) 

( 4.15) 

As already stated, the formalism we use is the ULF, in which the reference state for each step is the 
latest equilibrated configuration available. In order to guarantee incremental objectivity, we work with 
corotational strains and stresses and with the instantaneous final rotation. This consists of splitting the 
total strain in a constant strain without rotation givin� the corotational stresses and a pure rotation 
occuring instantaneously at the end of the time increment, leading to the Cauchy stresses (for more 
details, see [15]).

If we used this method with the hourglass quantities, an hourglass shear stress would appear because 
of the final rigid rotation. As we have designed our hourglass strain field without shear to avoid locking, 
we cannot accept a shear stemming from the rotation. That is why we use the above expression for the 
hourglass forces in which we introduce the nodal displacements during the considered step. These 
forces being frame invariant, objectivity is preserved. Thus, we shall work with the following 
ncremental scheme: 

( i) the hourglass strains are calculated from the nodal displacements relative to the reference 
confi6uration 

q,=yt·d,; (4.16) 

(ii) the hourglass stresses are obtained from the hourglass strains; the elastic predictor is given by 

11Q; = 2eµq;, Q:•+t.e = Q:' + 11Q;, (4.17) 

and the corrected plastic stresses are (the radial return method is still used) 
( 4.18) 

where {3 is given by (3.6);
(iii) the stabilization forces are calculated from the updated stresses, 

( 4.19) 

S. Axisymmetrical geometry 

In the case of an axisymmetrical geometry, the analysis is limited to a one radian sector with 
radius-varying thickness. The geometrical properties (mass, stiffness, etc.) of a surface element are thus 
dependent on its distance with respect to the revolution axis. But if we work with one-point integration 
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elements, the properties of such an element are considered to be those at its cer.:er in the radial plane, 
thus leading to an error in the repartition of the nodal forces, and this error increases when the element 
approaches the central axis. That is why we have to correct these forces to take into account the 
variation of the radius across the element. 

In the axisymmetrical case, the nodal forces are written (the stresses being measured at the centroid, 
they are constant) 

f= ( J B1r dn) · u, (5.1) 
!l 

where 

B'= [No.• 
N.2
0 +: z:J. (5.2) 

with N the shape functions vector and r the radial coordinate. Assuming, as before, a constant Jacobian 
determinant, we obtain 

, = A [b1 + HRh 0 4
1 

t b2 + HZh] . 
Jint r r u, 

0 b2 + HZh 0 b1 + HRh 
(5.3) 

where r is now (and until the end of the section) the radius at the center of the element, t and h are the 
vectors defined in (2.8), and 

HZ= -i��4:. (5.4) 

In the case of a square element located just next to the symmetry axis, the nodal forces obtained by
(5.3) are the same as those obtained by an exact integration (with constant stresses). 

If we calculate the null-space of the axisymetric B matrix, we find hourglass modes slightly different
from the plane ones: 

g = (HR(t'r) + HZ(t1z)Jt- 4HRr- 4HZz + (l + HR(h1r) + HZ(h'z))h, (S.5 ) 

where rand z are the nodal axisymmetrical coordinates vectors (for more details, see [16]). But we will 
use the plane ones for the stabilization, since the difference is very small (see Fig. 3) and since we have 
noticed no improvement in the solution by using the effective cylindrical modes. 

z 

4 3 

- cylindrical mode 

- planemode 
Fig. 3. The plane and the cylindrical hourglass modes. 
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Note that a purely axisymmetrical study of the hourglass phenomenon can be found in Matejovic and 
Adamik (17] and in Matejovic [18], but it leads to a heavier and less general formulation. 

6. An explicit scheme for time integration

To analyse dynamic problems, we have chosen an explicit integration scheme because of its simplicity 
of implementation in a developing computation code. But its major drawback is to be conditionally 
stable: the time step that can be used is bounded by a critical value. 

The working sequence is as follows: 
( i) the nodal accelerations are given by the equilibrium equation 

where the constant mass matrix is given by 

M= I pN'·NdV'
V(t) 

with N the shape functions matrix. 
(ii) the nodal velocities and positions are then obtained by the central difference scheme 

dn+l/2 = dn-112 + Atnij", dn+l = dn + At"dn+l/2.

(6.1) 

(6.2) 

(6.3) 

Note that the nodal accelerations are computed with a lumped mass matrix {by a row summation). 
This operation avoids a matrix inversion and also has the advantage of lowering the natural frequencies 
of the element, which are raised by the explicit integration (for more details on explicit schemes, see 
[19]). 

The critical timestep Atcrit can be obtained from the Courant-Friedrichs-Levy condition that states
that a strain wave cannot pass through the entire element during one single timestep. The different 
waves that are encountered in elastopla8tic problems are the elastic pressure wave, the elastic shear 
wave and the plastic wave, whose speeds in a unidimensional medium are respectively given by (see 
[19]) 

c =" IE " VIJ' c = " rg_ 
s Vii' (6.4) 

where p is the current density, E is Young's modulus and E1 is the plastic tangent stiffness. So we see 
from ( 6.4) that the larger wave speed is CP, and we can express the critical timestep as

L" 
At�rit = 'Y C ' 

p 
(6. 5) 

where 'Y is a security coefficient and L" a characteristic length (the maximum distance between two 
adjacent nodes, for example) of the elements at the time t". 

Another approach is given by the theory of vibrations, which states that the critical timestep is 

2 
Atcrit =-- ' Wm ax 

(6.6) 

where wmax is the maximal natural pulsation of the element.
Using the bounds established by Flanagan and Belytschko [4], we obtain the following expression: 

(6.7) 

where 'Y is again a security coefficient, for which a value of 0.9 seems to be well suited. 
Replacing the bu by their expression (2. 5), we see that bubu is proportional to the sum of the

9



a 

4 a 

1 x 

c 
Fig. 4. Locus of optimal element shapes. 

element diagonals' square lengths. On that basis, it is easily shown that the square element is optimal, 
in the sense that it gives the larger timestep for a given area (see Fig. 4 ). 

The Flanagan and Belytschko [4] bounds have been obtained from the one integration point 
quadrilateral without stabilization. We can check that the eigenvalues of the stabilized element are still 
comprised between those bounds, what would allow us to keep the expression (6.7) for the critical 
timestep. Considering a linear situation, the eigenvalues problem for the stabilized element is 

(K - w 2 M)d = 0 ,

with the linear stiffness matrix given by 

K -Ko KHG 
llJJ - iljJ + l/jJ ' 

K:�,1 = A[,\b11b/J + µ(8;1bklbkJ + b11bu)J, 

K�1� = J� e2A1t(bkKbkK)81/Yt'Y1 · 

As in (4), we can develop the eigenmodes in a linear combination of the b1, but also of h: 

(6.8) 

(6.9) 

cl11 = a1kbk1 + (31h1 • (6.10) 

Let us now define the following matrix: a11 = b:br In the principal system of a, the set of equations (6.8)
can be written as (values expressed in this system are noted by a superposed circumflex): 

pw2 - ,\8 
• 

( 
• • 

) 
l6e2 • • • • 

4 a;; - ;;Ot.k,,,ak,,, + µ. a1,,,a1,,, + a1,,.a;,,, + -3- µa,.,.f;(a1,,.akmh - {3i),
2 4 2 pw e • • • 

4 /3; = T µ.a,.,.(13; - Ot.;,,,ak,,,fk) • 

where 

f; = h1Xu, 

(6.11) 

(6. 12) 

For rectangular or diamond-shaped elements, the fi are .:.ero and the two equation sets become 
uncoupled. The first set is the same as in [4), while the second one gives the following hourglass natural 
pulsation: 

i 8e2 i 
w =3 Cs(a11 + a22). (6 . 13) 

Since this pulsation is proportional to the elastic shear waves speed C5 given by (6.4), it is smaller than 
the value (6.7) obtained in [4]. Thus, the critical eigenvalue is still the one associated with the pressure 
mode and the critical timestep ( 6. 7) is to be considered. 
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For elements of arbitrary shape, the eigenproblem (6.8) can be numerically solved. For the 
geometries we have tried (e.g. trapezoidal), the maximal natural pulsations found are still between the 
bounds given in [4] (see [16]). Thus, we keep the critical timestep (6.7) in our explicit scheme. Since the 
supplementary terms in the B matrix are stabilizing ones, one can consider the expression ( 6. 7) as 
conservative. 

7. Examples

The previous theoretical developments have been implemented in METAFOR [20], which is the 
developing large deformation analysis code of SAMCEF [21], a general purpose finite element program 
developed by Samtech and the L.T.A.S. 

7.1. Uniformly loaded beam 

We take here the example of a beam simply supported at both ends, as in [1]. This beam is 0.8 m 
long, 0.1 m high and is uniformly loaded with a 18 x 105 Nim pressure. We will use midspan symmetry.
The load is applied in t = 0 and the computation spans over 15 ms. We will consider an elastoplastic 
material (linear isotropic hardening) with the following physical properties: 

p = 1000 kg/m3, E= 109N/m2, v =O, u0 = 2 x 105 N/m2 
v ' H = 1.11x108 N/m2,

Fig. 5 shows the deformed geometry (scale 1 : 1) at 15 ms for one integration point elements with 
'incompressible' stabilization (e = 0.5). We see that the element keeps good behaviour (some hourglass
modes tend to appear, but remain well bounded), even confronted with very large strains. 

We can also compare the midpoint displacement curves obtained with different methods and meshes. 
We have considered two meshes: a 4 x 8 elements mesh and a finer 8 x 16 elements mesh. In Fig. 6, we 
see the results obtained by different methods with the 4 x 8 mesh. We see that the elements with 

L. 
Fig. 5. Deformed geometry (t = 15 ms) with reduced integration ('incompressible' method withe= 0.5). 
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Fig. 6. Midpoint displacement curves for different methods with 4 x 8 mesh. 

'incompressible' stabilization and e = 0.5 and those with generalized Flanagan and Belytschko's method
give a less rigid solution than the elements with e = 1 and the four integration points elements (these 
elements in fact have only one Gauss point for their volumetric part in order to avoid locking) which 
present little difference. If we took the four Gauss points elements as a reference, we could think that 
the optimal value fore is 1, but let us remember that in Hexion, the beam behaviour is not perfectly
represented by four elements across its height. When we compare the previous results with those 
obtained with a 8 x 16 mesh (Fig. 7), we see that the 'incompressible' underintegrated elements with
e = 0.5 behave even better than the four integration points elements. 

So, we can say that our 'incompressible' underintegrated element (with e = 0.5) is 'ftexurally
superconvergent'. This is due to the fact that the shear is totally underintegrated, thus avoiding locking. 

Now, let us compare the CPU time and number of timesteps needed by each method for the 4 x 8 
mesh (see Table 1). Computations were performed on a Vax Station 3100/M76.

So, we see that the number of timesteps is quite the same for each case, but the time needed by 
reduced integration elements for the computation of one step is about half the time needed by the 
classical element. Thus, we can say that we have an element giving a better solution with less 
calculation time. In the following, we will fix the value of e to 0.5. 

Table 1 
Uniformly loaded beam 

Method 

Generalized Flanagan and Belytschko (1e = 0.1) 
'Incompressible' method (e = 1.0) 
'Incompressible' method (e = 0.5) 
Four integration points 

No. of timesteps 

926 
921 
921 
918 

CPU time
(s) 

49.32 
47.77 
43.71 
82.04 

Relative 
CPU time

0.60 
0.58 
0.53 
1 
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Fig. 7. Midpoint displacement curves for 4 x 8 and 8 x 16 meshes. 

7.2. Taylor bar impact 

We will now consider a classical benchmark test: a cylindrical copper bar (32.4 mm high and of radius 
3.2 mm) impacting a rigid wall with an initial speed of 227 m/s. The bar behaviour will be computed 
over 80 µs with a 5 x 50 axisymmetrical elements mesh. The copper physical properties are the 
following: 

p = 8930 kg/m3, E = 117 x 109 GPa , v = 0.35' u� = 400 x 106 MPa ,

H = 100.08 x 106 MPa . 

First, we can compare the isocurves of the equivalent plastic strain over the deformed geometry 
obtained with the four Gauss points elements and the two types of reduced integration elements (see 
Fig. 8(a) and (b)). We see that the curves are corresponding quite well. If we look at Table 2, we see 
that the maximum equivalent plastic strain obtained with 'full' integration is a little higher than those 
obtained with reduced integration. This can be explained by the fact that this maximum strain is located 
at the bottom center of the bar and thus is better approached with four Gauss points. 

We can also compare geometrical quan�ities as the final height and radius (see Table 2). We see that 
the results are quite the same for the different methods. Note that we have compared with the 
DYNA2D [22] solution and with the underintegrated elements without any stabilization. Here, we see 
that the stabilization is not really necessary, although it leads to a slightly irregular mesh. 

If we compare the number of timesteps and CPU time needed by each method, we see that 
underintegration leads to an important time saving (more than half the 'full' integration time). We also 
see that DYNA2D [22] is the quickest of all, and by far, but we must note that this code is entirely 
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Fig. 8. Equivalent plastic strains in the final geometry. 

Table 2 
Taylor bar impact 
- ·--·--------··"-�----�-
Method No.of CPU time Relative Final foot Final 

-�I 
Emo• 

timesteps (min:s) CPU radius height 
time (mm) (mm) 

Four integrntion points 8419 75:39 1.00 7.13 21.43 3.114 
'lncompr1!�sible' method (e = 0.5) 7736 35:41 0.47 7.06 21.04 2.849 
Oenerulized 
Flanagan and Belytschko (1e = 0.1) 8564 39:35 0.52 6.92 2t.05 2.938 
Underintegrated without stabilization 7914 29: 18 0.39 7.08 21.10 2.868 
DYNA2D 9506 16:04 0.21 7.16 21.43 3.000 

devoted to explicit resolution of dynamic problems, whereas METAFOR is more general purpose 
(explicit dynamic or implicit quasistatic problems). We must also say that we have encountered other 
problems that DYNA2D [22] cannot satisfactorily solve (insufficient stabilization) whereas METAFOR 
proved to be able to do so. 

To determine the exact cost of the stabilization methods, we have made the same bar impact 
computation, but with an imposed number of 8000 equal timesteps. The results are given in Table 3. We

Table J 
The stabilization costs 

Method 

CPU time (min: s) 

Four integration 
points 

73:25 

'Incompressible' 
(e = 0.5)

37:07 

Generalized 
Flanagan and 
Belytschko 
(K = 0.1) 

39:44 

Underintegrated 
without 
stabilization 

34:30 
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see that underintegration allows a time saving of about 50%, and that the stabilization costs about 
7.5.% of the 'underintegrated computation time' .

8. Conclusion

We have seen how to develop an underintegrated element without locking and with a frame invariant 
stabilization. We also have shown how to generalize Flanagan and Belytschko's method. This element 
works in modelling large elastoplastic deformations for plane or axisymmetrical structures. It allows 
important time savings and moreover has a better flexural behaviour than the fully integrated (in its 
deviatoric part) element while it gives comparable results in other loading cases. 
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