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An experimental method to determine the contact
radius changes during a spherical instrumented indentation

J.-M. Collin*, G. Mauvoisin, R. El Abdi
LARMAUR, FRE-CNRS 2717, Bât 10B, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France

An experimental method to determine contact radius changes during a spherical instrumented indentation test is pro-
posed in this paper. This method is based on the Hertz theory and only depends on the elastic properties of both the inden-
ter and the sample. The programming of several loading, unloading and reloading cycles has allowed the determination of
the unloading stiffness changes and consequently the contact radius changes. Numerical results have shown that the pro-
posed method is sensitive to the piling-up or sinking-in. From the contact radius changes we have proposed a new proce-
dure in order to obtain the real indentation load–depth curve from the measured curve. An experimental study has allowed
us to validate our procedure during the beginning of the unloading cycle.
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1. Introduction

Indentation test, historically used to determine
the material hardness, has been developed in order
to determine the material mechanical properties
since several decades. An instrumented indentation
test consists in measuring simultaneously indenta-
tion load P and indentation depth h during the pen-
etration of an indenter into a sample. The Meyer’s
hardness (Meyer, 1908; Tabor, 1951) is then given
by the following relationship, where a is the contact
radius:

H ¼
P

pa2
: ð1Þ

Many studies have been conducted in order to
determine the contact radius. We can separate the
different methods in two categories. The first one
concerns the determination of the C2 factor intro-
duced by Hill et al. (1989). C2 quantifies the degree
of piling-up (C2 > 1) or sinking-in (C2 < 1) during
the indentation test. A great number of models have
been proposed, which are presented in detail in the
work of Hernot et al. (2006). The use of C2 is
restricted by the chosen behaviour law, indeed this
factor depends on the sample plasticity properties.

However, the contact radius can be determined
through a different method. Li et al. (1997) suggested
using the results deduced from the Hertz elastic
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contacts theory (1882) in order to determine the con-
tact radius changes during a Berkovich indentation.

Applying the Hertz theory to indentation allows
the determination of a relationship between the
indentation load P and depth h in the elastic regime

P ¼
4

3

E

1� m2
R

1
2h

3
2
; ð2Þ

where m is the Poisson ratio. In the case of an elastic
indenter, E/(1 � m2) in Eq. (2) has to be replaced by
the reduced modulus E*

E
� ¼

1� m2s
� �

Es

þ
1� m2i
� �

Ei

� ��1

; ð3Þ

where s stands for ‘‘sample’’ whereas i stands for
‘‘indenter’’. Moreover, in the Hertz theory, the con-
tact radius value is (Rh)1/2, therefore Eq. (2)
becomes

P ¼
4

3

Eah

1� m2
: ð4Þ

Galin (1946) proposed a general solution of elas-
tic indentation for every kind of axisymmetric ind-
enters. This solution is sometimes wrongly
attributed to Sneddon (1965). Then, Bulychev
et al. (1975, 1976); Shorshorov et al. (1981) used this
solution in application to indentation test and the
initial unloading stiffness can be defined as follows:

S ¼
dP

dh
¼ 2E�

a: ð5Þ

A complete presentation of these questions is
proposed in the paper of Borodich and Keer (2004).

Some methods have been developed to determine
the Young modulus from the Hertz theory. We can
quote Doerner and Nix (1986); Loubet et al. (1986);
Oliver and Pharr (1992).

Concerning the determination of the Young
modulus and the hardness, Galanov et al. (1984)
proposed another way of determination based on
a decomposition of the deformation under the
indenter. Models which take into account the plastic
deformations are proposed by this author.

Li et al. (1997) suggested using formula (5) in
order not to determine the Young modulus but
the contact radius. Their method is based on a mod-
ulated loading and unloading cycle for the determi-
nation of the instantaneous contact stiffness. Most
of the five samples studied were considered as elas-
tic-perfectly plastic. Authors compared experimen-
tal measurements with numerical results in the

case of a rigid conical indenter. They concluded that
Eq. (5) can be applied for the entire indentation
cycle. However, comparison made between numeri-
cal and experimental results shows that Eq. (5) does
not lead to a very accurate determination but to a
trend of the contact radius changes. This can be
explained by the use of very simple behaviour laws
for numerical simulations which do not correspond
to the real sample’s behaviour. Moreover Eq. (5)
does not take into account the radial displacements
of material under the indenter.

This aspect has been studied by Galanov (1983);
Galanov et al. (1983) who considers a precise for-
mulation of contact problems in order to study
the effect of the tangential displacements in the case
of conical and pyramidal indenters. In order to
determine the contact radius changes during spher-
ical indentation, we suggest using the formulation
proposed by Hay and Wolff (2001). They intro-
duced a factor c and the contact stiffness formula-
tion becomes

SðhÞ ¼
dP

dh
¼

2cEsa

1� m2s
: ð6Þ

For an elastic spherical indenter, the factor c is de-
fined by the following relationship:

c ¼ 1þ
2a

3pR

N 1� 2msð Þ 1þ msð Þ

N 1� m2s
� �

þ 1� m2i
� �

" #

;

N ¼
Ei

Es

:

ð7Þ

2. Presentation of the proposed method

Eqs. (6) and (7) can be turned into a polynomial
equation where a is the unknown parameter. There-
fore, the resolution gives the following contact
radius

aðhÞ ¼
3pR

ffiffiffiffiffiffiffiffiffiffi

DðhÞ
p

� 1
� �

4B
; ð8Þ

where

DðhÞ ¼ 1þ
4Bð1� m2s ÞSðhÞ

3pREs

;

B ¼
Nð1� 2msÞð1þ msÞ

Nð1� m2s Þ þ ð1� m2i Þ

� �

:

ð9Þ

Our method involves several loading, unloading and
reloading cycles in order to determine unloading
stiffness changes S(h) during the whole unloading
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curves. Lastly, the measurement of the unloading
stiffness changes during each unloading cycle allows
the determination of contact radius changes with
Eqs. (8) and (9).

3. Numerical study of the contact radius changes

3.1. Presentation

A numerical study has allowed us to validate the
proposed method. This study has been conducted in
axisymmetric mode with the finite element (FE)
code Cast3M. The FE mesh requires the use of
several areas with 4-nodes elements and linear inter-
polation linked with 3-nodes elements areas. Con-
cerning the contact area, the FE mesh requires the
use of 8-nodes elements with quadratic interpola-
tion. In the contact area itself, the size of the ele-
ments is less than 4 lm and the number of the
elements used is greater than 4000. The use of very
small elements in the contact area is necessary in
order to determine the contact radius with a great
accuracy. All samples are simulated with isotropic
hardening. The study of the contact radius involves
the programming of several loading–unloading–
reloading cycles in order to determine the initial
unloading stiffness changes S(h) and the unloading
stiffness changes during the unloading cycles.

3.2. Numerical study of the proposed method

The numerical study of the proposed method is
summarized in the case of two representative mate-
rials: a steel alloy with high yield stress and a copper
alloy with low yield stress. In Figs. 1 and 3 the com-
parison is made between the contact radius deter-
mined by finite elements (written a(Cast3M)) and
the contact radius determined by the proposed
method (written a(S)) during loading and unload-
ing. In Figs. 2 and 4, the square root of (2Rh) evo-
lution (written Sqrt(2Rh)) is drawn in order to show
the sensitivity of our method to sinking-in or piling-
up during loading. Moreover, in these two figures
the contact radius changes calculated with c = 1
(written a(gam1)) is drawn in order to show the
veracity of the use of Eqs. (8) and (9).

From numerical indentation curves, the pro-
posed method allows the determination of the con-
tact radius changes during the loading and the
unloading cycles (Figs. 1–3), with an average preci-
sion greater than 2%. This method is sensitive to the
pile-up (Fig. 4) or sink-in (Fig. 2) effect. However,

the method’s application is limited by the a/R value.
Indeed, Hay et al. established the limit for a rigid
indenter at a value of a/R = 0.2. In the case of an
elastic indenter, we have observed that the value
of a/R has to be lower than 0.25. If a/R is higher
than 0.25, Eqs. (8) and (9) will give a worse evalua-
tion of a(h).

Fig. 1. Application of the proposed method to the first sample.

Fig. 2. Sink-in for the first sample.

Fig. 3. Application of the proposed method to the second

sample.
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Concerning the effect of the factor c in the deter-
mination of a(h), at the beginning of the indentation
test, a(Cast3M), a(S) and a(gam1) are quite indistin-
guishable. However, when the value of a/R
increases, the use of c = 1 overestimates the contact
radius. In this case, we can see that the Hay and
Wolff correction gives a better evaluation of the
contact radius.

4. Experimental study

4.1. Introduction

Two steel alloys have been selected (a C100 and a
C22) because of their microstructure which leads to
a good homogeneity. We have developed an exper-
imental bench that allows the measurement of the
P(h) curve with a very good reproducibility. The
indenter used is made of tungsten carbide. The
experimental measured displacement (hP0) corre-
sponds to the displacement of the center of the

indenter, while the required displacement is the dis-
placement (hP1) on the surface of the tested sample
(Fig. 5). The difference between the two values of
displacement (hP0) and (hP1) is not that insignificant.
This problem is usually corrected by a calibration
function, however, this function can cover different
phenomena. Moreover, our indenter is not exactly
a spherical indenter, then, in order to apply our
method, we have defined an equivalent radius which
depends on the contact radius evolution (Req(a)).

4.2. A new procedure to deduce the P(hP1) curve

from the P(hP0) one

Our numerical study has allowed us to study the
deformation of a sphere in contact with a flat sur-
face. In this study, the radial displacements of the
vertical axe is fixed to 0: u(r) = 0. All the nodes of
the superior line of the indenter have the same dis-
placement and the load is applied on P0. The defor-
mation of the sphere leads to the changes of
d = hP0–hP1 during the loading and the unloading
cycles. From our numerical study, the d changes
can be described by the following polynomial func-
tion (10), depending on the indenter’s radius R, the
contact radius a, the load P and the indenter’s
Young modulus E

d ¼ R Aþ B
P

pR2
Ei

þ C
P

pa2Ei

þ D
P

pR2
Ei

� �2

þ E
P

pa2Ei

� �2

þ F
P

pR2
Ei

P

pa2Ei

!

; ð10Þ

where A = �1.682.10�5, B = 3.298, C = 0.182,
D = �6446.562, E = �12.727 and F = 537.889.
From Eqs. (8)–(10), we propose a new procedure

Fig. 4. Pile-up for the second sample.

Fig. 5. Difference between measured and wanted displacement.
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to deduce the P(hP1) curve from the P(hP0) one,
which is presented in Fig. 6:

– the input values are P(hP0) and an arbitrary ini-
tial a(h) curve;

– from this a(h) curve, we obtain the corresponding
radius Req(a);

– these three quantities P(hP0), a(h), Req(a) allow us
to calculate the corresponding d(a) curve;

– from the d(a) curve, we can calculate a P(hP1)
curve with the relationship hP1 = hP0 � d;

– Eqs. (8) and (9) unable us to deduce the corre-
sponding values of Es with S(h) curve calculated
from P(hP1);

– the knowledge of the true Es value allows us to
find the correct a(h) curve, which minimizes the
difference between the calculated Es and the true
value of Es;

– this minimization gives the true a(h) curve and
the true P(hP1) curve;

From this procedure, we deduce the maximal val-
ues of hP1 at the beginning of each unloading. These
values are used in Eq. (11) in order to determine the
k coefficients for each loading

k ¼
ðhP1max � hP0maxÞ

Pmax

: ð11Þ

Thus, the hP1 values during each loading are given
by

hP1 ¼ hP0 þ kP : ð12Þ

4.3. Experimental determination of a(h) curve

Our procedure described in Section 4.2 has been
applied in order to obtain the P(hP1) curve from the
P(hP0) curve. As shown in Fig. 7, we obtain a very
good correction of the loading curve, although we
observe some differences between the experimental
and the numerical unloading curves. An explana-
tion of these differences may be the kinematic hard-
ening influence.

These differences do not allow the comparison
between a(h), obtained from Eqs. (8) and (9), and
theoretical a(h), since theoretical a(h) is not known
during the whole unloading curve. Nevertheless,
we can compare theoretical a(h) and the one
obtained from our procedure at the beginning of
the unloading curve. Figs. 8 and 9 show the applica-

Fig. 6. Procedure to determine the hP1 values during each unloading.

Fig. 7. Experimental determination of P(hP1) from P(hP0) for a

C22 steel.
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tion of our procedure to determine the contact
radius’s highest values for the different unloading
cycles. These two experimental examples show that
our procedure allows the determination of the a(h)
curve with an average precision better than 5%.

5. Conclusion

A numerical study has allowed us to validate a
method to determine the contact radius changes
during the unloading process in spherical indenta-
tion. It is shown that the Hay and Wolff correction
leads to a more accurate determination of the con-
tact radius than the existing method.

From our procedure, the knowledge of both
indenter and sample elastic properties leads to the
required load–depth curve and to the contact radius
changes during a spherical indentation test.
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