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1 function of the curvature, and behaves, in structural terms, like a membrane. Since the surface connectivity may change during the sloshing, an Eulerian formulation for the surface tension is attractive. In response to this class of problems, fi nite difference researchers in computational fluid dynamics have developed methods that do not require a Lagrangian model for the membrane forces [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. These efforts have met with varying degrees of success with the cited finite volume approach appearing to be among the most successful. Many of the difficulties seem to be associated with the difficulty of obtaining an accurate approximation of the surface curvature on a spatially fi xed mesh.

In this paper, a formulation for an Eulerian shell in two-dimensions is presented with example calcu lations. An extension of the formulation to three-dimensions is intended, and its development will follow the same methodology. Section 2 summarizes the computational methods that are used in multi-material Eulerian hydrodynamics [START_REF] Benson | A Multi-material Eulerian formulation for the efficient solution of impact and penetration problems[END_REF][START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF]. In Section 3, the Eulerian shell element geometry and the kinematics are developed based on the shear deformable theory developed by Reissner [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] and Mindlin [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motion of isotropic elastic plates[END_REF]. A detailed examination of two formulations for the rotational degrees of freedom results in a departure from the Eulerian surface tension formulations, which are formulated entirely in terms of the translational degrees of freedom. Constitutive equations and their numerical integration are also discussed in Section 3. The dis crete fi nite element expressions are derived and discussed in Section 4. A new approach for estimating the stable time step [START_REF] Benson | Stable time step estimation for multi-material Eulerian hydrocodes[END_REF] is applied to the shell formulation in Section 5. Preliminary linear and nonlinear example calculations demonstrate the potential of an Eulerian shell formulation.

The Eulerian formulation

The following brief discussion of the Eulerian formulation used in [START_REF] Benson | A Multi-material Eulerian formulation for the efficient solution of impact and penetration problems[END_REF] provides an overview of the methods commonly used in multi-material Eulerian hydrocodes; a detailed review of explicit Lagrangian and Eulerian methods appears elsewhere [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF]. The governing continuum equations in conservation form are:

ap fu + V' • (pu) = 0, (1) apu Tt + V' • (pu ® u) = V' • <1 + pb, (2) 
a � e + V' . (peu) = (f : €. + pb. u, [START_REF] Benson | A Multi-material Eulerian formulation for the efficient solution of impact and penetration problems[END_REF] where p is the density, u the velocity, x the spatial coordinate, <1 the Cauchy stress tensor, €.the strain rate tensor, h the body force, and e is the internal energy.

The solution is advanced in time by splitting the governing equations [START_REF] Charin | Product formulas and numerical algorithms[END_REF] into two sets, Lagrangian and Eulerian, and solving them sequentially. Two meshes, one Lagrangian and the other, a spatially fixed Eulerian mesh, are initially superposed at the beginning of the time step. During the Lagrangian step, time is advanced and the Lagrangian mesh deforms to follow the material motion. Time is held constant in the Eulerian step, which projects the Lagrangian solution from the deformed mesh onto the spatially fixed mesh.

The Lagrangian step

The Lagrangian solution is advanced in time with an explicit finite element formulation similar to the ones found in DYNA3D [START_REF] Hallquist | Nonlinear Dynamic Analysis of Structures in Three-Dimensions, DYNA3D User's Manual[END_REF], EPIC [START_REF] Johnson | User Instructions for the EPIC-2 Code[END_REF], HEMP [11], and PRONTO [START_REF] Taylor | PRONTO 2D -a Two-Dimensional Transient Solid Dynamics Program[END_REF]. HEMP is a fi nite difference code developed prior to the finite element codes, but it is identical to a finite element formulation with one point integration [START_REF] Belytschko | On finite element and difference formulations of transient fluid-structure problems[END_REF].

Quadrilateral elements with one point integration are used for the spatial discretization. The Lagrangian step is summarized by Eq. ( 4), where Fis the force vector associated with the boundary conditions and the hourglass viscosity, M the diagonal mass matrix, B the discrete gradient operator, <1 the Cauchy stress, x the vector of current coordinates, and u is the velocity. The augmented stress, if, is the sum of the Cauchy stress and the shock viscosity, q [14].

u n+1;2 = u n-1; 2 + !1tM-1 {F -f Bta dQ}, x n+I = Xn + fitun + l /2 , a= a -q i. (4)
Elements containing more than one material are commonly referred to as "mixed" elements. The only difference in the formulation of an element containing a single material and one containing several materials occurs in the mixture theory [START_REF] Benson | A mixture theory for contact in multi-material Eulerian formulations[END_REF], a detail discussed in a later section.

The Eulerian Transport Step

The formulation of the Eulerian shell is influenced by two aspects of the Eulerian step, namely the material interface reconstruction algorithm, which defi nes the geometry of the shell within the Eulerian finite element, and the momentum transport, which constrains the form of mass matrix.

The second order accurate, monotonic MUSCL algorithm [START_REF] Van Leer | Towards the ultimate conservative diff erence scheme IV: A new approach to numerical convection[END_REF] projects the solution from the deformed Lagrangian mesh onto the Eulerian mesh. MUSCL was developed as a higher-order accurate Godunov method, which assumes all the state data (e.g., stress) is located at the element centroid. The MUSCL algorithm is one-dimensional, and it is extended to multi-dimensions by using sweeps in alternating directions [START_REF] Roache | Computational Fluid Dynamics[END_REF].

Since the momentum is a function of the velocities, located at the nodes, special care must be taken to transport the momentum so that it is conserved and oscillations are not introduced into the solution. The simplest of several momentum transport methods [START_REF] Benson | Momentum advection on a staggered mesh[END_REF], the staggered mesh method, is readily implemented on a logically regular mesh. For node c in one-dimension, with nodes I and r to the left and right of it respectively, the velocity is updated according to 1 u7 = M + {Mc -u; + bm1cU/ -bmcru; }, c (5) (6) [START_REF] Benson | Stable time step estimation for multi-material Eulerian hydrocodes[END_REF] where M is the nodal mass, bmah the mass transported from node a to node b, bva the volume transported between adjacent elements through node a, and the superscripts -and + indicate values before and after the transport calculation. The expressions for the bm were derived so that a uniform velocity distribution, with a variable density distribution, is uniform after transport.

When an element contains several materials, their individual contributions to the transport volumes must be calculated and their accurate calculation requires the geometry of the material interfaces within the element. Many different methods are available for tracking/reconstructing the material interfaces, but the most popular are the volume of fluid (VOF) methods [START_REF] Hirt | Volume offluid (VOF) method for the dynamics of free boundaries[END_REF], which calculate the material interfaces based on the volume of each material within an element and its neighbors. Instead of working directly with the material volume, VOF methods often use the volume fraction, V�, which is the ratio of the volume of material m, Vm, to the total volume of the element, V0• The interface reconstruction method used in many modern hydrocodes was developed by Youngs [START_REF] Youngs | Time dependent multi-material fl ow with large fl uid distortion[END_REF]. The version used here incorporates the extensions developed for CAVEAT [START_REF] Addessio | CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip[END_REF] by researchers at Los Alamos National Laboratories [START_REF] Johnson | Personal communication[END_REF]. Within each ele ment, the interface between two materials is approximated as a straight line,

n • x-d = 0, ( 8 
)
where n is the interface normal, x the vector of the current coordinates, and d is a constant. In two dimensions, the normal direction is calculated from the volume fractions of the material in the element and its surrounding eight neighbors using a fi nite difference stencil for the gradient, 1 2 3 Fig. 1. The numbering of the elements for evaluating the finite difference stencil for vvr. [START_REF] Hallquist | Nonlinear Dynamic Analysis of Structures in Three-Dimensions, DYNA3D User's Manual[END_REF] and the value of dis determined from the required volume fraction. For a problem containing only two materials, the location and orientation of the interface will be independent of which material is chosen for Eq. ( 8)

The fi nite difference stencil for \;7Vr is:

J = ! [-X1 -X2 + X3 + X4 -yi -Y2 + Y3 + Y4 ] 2 -Xi + X2 + X3 -X4 -yi + Y2 + Y3 -Y4 , B v = ! [ -1 0 + 1 -2 0 +2 -1 O 1 ] 4 -1 -2 -1 0 0 0 +1 +2 +l ' (10) 
(11) [START_REF] Taylor | PRONTO 2D -a Two-Dimensional Transient Solid Dynamics Program[END_REF] where the elements are numbered as in Fig. 1. The interface reconstruction is for E5, the center element.

When an element contains several materials, the interfaces are reconstructed sequentially using the "onion skin" model. Assume, for convenience, that material 1 is adjacent to material 2, and material 2 lies between materials l and 3, and so on, with material k located between materials k -1 and k + 1. The interface between materials 1 and 2 is calculated by evaluating Eqs. ( 8) and ( 9) with the volume fractions of material 1. The second interface, between materials 2 and 3, is calculated using the sum of the volume fractions for materials l and 2. Continuing on through the materials, the interface between materials k and k + 1 is calculated using the sum of the volume fractions of materials 1 through k. For a specified ordering of materials, the volume fractions used in Eq. ( 9) for interface k is given by k vr (k) = L v�Ul' [START_REF] Belytschko | On finite element and difference formulations of transient fluid-structure problems[END_REF] j=l where m U) is the jth material in the list of adjacent materials. Note that m U), in practice, may vary as a function of both space and time [START_REF] Benson | Eulerian finite element methods for the micromechanics of heterogeneous materials: Dynamic prioritization of material interfaces[END_REF].

Shell geometry and kinematics

The geometry of the Eulerian shell element is defined by the upper and lower shell material interfaces calculated by the interface reconstruction algorithm [START_REF] Youngs | Time dependent multi-material fl ow with large fl uid distortion[END_REF][START_REF] Johnson | Personal communication[END_REF]. In two-dimensions, the reference lamina is a line segment intersecting the boundaries of the element, and in three-dimensions, the lamina will be a plane (Fig. 2). Due to the assumptions used to construct the interfaces, the theoretical issues (and computational costs) associated with a nonplanar shell geometry are eliminated.

The Eulerian shell formulation is based on the shear deformable theory developed by Reissuer [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] and Mindlin [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motion of isotropic elastic plates[END_REF]. Its discretization follows Hughes and Liu [START_REF] Hughes | Nonlinear finite element analysis of shells: Part I. Three-dimensional shells[END_REF][START_REF] Hughes | Nonlinear finite element analysis of shells: Part II. Two-dimensional shells[END_REF], and Belytschko and Tsay [START_REF] Belytschko | Explicit algorithms for nonlinear dynamics of shells[END_REF]. A generic element in its local coordinate system, illustrated in Fig. 3, consists of n layers of independent materials. The shell material interfaces are forced to be parallel for simplicity, and future investigations may remove this restriction. The perpendicular to the material interfaces defines, to within a sign, the normal direction through the shell, and the exterior direction is determined from the ordering of the materials. The layered structure of independent materials was adopted to simplify the transport calculations. Each integration point in the shell requires the same amount of storage as an integration point for any other material. The introduction of the n shell integration points as independent materials is simpler than modifying the transport logic to handle special data blocks that are n times the standard length for the shell elements. Although the shells in the example calculations are homogeneous through the thickness, the generality of the formulation, and its implementation, permit composite shells of different materials.
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Interpolation of the shell variables

As illustrated in Fig. 4, the 11-coordinate lines defi ne the shell lamina, while the (-coordinate defi nes the fi ber direction. The position vector is defi ned in terms of a point on the reference laminae (e.g., at mid thickness) and a fi ber vector starting from this point (Fig. 5), 'L x Fig. 4. Mapping from isoparametric coordinates to the physical shell domain. 
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where Na(IJ) is the lamina shape function (the subscript refers to the shell vertices) and z(O is the fiber coordinate.

Using this interpolation, two sets of coordinate systems are defined [START_REF] Hughes | Nonlinear finite element analysis of shells: Part I. Three-dimensional shells[END_REF][START_REF] Hughes | Nonlinear finite element analysis of shells: Part II. Two-dimensional shells[END_REF]. First, the lamina coordinate systems are defi ned by with leading immediately to the global to lamina transformation matrix q. q = [ q d = [e: eff : global� lamina. In the initial development of the Eulerian shell formulation, the material interfaces have been defined to be parallel, which implicitly results in sT = q, a simplifi cation that was explicitly introduced by Belytschko and Tsay [START_REF] Belytschko | Explicit algorithms for nonlinear dynamics of shells[END_REF].

The fi ber basis vectors are defined as

The kinematics of the shell are derived from the isoparametric hypothesis (in the continuum quadri lateral), i.e., the velocity fi eld can be expressed as [START_REF] Hughes | Nonlinear finite element analysis of shells: Part I. Three-dimensional shells[END_REF] where fiber inextensibility has been assumed. As noted previously, the thickness is defi ned by the interface reconstruction, and is therefore dynamically updated each time step to automatically account for large membrane strains. 

W = !(L -V) (27)
and the discrete expressions for these tensors are obtained from Eq. ( 24). The matrix Bis defined by [START_REF] Hughes | Nonlinear dynamic fi nite element analysis of shells[END_REF] which corresponds to B that would be derived for small strains.

Choice of a fo rmulation fo r the rotations

The degrees of freedom for a classical (Lagrangian) shell element are two (or three) displacements and one (or two) rotations in two-(or three-)dimensions. For the Eulerian shell elements, two formulations are possible for computing the shell rotational degrees of freedom from the Eulerian element nodes. The first, formulation I, uses only the translational velocities that are found in the standard Eulerian formulation, while the second, formulation II, augments the translational velocities with a set of angular velocities.

The two formulations have been compared in the two-dimensional case. It appears that if Formulation I has the advantage of a smaller number of degrees of freedom, it presents serious drawbacks that are avoided by formulation II.

Formulation [' translational velocities only

For the general two-dimensional case, shown in Fig. 6, sl and s2 are the shell vertices, while cl and c2 are the continuum element edges they intersect. These could be consecutive edges or not, but they cannot be the same. The position of the shell relative to the quadrangle (or to any polygon) is thus defi ned by two edge c2 Fig. 6. General two-dimensional case.

numbers (or equivalently, two sets of two node numbers) and their two reduced coordinates Y/i and ri 2 (E [ -1, l]) for edges cl and c2, respectively.

The shell vertex velocities are interpolated from the velocities of the edge nodes:

u� = N1( Y/0)u�1 + N2(Y/ 0 )u� 2' ( 29 
)
where Ni (ri) and N1(ri) are the linear shape functions, and u is the velocity vector. The superscripts s and c refer to the shell and Eulerian continuum elements and the subscripts a 1 and a2 are the first and second nodes defining the continuum element edge a. The angular velocity at a shell vertex is given by the angular velocity of the continuum element edge: [START_REF] Amsden | YAQUI: An Arbitrary Largrangian-Eulerian Computer Program for Fluid Flow at All Speeds[END_REF] which is derived from the kinematic relations of a rigidly spinning line segment in two-dimensions.

Sp ecial treatment of corners: With this approach, special consideration is required when a shell node coincides with a node of the continuum element, as illustrated in Fig. 7.

In this case, the challenge is to calculate a uniquely defined angular velocity from the continuum edges a-and a+. One possible solution uses a linear combination of the two angular velocities based on the relative orientation of the shell and the edges,

"s </Ji • ¢2 "c (}a = </J </J �-+ </J </J (} a +' l + 2 l + 2 (31) 
which ensures that if the shell is aligned with one of the edges, the angular velocity is computed from the other edge.

Continuity problems: Even using Eq. ( 31) for the angular velocities, this formulation leads to a severe continuity problem. When two shells are connected through a continuum element edge, the Cl-continuity of the velocity is guaranteed since the angular velocity is computed from the same nodal velocities on both sides (Fig. 8(a)). However, when they are connected through a continuum element node, the Cl-continuity is no longer ensured because the rotations are computed from different nodal velocities on each side (Fig. 8(b)). In fact, the connection through a node introduces a spurious hinge mechanism, which can ruin the solution. In this formulation, both the shell translational and rotational velocities are interpolated from the continuum element nodes in the same manner: [START_REF] Flanagan | A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[END_REF] (33)

where O�; are the additional rotational degrees of freedom added to the continuum element. All the problems encountered in the previous formulation vanish because there is no ambiguity about the shell angular velocity when a shell node is positioned on a continuum element node.

Stress update

Stress rate

The rotational contribution in the Jaumann rate is added to the stress before evaluating the constitutive model,

an + 1 = a " + ( W a " -a " W)At, ( 34 
)
where the superscripts on the stress tensor refer to the updated n + 1 and reference n configurations, and At is the increment in time.

The rotational update is applied in the global coordinate system, where the stresses and other history variables are stored. Among other things, this allows for transport in the Eulerian step (following the Lagrangian step described here). After the rotational update, the stress tensor has to be rotated from the global coordinate system to the local (lamina) coordinate system, (35) where the material update can be performed according to the constitutive model, (36) and the zero normal stress condition is enforced. The updated stress tensor is then rotated back to the global coordinate system, (37) before storing it for transport.

Plane stress up date algorithm

The plane stress and plane strain implementations of a particular constitutive model are usually inde pendent in finite element programs. To avoid the duplication of the coding during the development of constitutive models, the plane stress update algorithm for the shell element consists of an iteration loop that wraps around the plane strain material library. While this approach reduces the computational efficiency of the material library, the percentage increase in the total run time is negligible because the stress updates account for only a few percent of the total CPU time.

Two iteration methods are used to assure a converged solution. Both iterations methods require two initial values for the increment in the normal strain, AEnn• The fi rst value assumes fully plastic flow: (38) where AE11 is the strain increment in the lamina direction. The second initial value assumes the response is elastic:

1 dEnn = -K + 4G/3 (cr nn + (K -2G/3){AEu + df. 3 3} ) , (39) 
where K and G are the instantaneous moduli calculated by the equations of state and the strength model.

The two values bound the solution, which is a requirement for the second iteration method.

Secant iteration, where i is the iteration counter,

is performed for up to five iterations before resorting to the back-up strategy. In the majority of cases, less than three iterations are required for convergence. The superscript n + 1 has been eliminated to avoid confusion with the iteration counter.

A simple modifi cation to the secant iteration, Regula Falsi [START_REF] Press | Numerical Recipes in Fortran[END_REF], is guaranteed to converge if the initial two guesses bracket the solution. Instead of keeping the last two iterations for calculating the secant, Regula Falsi keeps two values that bracket the solution. Given the bounding interval [AE�"' AE�.], and the associated function values er�" and er�"' the bounding interval is updated with df.�" by

" f I i Q l (j nn • (j nn > ' then df.� n = A< n else df.� n = A< n (41) (42)
The rate of convergence is not guaranteed, however, and for the types of nonlinearities that occur in plasticity, the rate is often unacceptably slow (see Fig. 9), making it an unacceptable back-up strategy.

The back-up iteration strategy is Ridder's method [START_REF] Press | Numerical Recipes in Fortran[END_REF], which replaces the linear approximation of the function on the interval with one scaled by an exponential function:

(43)

(44) b = (j � n -mdf.�n. ( 45 
)
Ridder's method requires an extra evaluation of the function at the middle of the interval, df.�n = (AE�n + df.�")/2, to provide the additional information needed to solve the third unknown, a. A small amount of algebraic manipulation yields the update formula: which does not require the evaluation of the exponential function. (

) 46 
To reduce the number of iterations required for Ridder's method, the original bounding interval is re duced whenever possible during the second iteration by using the logic of Eq. (4 1).

Implementation

Transformation matrices

The transformation matrix T links the Eulerian element velocities v e to the shell velocities v':

v' = Tv e (47)
and its transpose links their respective forces.

In two-dimensions, T is 6 x 8 with formulation I and 6 x 12 with formulation II. They are easily ob tained from Eqs. ( 29) and ( 30), or from Eqs. ( 32) and (33), respectively.

Internal forces and the stiff ness matrix

The internal forces vector is obtained by (48) and for the geometrically linear framework, which is used later in the eigenvalue analyses, the stiffness matrix is

K = T1 { B 1 CB dVshenT }shell = T1Kshe11T ,
where C is the constitutive tangent matrix in the local coordinate system.

Mass matrix

The consistent mass matrix is given by

M = T1 { pN1N dVshe11T }shell = T1Mshe11T, ( 49 
) (50) (51) ( 52 
)
where p is the density and N is the shape function matrix, and describes the interpolation of the shell kinematics. The rotational terms are scaled so that the critical time step is controlled by element length and not by element thickness [START_REF] Hughes | Nonlinear dynamic fi nite element analysis of shells[END_REF][START_REF] Key | The transient dynamic analysis of thin shells in the finite element method[END_REF]. The mass matrix is lumped for use with an explicit time integration scheme. Instead of lumping M shell then using the transformation given in Eq. ( 52), one fourth of the total shell mass is distributed to the four Eulerian element nodes in the same manner as any other material contained within the element, and similarly for the rotational inertias. This mass distribution is required by the momentum advection alog rithm. The staggered transport masses, r5m, used in the momentum transport were derived on the as sumption that the element mass was distributed equally to each of its four nodes [START_REF] Amsden | YAQUI: An Arbitrary Largrangian-Eulerian Computer Program for Fluid Flow at All Speeds[END_REF]. If a lumped Mshell is introduced into Eq. ( 52), the momentum transport becomes unstable, as illustrated in Section 7. Consistent, conservative momentum transport on a staggered mesh is a nontrivial issue [START_REF] Benson | Momentum advection on a staggered mesh[END_REF], and its extension to problems with mass matrices of the type defi ned by Eq. (52) will be discussed in a future paper.

Area weighting for axisymmetric problems

The axisymmetric version of the Eulerian shell element uses an area-weighted Petrov-Galerkin formu lation to preserve spherical symmetry. This method is commonly used for continuum elements in hydro codes [START_REF] Goudreau | Recent developments in large-scale finite element lagrangian hydrocode technology[END_REF], but has never been implemented for shell elements to our knowledge. The area weighting leads to an expression for the internal force vector, / n 1 :

/ int_ rt(1 B t dA -1 N t { (J rr -(Jee } dA ) - (1 shell shell ' shell shell (Jn (53) 
where Bis the same matrix used in plane strain, and (Jee does not appear in the vector u in Eq. ( 53). This axisymmetric shell formulation is completely consistent with the area-weighted formulation of the Eulerian continuum axisymmetric elements. The consistent axisymmetric mass matrix is

M = T 1 { pN1N dAshellT }shell (54) 
and is thus time dependent (as is the area-weighted lumped mass matrix); however, both are inexpensive to evaluate.

Rank de ficiency problems

The equivalent classical (Lagrangian) shell element has six degrees of freedom, its null-space is composed of three rigid-body modes, and therefore, the rank of its stiffness matrix is three. The rank of the Eulerian shell stiffness is also three, but its dimension is eight or twelve, depending on the rotational formulation. Therefore, in addition to the three rigid-body modes, there are spurious zero energy (hourglass) modes linked to the nature of the transformation matrix T. Formulation I has two spurious modes, while for mulation II has four more, for a total of six. These modes are illustrated in Fig. 10, where the first two (on the left) are common to both formulations. In practice, the modes did not occur in the example calcula tions, perhaps partially due to the monotonic momentum transport, which tends to fi lter out zero energy modes.

The treatment of the zero energy modes is simplified by recognizing that they originate in the inter polation of the continuum velocities to the shell nodes. For a shell node with an isoparametric coordinates -------------------------•-•--•----------•--------------------- --------•-•--------------------------• .. -------•-----. -------__ ,._ _______ --------------

• -•-•. ---------•-••• 100 10 F------••--...... . ----------• --•------------------------------------- Number of elements ' '
, /.r---+---r--� ----:---+--;<---! Fig. 12. First four eigenvalues for diagonal model. This example demonstrates how the eigenvalues of a cylindrical shell are infl uenced by a changing discretization due to a rigid body translation of the cylinder relative to the Eulerian mesh. Ideally, they should be independent of the cylinder's position. The eigenvalues for formulation II, but not I, are inde pendent of the the six positions as indicated in Fig. 13. For the positions where formulation I exhibits large errors, some shell nodes coincide with continuum nodes, illustrating the formulation's deficiencies that were discussed in a previous section. This example demonstrates large deformation fluid-structure interaction. The initial configuration, shown in Fig. 14, consists of a 1.0 cm thick steel plate that spans the 1.0 m wide spatial domain. The shear modulus, Poisson's ratio, yield stress, and hardening modulus for the plate are 0.77 Mbar, 0.3, 7.7, and 20.5 Kbar, respectively. Water fi lls the region above the plate and the region below the plate is empty. A bubble of ideal gas, with y = 5/3, occupies a small region 5.0 cm in diameter in the water-filled region, and provides the dynamic loading. Its initial density is 2.0 g/cm3 and its initial internal energy is 0.3 Mbar cm3 /cm3. The solution was obtained using the new shell formulation with four integration points through the thickness on uniform meshes of 20 x 30 and 40 x 60 elements covering a domain 1.0 m wide by 1.5 m deep. For comparison, the solutions were also calculated by modeling the steel as a solid on meshes of 100 x 100 and 200 x 150 elements covering a domain 1.0 x 1.0 m2• In the second mesh, the water was resolved with 50 elements in the vertical direction and the region below the plate (which the plate traverses during the calculation) was resolved with 100 elements. As shown in Fig. 15 for plane strain, the coarse solid model is unable to resolve the shell structural response at 1.0 ms, and the solutions obtained by the fi ne solid model and the coarse Eulerian shell model are in close agreement. The solution on the coarse mesh obtained with the mass matrix in Eq. 52 exhibits severe instabilities, as shown in Fig. 16. A sequence showing the evo lution of solution out to 2.0 ms for the fine Eulerian shell model is shown in Fig. 17 The coarse and fine mesh shell element solutions required 6 and 39 CPU seconds, respectively on a DEC Alpha workstation to reach a simulation time of 1.0 ms, while the fine mesh solution obtained with the continuum elements required 1447 CPU seconds.

Axisymmetric explosively loaded plate

An axisymmetric solution, shown in Fig. 18, demonstrates the thinning and perforation of the Eulerian shell. The initial density and internal energy of the gas are increased to 16.0 g/cm3 and 0.6 Mbar cm3 /cm3, respectively to overcome the stiffening of the plate due to the hoop stress.

Shell contact

This example shows that contact between shells is adequately handled by the standard mixture theory (i.e., no special treatment is required). This problem is identical to the fi rst calculation of an exposively loaded plate except that two plates, separated by a gap, are used to model a double-hulled vessel. The mesh is 30 x 45 elements (Fig. 19). This calculation uses the mean strain rate mixture theory with void collapse, the simplest mixture theory in the code. The mean strain rate mixture theory sets the strain rate in each material within an element to the mean strain rate of the element. For elements which are partially empty (containing void), the void is compressed the same amount as the other materials, and therefore its volume in the element is reduced only until the volumetric compression in the other materials is sufficient to resist additional compression. Without any modifi cations, the two shells would never touch. A modified version of the mean strain rate mixture theory preferentially collapses, or squeezes out, the void before any compression is applied to the other materials. failure criteria was chosen for this example calculation for its simplicity, and better criteria can be sub stituted.

The T intersection of the two plates is not resolved perfectly because of the limitations of the interface reconstruction algorithm. There are methods for improving the resolution of T intersections [START_REF] Johnson | Personal communication[END_REF], but they have not been implemented at this stage of our research.

As shown in Fig. 20, the weld which is subjected to the highest moment fails while the others remain intact. A large piece of the horizontal plate is pushed down the channel formed by the vertical plate by the expanding gas bubble. A close-up of the fi nal state shows the detached section of the structure (Fig. 21). Small discontinuities in the shells are visible near the left edge. The right edge of the plate tapers in thickness to zero over the width of one element due to the interface reconstruction, which assumes that each material layer spans the the element. For the types of large deformation calculations shown, resolving the end of the failed material in less than one element probably is not important.

Summary

The theoretical basis of an Eulerian formulation for two-dimensional shells has been presented. In particular, the effects of two different formulations for rotations have been discussed and illustrated with examples in the linear range. Further applications in the nonlinear range have demonstrated the ability of the new formulation to model large deformation fluid-structure interaction, shell thinning, perforation, and weld failure.
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 22 Formulation II• adding angular velocities as solution variables

Fig. 9 .

 9 Fig. 9. The bilinear response of plasticity exhibits slow convergence with Regula Falsi iteration.

  Fig. 10. Spurious modes of the two-dimensional shell element.
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 11 Fig. 11. First four eigenvalues for horizontal model.
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 2 Nonlinear analysis 7.2.1. Explosively loaded plate in plane strain

Fig. 13 .Fig. 14 .

 1314 Fig. 13. Evolution of the first four eigenvalues of a moving shell.

  .

Fig. 15 .

 15 Fig. 15. Explosively loaded plate at 1.0 ms using a continuum model and the new shell formulation: (a) coarse mesh continuum solution; (b) fine mesh continuum solution; (c) coarse mesh shell solution.

Fig. 16 .Fig. 17 .

 1617 Fig.[START_REF] Van Leer | Towards the ultimate conservative diff erence scheme IV: A new approach to numerical convection[END_REF]. Explosively loaded plate using the new shell formulation with a consistent mass matrix at 1.0 ms.

Fig. 18 .Fig. 19 .

 1819 Fig. 18. Sequence of the evolution of the axisymmetric plate and gas bubble on a fine mesh. The right-hand figure shows the final state of the perforated plate.
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 3 Fig. 20. Welded structure sequence: 0, 0.5 and 1.5 ms.

Fig. 21 .

 21 Fig. 21. Close up of the failed shell at 1.5 ms.

  7.1.2. Cylindrical shell moving through an Eulerian grid
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on an edge defined by continuum nodes a and b, the zero energy mode, which is localized to that edge, has the form:

where a is the amplitude of the zero energy mode and q may be either the translational or rotational ve locities. A rank one matrix, H,

is multiplied by the individual the translational and rotational velocity components to produce a viscous force opposing the zero energy modes, where f3 is the damping coefficient [START_REF] Flanagan | A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[END_REF][START_REF] Goudreau | Recent developments in large-scale finite element lagrangian hydrocode technology[END_REF].

Computation of a stable time step

The stable time step in both Lagrangian and Eulerian hydrocodes is typically based on local (element level) time step bounds that can be cast in the form:

where Y' is a constant that depends on the element formulation, c; is the acoustic wave velocity and £; is a characteristic length of element i. This approach is problematic with the Eulerian shell formulation because the minimum characteristic length of the Eulerian shells is likely to become zero somewhere as the shell structure is transported through the mesh.

A stable time step size estimate has been derived by iteratively solving the global eigenvalue problem for the highest natural frequency [START_REF] Benson | Stable time step estimation for multi-material Eulerian hydrocodes[END_REF]. This leads to a more accurate, larger time step size, and thus decreases the cost of the computation. Of particular importance for the Eulerian shell formulation, the stable time step size does not go to zero as the shell structure moves through the mesh, and as shown below, the time step size is nearly independent of the structure's location within the mesh.

Example calculations

Eigenvalues analysis

The following eigenvalues analyses illustrate the problems inherent to formulation I, and how formu lation II avoids them.

Plate in planar coordinates

An eigenvalue analysis of a plate of unit depth, fixed on one end and free on the other, illustrates the relative performances of the two rotational formulations. The plate has a width L, a thickness O. lL, and it is made of an elastic material having a density of 1.0, a bulk modulus of 833.0 and a shear modulus of 385.0.

Horizontal model: In the horizontal model, the plate is discretized by one row of elements, as illustrated in Fig. l l. The boundary conditions are enforced by fi xing the left edge. In this case, the connection be tween the shell elements is correct for both of the rotational formulations. The results obtained for both formulations match those from an equivalent Lagrangian model, as illustrated in Fig. 11.

Diagonal model: The plate lies on the diagonal of a square mesh, as illustrated in Fig. 12. The boundary conditions for formulation I require the left and bottom edges of the element in the lower, left-hand corner to be fixed. As shown in Fig. 12, the accuracy of formulation I is poor, while II maintains its accuracy.