
HAL Id: hal-01005182
https://hal.science/hal-01005182

Submitted on 12 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Runtime Verification for Web Services
Tien-Dung Cao, Trung-Tien Phan-Quang, Patrick Félix, Richard Castanet

To cite this version:
Tien-Dung Cao, Trung-Tien Phan-Quang, Patrick Félix, Richard Castanet. Automated Runtime
Verification for Web Services. IEEE international Conference on Web Services, Jul 2010, Miami,
United States. pp.76-82. �hal-01005182�

https://hal.science/hal-01005182
https://hal.archives-ouvertes.fr


Automated Runtime Verification for Web Services

Tien-Dung Cao, Trung-Tien Phan-Quang, Patrick Felix, and Richard Castanet

LaBRI - CNRS - UMR 5800, University of Bordeaux 1

351 cours de la libération, 33405 Talence cedex, France.

Email: {cao,phanquan,felix,castanet}@labri.fr

Abstract—This paper presents a methodology to perform
passive testing of behavioural conformance for the web services
based on the security rule. The proposed methodology can be
used either to check a trace (offline checking) or to runtime
verification (online checking) with timing constraints, including
future and past time. In order to perform this: firstly, we use
the Nomad language to define the security rules. Secondly,
we propose an algorithm that can check simultaneously multi
instances. After that, with each security rule, we propose
a graphical statistics, with some fixed properties, that helps
to tester easy assess about the service. In addition to the
theoretical framework we have developed a software tool, called
RV4WS (Runtime Verification engine for Web Service), that
helps in the automation of our passive testing approach. In
particular, the algorithm presented in this paper are fully
implemented in the tool. We also present a mechanism to collect
the observable trace in this paper.

Keywords-Web Services, Runtime verification, Passive test-
ing, Rule specification, Nomad language.

I. INTRODUCTION

The activity of conformance testing is focused on ver-

ifying the conformity of a given implementation to its

specification. In most cases testing is based on the ability of

a tester that interacts directly to the implementation under

test and checks the correction of the answers provided by the

implementation (called: active testing). However, we cannot

apply this method to test a running system, in many case.

For example, if we use the active method to test the function

create new account of a bank service, this will effect to a

database of the service. With a composite web service, we

can only use the method of active testing for unit testing by

simulating its partners to guarantee that does not effect to

its partners while testing. But the composite web service is

a system that is integrated at runtime and its result depends

on its partners or the real environment. In this case, the

passive testing method is used to verify the result of partner

services or the interval time between a message request and

a message response. The passive testing is a method that

collects the observable traces of the system by installing a

probe and analyzes its to give a verdict. This method does

not effect to running system.

There are two approaches of passive testing, online
and offline. The online approach checks immediately an

execution trace whenever an input/output event is happened.

The advantage of this approach is: the faults may be found

immediately and from that we can require stop the system

to avoid the damage. On the contrary, the offline approach

checks an execution trace after it is collected for a period

of time. It means that an error is not found immediately

if it happened. Depending on the concrete case, we can

apply online approach or offline approach to verify the

conformance of system.

This paper presents an approach for passive testing of

behavioural conformance for a web service. We focus on

black-box testing (in case of the service composition, we

called gray-box testing because we know that interactions

exist between a service and its partners). To passive testing,

firstly we must define the constraints on the order of event

and/or on data (called security rule). We can understand a

security rule on a natural language as follow: if an event

E1 has happened (may be including the constraints on

data) then an event E2 (or a suite of event SE2) must

be happened before/after E1 for a period of time. In this

paper, we proposed use the Nomad language [11] which

is more convenient in use than a generic temporal logic

(like LTL) to define the security rules for web services.

This language is ready used to define the security rules

in the method of [9]. Secondly, we present an algorithm

that can be use to check online or offline, including

future and past time, from a sequence of input/output event.

An important of this method, the analyze is done on a

event-by-event basic, without storing the execution trace.

This algorithm is fully implemented in the RV4WS tool

(Runtime Verification engine for Web Services). While this

tool analyzes the execution trace, with each security rule,

it presents a graphical statistic, with some fixed properties,

that helps to tester easy assess about the service. Finally, we

propose a mechanism to collect the observable execution

trace from a service under test.

The rest of paper is organized as follows. Section II

discusses about some previous works of passive testing for

web services. Section III, we give the notation of security

rule in the Nomad language. Section IV presents the detail

of the our methodology and some tools support. Finally,

Section V concludes the paper and presents future works.

II. RELATED WORKS

The recent years, many the methods, the tools are pro-

posed and developed for passive testing of a web service



(including a composite of web service) [5–9, 14]. These

works focus on either checking on a trace file to give a

verdict [9] or proposed a method for dynamic statistics [6, 8]

of some properties of web services.

Dranidis et al [5] propose the utilization of Stream X-

machines for constructing formal behavioural specifications

of Web services. The authors present also a runtime mon-

itoring and verification architecture and discuses how it

can be integrated into different types of service-oriented

infrastructures. But the authors do not present an algorithm

or a tool to verify an execution trace using the Stream X-

machines specification of web services.

Baresi et al [6, 7] present a monitoring framework for

BPEL orchestration which is obtained by integrating two

approaches namely Dynamo and Astro. These approaches

are used for dynamic statistics of some properties of BPEL

process from single instance or multi instances. These works

focus on the behavioural properties of composition processes

expressed in BPEL rather than on individual Web services.

Cavalli et al [9] propose a trace collection mechanism for

SOA by integrating modules within BPEL engine and a tool

[9, 10] that checks offline an execution trace. This approach

uses also the Nomad language to define the security rule. As

Baresi et al [6, 7], this approach proposes a trace collection

mechanism that depends on BPEL engine. We cannot use it

for a web service that is developed by another language, for

example Java, C#, php.

In the works of Li et al [14, 15] present the pattern and

scope operators as the rule-based to define the interaction

constraints of Web services. The authors use the finite state

automata (FSA) as semantic representation of interaction

constraints. In this approach, the validation process runs in

parallel with the trace collection. This approach is limited by

the pattern number. Moreover, this work does not consider

the time constraints.

III. PRELIMINARIES

This section presents an overview of Nomad language and

how to use it to define the security rule in our approach. We

choice this language because it provides a way to describe

permissions, prohibition that are granted (they are applied

immediately) and obligations (needing a time duration to

complete) related to non-atomic actions within contexts

that takes time constraints. Moreover, its syntax and our

natural language are quite near. In our approach, we consider

an obligation rule as a permission rule because we are

considering time constraints as time intervals (i.e. time min

and time max).

A. Nomad syntax

We present only, in this section, the notions that are used

in our approach.

Definition 1: (Atomic action): We define an atomic action

as one of following actions: an input message, an output

message. If A is an action that can be performed within a

system S, then not(A) (which means ”the non occurrence

of A”) is an action.

* Note: Some constraints on message parameters value

are also considered in the action syntax description:

Event({Par0 lop V al0} op ... op {Parn lop V aln})

Where:

• Event represents an input/output message name.

• Par (i ∈ {1, ...n}) are the parameters. These parame-

ters represent the relevant fields in the message.

• V al (i ∈ {1, ...n}) are the possible parameters values.

• lop ∈ {=, 6=, <,>,≤,≥}.

• We use the operators op ∈ {∧,∨} to combine together

some constraints.

Definition 2: (Formula): If A is an action then start(A)
(A is being started), done(A) (A has been finished) are

formula.

• If α and β are formula then ¬α, (α ∧ β),(α ∨ β) are

formula.

• If α is formula then Od∈[m,n]α (α was true d units of

time ago if m > n, α will be true d units of time if

m < n) is a formula too, where m, n are two natural

numbers.

• If α and γ are formula then (α|γ) is a formula whose

semantics is: in the context γ, the formula α is true.

Definition 3: (Security rule): If α and β are formula then

R(α|β) is a security rule where R ∈ {P: permission; F :

Forbidden;}. The security P(α|β) (resp. F) means that it is

permitted (resp. prohibited) to have α true when context β
holds.

B. Examples of security rule

We introduce some examples of security rule that are

defined to verify the web services.

Example 1: We only allow to create a new account on

the services if we have login within maximal one day ago

and do not logout.

P(start(createAccountRequest)|Od∈[1,0]D

done(loginResponse) ∧ ¬done(logoutRequest))

Example 2: In the case of web service composition, we

can define a rule to verify the interval time (i.e. 10 seconds)

between a request message and a response message from

a partner service to assess about the successful rate if this

partner is installed on a far host.

P(start(msgRequest)|Od∈[0,10]Sdone(msgResponse))

IV. PASSIVE TESTING METHODOLOGY

A passive testing method composes three steps: 1) define

the passive testing architecture to collect the execution traces

on a running system. 2) define the security rules. We use the

Nomad language that is described in the section III to do



this. 3) analyze (online or offline) the execution traces to

give the verdict. This verdict is PASS if the system trace

respects the specified security policy and FAIL if it does

not. The INCONCLUSIV E verdict is possible in case of

oflline checking and the tester cannot extract the necessary

information if the execution trace is short.

A. Trace collection

Many trace collection architectures are presented by the

previous works [5, 6, 9]. In these architectures, a probe,

that is used to collect the execution trace, is normally

integrated either at the consumer’s site or the provider’s

site. In this section, we introduce two architectures for the

trace collection based on the notion Point Observation (PO),

one for web service based and another for web service

composition. Our PO will collect the execution trace at

network level. That allows us to collect the trace without

depend on the SOAP API. Our trace collection architectures

are shown in figure 1. With a web service, we set a PO

between the client and the service to collect the SOAP

messages. With a web service composition, we can also test

the communication between a web service and its partners.

So that, to collect all input/output messages of a web service

composition, each connection between the service and its

partner will be setted a PO. All messages that are collected

by the POs will be sent to a checking engine to analyze and

give the verdict.

Figure 1. Trace collection architecture for service based (top) and for a
composite of service (bottom)

B. Checking algorithm

In this section, we briefly outline the computation mech-

anism used to determine whether a security rule holds for

some given input/output sequence of events. Our algorithm

determines event-by-event to conform with each security

rule without storing the message sequence. Before introduce

the detail of algorithm, we present some functions to com-

pute on the context of each rule: 1) update: this function

updates the value of context whenever a message arrives and

this message exists in the context. For example, the context

of a rule is loginResponse ∧ ¬logoutRequest. When the

loginResponse message arrives, this context is updated as

true∧¬logoutRequest. 2) evaluate: this function evaluates

a context of rule is either holds (true) or not. At a time,

this function returns one in three values: true, false or

undefined if exists at least a message that is not updated.

While the evaluation, a message with the function not will

be assigned provisionally is true. For example: at a time

of evaluation, the expression true ∧ ¬logoutRequest will

be evaluated true ∧ true = true. 3) contain: to find a

message in the context of a rule. Here, we use two global

variables: currlist is a list of current rules that were enabled

and rulelist is a list of rules that are defined to verify the

system.

There is two types of rule: future time and past time. To

easy understand, we will analyze the checking algorithm for

each type.

1) Rule with future time: We know that each rule has

two parts: the supposition part and the context part. The

rule will be validated if its supposition was enabled and

its context is hold (true). In a rule with future time, the

context part will happen after its supposition was enabled.

Our algorithm has two steps: Step 1) at each time that a

message (called msg) arrives, we have a list of current rules

(currlist) that have been enabled to wait the validation of

its context. So that, we will firstly update the context of the

current rules in this list (currlist). Secondly, we evaluate

the context of each rule. If the context is true and the time

constraint is satisfying, a verdict pass/fail, depends on the

permissions/prohibition of rule, will be given in time msg
arrives, and remove this rule from current list (currlist).
If we cannot evaluate the context, we will wait the next

message to complete the context. In this case, a pass verdict

is given. Step 2) we will examine all rules in rulelist and

enable it (add into currlist) if its supposition part contains

the message msg and condition of supposition part is valid

with the data of msg.

2) Rule with past time: In a rule with past time, the

context part will happen before its supposition is enabled. It

means that the context part must be completed, the evaluate
function returns true or false, when its supposition is

enabled. As the future time, we have also two steps: step

1) we check firstly in the list of active rules (currlist). If

its supposition part contains the message msg and condition

of supposition part is valid with the data of msg. We will

evaluate its context to give a verdict. On the contrary, we

will check the time constraints on the rules to remove it from

the list (currlist) if the time constraints do not satisfy. else

if the context of the rule contains this message (msg), we

update the context to wait the next message. Step 2) we



will examine all rules in rulelist and enable it (add into

currlist to wait the message in the supposition part) if its

context contains the message msg.

Finally, we combine it to have a complete algorithm. The

detail of main checking algorithm is shown in the algorithm

1. This algorithm verifies message-by-message and returns

the verdict at a time of arrival message.

Algorithm 1: Runtime verification algorithm

Require: currlist is the list of current rules that

were enabled, rulelist is list of rules that

are defined to verify the system.

Input : message msg, arrival time t.
Output : true/false

res := true;

list := ∅; //a list;

//step 1: check in currlist to give a verdict;

foreach rule in currlist do
//if a rule is enabled many times, we consider only

one time (i.e. one session);

if rule.id /∈ list then

if rule is future time then
res := verify future(rule, msg, t, res);

else
res := verify past(rule, msg, t, res);

list.add(rule.id);

//step 2: check in rulelist to enable new rule;

foreach rule in rulelist do
if msg ∈ rule.supposition ∧
rule.condition(msg) = true then

if rule is future time then
r1 := rule; //create a new rule;

r1.active time := t; // set active time;

cl.add(r1); //add into actived list;

else if rule.evaluate()! = true ∧
rule.id /∈ list then

res := false;

rule.fail + +;

else if rule is past time ∧ rule.id /∈ list ∧
rule.context.contain(msg) then

r1 := rule; //create a new rule;

r1.active time := t; // set active time;

r1.update(msg) //update context;

cl.add(r1); //add into actived list;

return res;

*Note: this algorithm returns a fail verdict if it found a

rule is not satisfying. This rule may be not applied to current

message. To know which rule is fail at an arrival message,

we propose a graphic statistics that shows the current test

status.

Algorithm 2: verify future(rule, msg, t, result)

Require: currlist: is a global variable

Input : rule: a rule, msg: a message, t: arrival time

Output : true/false

if t − rule.active time > rule.time max ∧
rule.type =′ P ′ then

rule.fail + + ;

result := false;

currlist.remove(rule);

else if r.context.contain(msg) then
rule.update(msg) //update context;

if rule.evaluate() = true then
currlist.remove(rule);
if rule.type =′ F ′ ∧ t − rule.active time ∈
[rule.time min, rule.time max] then

result := false ;

rule.fail + +;

else if rule.evaluate() = false then
currlist.remove(rule);
if rule.type =′ P ′ then

result := false;

rule.fail + +;

return result;

Algorithm 3: verify past(rule, msg, t, result)

Require: currlist: is a global variable

Input : rule: a rule, msg: a message, t: arrival time

Output : true/false

if msg ∈ rule.supposition ∧
rule.condition(msg) = true then

currlist.remove(rule);
if rule.evaluate() = true then

if rule.type =′ F ′ ∧ t − rule.active time ∈
[rule.time min, rule.time max] then

result := false;

rule.fail + +;

else

if rule.type =′ P ′ then
result := false;

rule.fail + +;

else

if t − rule.active time > rule.time max then
currlist.remove(rule);

else if rule.context.contain(msg) then
rule.update(msg);

return result;



C. Tool support

To support for our approach, we have developed two

software tools. One allows us to verify either online or of-

fline a trace execution, called RV4WS (Runtime Verification

engine for Web Services). Another, called SOAP Sniffer,

that allows us to capture all input/output SOAP messages of

a web service (including a service composition).

1) RV4WS tool: RV4WS is a tool implemented as a

solution to demonstrate these theories presented in this

paper. The detail of architecture is shown in the figure 2.

Figure 2. RV4WS architecture

One of the most interested components in this architecture

is checking engine component that implemented the runtime

verification algorithm 1. The engine allows us to verify

each of incoming message without any constraint of order

dependencies, so we can apply this approach to both of

online and offline testing. Also, this algorithm verifies the

validation of current message without needing any storage

in memory. To use this engine for the other systems,

because of the difference between the systems is the data

structure of input/output messages, so we define an interface

(i.e., IParseData, shown in the figure 3) as an adapter

to parse the incoming data of RV4WS. The methods in

IParseData are for gathering information from incoming

message. getMesssageName() returns the message name

from its content and queryData() allows us to query a data

value from a field of message content. In each concrete

case, we will implement this interface. For example, in

the case of Web services, its implementation is the class

ParseSoapImpl. This engine has been designed as a java

library and controlled by a component called Controller

which received a data stream coming from TCP port (online)

or from log file (offline).

The input format for this tool is a xml file that has been

Figure 3. ParseData Interface

defined as in the figure 4. A rule with verdict true represents

a permission and a verdict false represents a prohibition. A

context of rule will be expressed as an expression with two

operators AND and OR.

Figure 4. An example of rule define for RV4WS

To support the visualization of testing results, we have

also presented a Graphic User Interface (GUI) that used to

visualize some statistical properties calculated at any mo-

ment of testing process. Whenever a rule is activated, means

that its conditions have been satisfied, a statistical property

as type counter will be used to compute the percentage

of un-satisfying time when applying the rule on the input

data stream. If the rule was satisfied, we need to know

the time duration from activating moment to its context’s

holding moment. We have three statistical properties about

time (time-min, time-max and time-average) for each rule.

Now, we need to know the values of these statistical prop-

erties and also visualize the relationships between them. For

example, one rule executing shows that its fail percentage

in proportion to its duration time or to others properties. If

we had used a histogram view applied for each, we would

not have been able to get these informations cause of the

difference scales of these properties. We built a visual inter-

face which based on the idea of parallel coordinates scheme,

introduced by Inselberg [17]. In information visualization,

parallel coordinates view is used to show the relationships

between items in a multidimensional dataset. Each of axes in

this view parallel to each other and a point in n-dimensional

space is represented as a polyline with vertices on these

axes. Considering that list of statistical properties of our



Figure 5. Test result

testing process as a multivariate/multi dimension data, we

have applied this visualization to RV4WS tool and make it

possible to explore the result of our checking algorithms.

As said earlier, we have implemented the checking algo-

rithms inside RV4WS tool which enables a user-tester to

verify these conditions defined in rules. Then the user-tester

discovers that rule’s properties change over time and he

or she often needs a complete view on these traces of

testing process. There are the parallel coordinates views

correspondent to rules. In the figure 5, each scheme of

parallel coordinates represents a time-log of statistical values

as these polylines crossing properties axes. Within each

view, there is a single polyline per time instance. The lines of

current time are always highlighted. So this view enables the

tester to visualize rapidly if these changes of executing rule’s

properties are interesting or not. Because of this problem,

this visualization is refreshed after each 10 seconds. It means

that it does not run in real-time.

2) SOAP Sniffer tool: To collect the input/output SOAP

messages of a service under test, we are developing a tool,

called SOAP Sniffer. We use the pcap [16] library to capture

all packages that pass over a network card and filter its

by applying the port number, source IP, destination IP, the

transition protocol (i.e. TCP/IP) etc. Next, we analyse the

package content to filter the packages that are transmitted by

HTTP/XML protocol. Finally, these messages and the infor-

mations: source IP, source port, destination IP, destination

port will be sent to the RV4WS tool by TCP/IP protocol

to identify its name and verify it. Because a web service

composition will send/receive the SOAP message to/from

many its partner. To identify these messages are sent and

receive to/from which partner, we need the informations

as source IP, source port, destination IP, destination port.

On the other hand, these informations may be used in the



condition of rule. With a web service based, we can install

this tool on either server side or client side to collect the trace

execution. We will install this tool on the server to collect

all input/output SOAP messages of a service composition.

V. CONCLUSIONS AND FUTURE WORKS

There are two approaches to test a system: active testing

which tester interacts directly to the implementation under

test and checks the correction of the answers to give the

verdict, and passive testing that tester collects trace execution

and analyses it to give the verdict. This paper focus on

the problem of passive testing of behavioural conformance

for the Web services. We have proposed to use the Nomad

language to define the security rules and an algorithm to

verify the correction of a trace execution that is a se-

quence of input/output message. This algorithm has been

fully implemented in the RV4WS tool for two approaches:

online verification and offline verification. In particular, this

tool also proposed a graphic statistical analyse that shows

the current test status. To support the collection of trace

execution, we present a trace collection architecture and

implement a support tool, SOAP Sniffer.

There is a limitation of the RV4WS. The current version is

not support yet the data correlation between the condition of

supposition part and the condition of context. In the future

works, we will study to solve this problem and finish the

SOAP Sniffer tool.

ACKNOWLEDGMENT

This Research is supported by the French Na-

tional Agency of Research within the WebMov Project

http://webmov.lri.fr

REFERENCES

[1] Web Services Description Language 1.1.
http://www.w3.org/TR/wsdl. Last accessed on November 2,
2009.

[2] OASIS. Web Services Business Process Execution Lan-
guage (BPEL) Version 2.0, April 2007. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html. Last accessed on De-
cember 25, 2009.

[3] Active Endpoints. The Active-Bpel engine.
http://www.activevos.com/community-open-source.php.
Last accessed on November 2, 2009.

[4] E. Bayse, A. Cavalli, M. Nunez, and F. Zaidi, “A passive
testing approach based on invariants: application to the WAP”,
Computer Networks 48 (2005) pp. 247 - 266.

[5] D Dranidis, E. Ramollari, and D. Kourtesis, “Run-time Veri-
fication of Behavioural Conformance for Conversational Web
Services”, 2009 Seventh IEEE European Conference on Web
Services, pp. 139 - 147, Nov 9 - 11, 2009, Eindhoven, The
Netherlands.

[6] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo
+ Astro: An integrated Approach for BPEL Monitoring”, 2009
IEEE International Conference on Web Service, pp. 230 - 237,
July 6-10, 2009, Los Angeles, CA, USA.

[7] L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore, “An In-
tegrated Approach for the Run-Time Monitoring of BPEL Or-
chestrations”, 1st European Conference on Towards a Service-
Based Internet, pp. 1 - 12, Madrid, Spain, 2008.

[8] L. Baresi and S. Guinea, “Towards Dynamic Monitoring
of WS-BPEL Processes”, Third International Conference on
Service-Oriented Computing, pp. 269 - 282, Dec 12-15, 2005,
Amsterdam, The Netherlands.

[9] A. Cavalli, A. Benameur, W. Mallouli, and K. Li, “A Passive
Testing Approach for Security Checking and its Pratical Usage
for Web Services Monitoring”, NOTERE 2009, Montreal,
Canada, 2009.

[10] W. Mallouli, F. Bessayah, A. Cavalli, and A. Benameur,
“Security Rules Specification and analysis Based on Passive
Testing” IEEE Global Telecommunications Conference, 2008,
pp. 1 - 6, Nov 30 - Dec 4, 2008, New Orleans, LA, USA.

[11] F. Cuppens, N. Cuppens-Boulahia, and T. Sans, “Nomad: a
security model with non atomic actions and deadlines”, 18th
IEEE Workshop on Computer Security Foundations, pp. 186 -
196, 20-22 June 2005, Aix-en-Provence, France.

[12] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-
Based Runtime Verification”, 5th International Conference on
Verification, Model Checking, and Abstract Interpretation, Jan
11-13, 2004, Venice, Italy.

[13] A . Goldberg and K. Havelund, “Automated Runtime Verifi-
cation with Eagle”, Verification and Validation of Enterprise
Information Systems, May 24, 2005, Miami, USA.

[14] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and Vali-
dation Framework for Web Service Interactions”, Proceedings
of the Australian Software Engineering Conference, pp. 70 -
79, Apr 18 -21, 2006, Sydney, Australia.

[15] Z. Li, J. Han, and Y. Jin, “Pattern-Based Specification
and Validation of Web Services Interaction Properties”, In
Proceedings of the 3rd International Conference on Service
Oriented Computing (ICSOC’05), pp. 73 - 86, Dec 12-15,
2005, Amsterdam, The Netherlands.

[16] Programming with pcap: http://www.tcpdump.org/pcap.htm.
Last accessed on January 25, 2010.

[17] Alfred Inselberg, “The plane with parallel coordinates”, The
Visual Computer, pp. 69 - 91, Vol 1, No 2, Springer Berlin /
Heidelberg, August, 1985.


