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Abstract:
Markov random fields (MRF) offer a powerful representation for reasoning on large

sets of random variables in interaction. A classical, but difficult inference task is the
evaluation of the most probable assignment of a variable given the values of some
others (Maximum Posterior Marginal probability computation, MPM). Linked to that
problem, optimising the choice of the variables to observe (a sample) in order to max-
imise the MPM probabilities is even more difficult. In the field of spatial statistics,
the design of sampling policies has been largely studied in the case of continuous vari-
ables, using tools from the geostatistics domain. In the MRFcase with discrete-valued
variables, some heuristics have been proposed for the design problem but there ex-
ists no universally accepted solution, in particular when considering adaptive policies,
as opposed to static ones. In this paper we formalise the problem of optimal adaptive
sampling in a MRF as a finite-horizon Markov Decision Process(MDP) with a factored
state space. A policy of this MDP is a non stationnary decision rule which associates a
set of sampling locations to the set of past observations. Solving this MDP amounts to
computing the optimal adaptive sampling policy according to a given quality criterion.
The translation of the initial optimization problem into the MDP framework enables
to exploit the Reinforcement Learning (RL) paradigm and to propose an original al-
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gorithm for its approximate resolution. This generic procedure, named Least Square
Dynamic Programming (LSDP), combines a parameterized representation of the value
of a policy, the construction of a batch of simulated trajectories of the MDP and a
backwards induction algorithm. It is not only dedicated to the optimal adaptive sam-
pling problem but can be used to solve any factored MDP under finite horizon. Then
LSDP can be specialized to solve the above-mentioned sampling problem. Based on an
empirical comparison of the performance of LSDP with existing one-step-look-ahead
sampling heuristics and solutions provided by classical RLalgorithms, the following
conclusions can be derived: (i) a naı̈ve heuristic, consisting in sampling sites where
marginals are the most uncertain, is already an efficient sampling approach. (ii) LSDP
outperforms all the classical RL approaches we have tested.(iii) LSDP outperforms
the heuristic approach in cases when sampling costs are not uniform over the set of
variables, or sampling actions are constrained.

Keywords: Heuristic and optimal sampling design, sampling cost, dynamic pro-
gramming, Markov decision process, weed mapping

1. INTRODUCTION

The questions of building probabilistic models of spatial processes and building
plausible reconstructions of the process from the model andobserved data are classic
and have mobilized several research fields in spatial statistics or probabilistic graphical
models communities. Nearly as classical is the question of designing optimalsampling
policiesallowing to build reconstructions of high probability whenthe model is known.
This question is more complex to solve than the pure reconstruction problem and can-
not be solved optimally in general. This sampling design problem has been tackled in
spatial statistics [7, 20] and artificial intelligence [15,16, 25]. It is even more complex
in the case of adaptive sampling, where the set of sampled sites is chosen sequentially
and observations from previous sampling steps are taken into account to select the next
sites to explore [33].

The case of sampling real-valued observations (e.g. temperature or pollution moni-
toring) has been the most studied, mainly within the geostatistical framework of Gaus-
sian random fields and kriging. Much less attention has been paid to the case of sam-
pling variables with finite state space. However, this problem arises naturally in many
studies about biological systems, where observations can be species abundance classes,
disease severity classes, presence/absence values. In this article, we focus on this case
and propose, similarly to [15, 25, 26], to define the corresponding optimal sampling
problem within the framework of Markov random fields (MRF, [10]). MRF are well
adapted to model variables with finite state space. They are,for instance, very popular
in image analysis to model image segmentation problems. A sampling policy can be
staticor adaptive. In the first case, the set of sampled sites is chosen once and for all
at the beginning of the survey (see [9] for a recent work on static sampling of counts
data). With an adaptive policy, the survey is divided into successive steps and the next
set of sampled sites is chosen according to previous observations. Obviously, adaptive
policies are more efficient than static ones, but may not always be applicable. In [15],
the authors considered the sampling problem in a particularcase of MRF, defined on

2



polytrees. They looked for static sampling policies, as in [25]. The work in [26] was
the first proposition of a naive heuristic solution to designan adaptive sampling policy
for the general MRF model. The heuristic was derived from a strong simplification
of the model. Here we extend the work of [26] by proposing a heuristic policy built
from simulations of the exact MRF model. For this, we proposeto encode the opti-
mal adaptive sampling problem as a finite-horizon Markov Decision Process (MDP,
[28]) with factored state space. A policy for this MDP is a setof non stationary deci-
sion rules (one per sampling step) which associate a set of sampling locations to the
set of past observations. Thus the MDP optimal solution provides an optimal adap-
tive sampling policy for the MRF reconstruction problem, according to a given quality
criterion. Solving MDPs with factored state space is hard. It is no easier than solv-
ing the adaptive sampling problem in MRF. However, casting the optimal sampling
problem within the MDP framework allows us to exploit principles from the family
of Reinforcement Learning(RL, [31]) approaches which have been proposed to solve
approximately large (or factored) state space MDPs.

RL approaches allow to solve MDPs approximately by making use of simulations
of the process dynamics. They can be usedon-lineto construct adaptive policies step-
by-step, computing only the current action to apply from theset of past observations,
or they can be usedoff-line, computing a complete policy before any observation is
actually made. Off-line approaches focus their computational effort prior to policy
execution, while on-line approaches alternate action computation phases and action
execution phases. The approach we propose in this paper is anoff-line RL algorithm.

As we will demonstrate, classical RL algorithms cannot be applied to solve the op-
timal sampling problem without being adapted. Therefore weprovide a new generic
RL algorithm that can be used to solve approximately any large state-space finite hori-
zon MDPs: theLeast Square Dynamic Programmingalgorithm (LSDP). LSDP relies
on three main ingredients: (1) the value function of a policyis parameterized as a linear
combination of features; (2) simulated trajectories of theMDP are computed off-line
and stored in abatch; (3) the weights of the linear approximation are those which
minimize the least-square error evaluated on the simulatedtrajectories. We then show
how to specialize this generic algorithm to the problem of optimal adaptive sampling
in MRFs. We show experimentally that this algorithm improves over classical “one-
step-look-ahead” heuristics and RL approaches, thus providing a reference algorithm
for sampling design.

This paper starts with a description of the case study that motivated this work: weed
sampling in a crop field (Section 2). Then, the MRF formalization of the optimal adap-
tive spatial sampling problem is introduced in Section 3. Weshow how to model it
as a finite-horizon factored MDP in Section 4 and we discuss classical RL solutions
for computing approximations of the optimal policy, in Section 5. Then, we describe
the LSDP algorithm in Section 6 and its application to the problem of sampling in
MRF in Section 7. We present an empirical comparison betweenone-step-look-ahead
approaches, classical RL algorithms and LSDP, on toy problems and on the weed sam-
pling problem in Section 8. Some methodological and appliedperspectives of this work
are discussed in Section 9.
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2. CASE STUDY: WEED SAMPLING IN A CROP FIELD

In arable fields, weeds are responsible for yield loss [22] because they are com-
peting with crop for resources and they can be host for parasites and diseases. In the
meantime, the role of weeds in agro-ecosystem food webs and in providing ecological
services has been established [11]. Therefore new weeds management policies have
to be designed. As a consequence, as a prerequisite to management, there has been a
growing interest for the study of the spatial repartition ofweeds in crops. Such studies
are usually based on maps.

A map of weed density classes is usually built from a probabilistic model of weed
spatial repartition and from a sample output. The field is decomposed into a set of
quadrats and a sample is a subset of the quadrats. The sample output is the set of density
classes assessed at each sampled quadrat. Observation of weeds and class assessment is
very time consuming. It requires people with profound knowledge in order to recognize
the different weed species. Therefore a crucial problem is to choose which quadrats in
the field should be observed in order to ensure a reconstructed map of good quality
for a reasonable sampling time. A lot of attention has been paid to the development
of spatial sampling methods for weed mapping [6, 34]. However, none are adaptive.
In this paper we will propose a method to design adaptive policies of weed sampling.
When applying an adaptive policy, the sampling procedure isdivided into successive
steps and the quadrats sampled at a given step are given by a decision rule which
associate previous observations (locations and density classes) to a set of quadrats. To
apply our method and compute the corresponding adaptive sampling policy we will
provide a model of the joint distribution of the density classes at each quadrat as that of
a Markov random field (MRF) and a model of sampling cost based on the time spent
for assessing the density class into a quadrat (see Section 8).

3. OPTIMAL ADAPTIVE SAMPLING IN MARKOV RANDOM FIELDS

In this section we formalize the problem of optimal adaptivesampling in a MRF.

3.1. Problem statement

Let X = (X1, . . . , Xn) be a vector of discrete random variables taking values in
Ωn = {0, . . . ,K}n. V = {1, . . . , n} is the set of indices of the vectorX and an
elementi ∈ V will be called asite. The distributionP of X is that of a MRF (also
namedundirected graphical model) with associated graphG = (V,E), whereE ⊆ V 2

is a set of undirected edges (see Figure 1 for an example). Thevectorx = (x1, . . . , xn)
is a realization ofX and we adopt the following notation:xB = {xi}i∈B, ∀B ⊆ V .
Then the joint distribution ofX is a Gibbs distribution:P(X = x) ∝

∏
c∈C Ψc(xc),

whereC is the set of cliques ofV and theΨc, c ∈ C, are strictly positive potential
functions [14].

Let us assume that we want to reconstruct the vectorX on a specified subsetR ⊆ V

of sites of interest and that, for this, we can only acquire a limited number of obser-
vations on a subsetO ⊆ V of observable sites. We will assume thatR ∪ O = V

and intersection betweenO andR can be non-empty. The sampling problem is then
to select a set of sitesA ⊆ O, named asample, whereX will be observed. When
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sampleA is chosen, asample outputxA results, from which the MRF distributionP
is updated. Intuitively, our objective is to chooseA so that the updated distribution
P(·|xA) becomes asinformativeas possible, in expectation over all possible sample
outputsxA. We measure how informative a distribution is by using some classical
information criteria such asMaximum Posterior Marginalsor Maximum A Posteriori
(see next paragraph).

In the following we describe the different elements allowing to formally define the
problem of Optimal Adaptive Sampling in a MRF (OASMRF).

Reconstruction.When a sample outputxA is available, theMaximum Posterior Marginal
(MPM) criterion can be used to derive an estimatorx∗

R of the hidden mapxR:

x∗
R =

{
x∗
i | i ∈ R, x∗

i = argmax
xi∈Ω

P(xi | xA)

}
.

Alternately, other reconstruction criteria, such as theMaximum A Posteriori(MAP)
criterion [25] could be considered. The hidden map would be then reconstructed as the
mode of the joint conditional distributionP(x | xA).

Adaptive sampling policy. In adaptive sampling, the sampleA is chosen sequentially.
The sampling plan(the sequence of samples) is divided intoH steps. Ah ⊆ O is
the sample explored at steph ∈ {1, . . . , H} andxAh is the sample output at steph.
The sample size is bounded (|Ah| ≤ L) and∆L is the set of all policies satisfying
|Ah| ≤ L, ∀h. The choice of sampleAh depends on the previous samples and outputs.
An adaptive sampling policyδ = (δ1, . . . , δH) is defined by an initial sampleA1 and
functions (decision rules)δh specifying the sample chosen at steph ≥ 2, depending on
the results of the previous steps:δh((A1, xA1), . . . , (Ah−1, xAh−1)) = Ah. Therefore
the policy describes the decision rules for all possible hidden mapsx. A trajectory
(A1, xA1), . . . , (AH , xAH ) is the succession of samples and sample outputs encoun-
tered when applying policyδ to a particular realizationx. The set of all trajectories
which can be followed by policyδ is τδ. We will assume throughout the paper that
observations are reliable. As a consequence, we will only consider policies visiting
each site at most once(Ah ∩ Ah′

= ∅, ∀h 6= h′).
Figure 1 shows an example of an adaptive sampling policy, in the case where

H = 3, L = 1 andK = 1. A static policy is a particular case where the sample
visited at each step is the same for each trajectory.

Quality of a sampling policy. The quality of a policyδ is measured as the expected
quality of the estimatorx∗

R that can be obtained fromδ. In practice, since applying a
policy δ may lead to different trajectories((Ah, xAh))h=1..H , each trajectory having
its own probability to occur, it is useful to first define the quality U of a trajectory
((Ah, xAh))h=1..H as a function of(ĀH , xĀH ), whereĀH = ∪h=1..HAh:

U
(
((Ah, xAh))h=1..H

)
= U

(
ĀH , xĀH

)
=

∑

i∈R

max
xi∈Ω

{
P(xi | xĀH )

}
. (1)
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Figure 1: Tree representation of an adaptive sampling policy. Top: graphG associated to the MRF model
(n = 8). Bottom: policy tree representation of an adaptive policyfor sampling in this MRF, forL = 1,
H = 3 andK = 1 (the final sample outputs are not represented). Two different realisationsx of the MRF
will lead to two different trajectories in the policy tree.
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The quality of a trajectory is directly related to our mapping purpose since it is equal
to the expected number of well reconstructed sites when the spatial repartition model
is P and the only available information isxĀH . The quality of a sampling policyδ is
then defined as an expectation over all possible trajectories:

V (δ) =
∑

(ĀH ,x
ĀH )∈τδ

P
(
xĀH

)
U
(
ĀH , xĀH

)
.

Remark that this definition of the quality of a sampling policy can be adapted to the
MAP criterion. It amounts to replacing the sum of the local conditional mode proba-
bilities by the joint conditional mode probability. In section 7 we will show that our
approach can also be adapted to anentropydefinition of trajectory quality.

Optimal adaptive sampling in MRF (OASMRF). Finally the problem of optimal
adaptive sampling amounts to finding the policy of highest quality:

δ∗ = argmax
δ∈∆L

V (δ). (2)

Note that since our definition of the quality of a trajectory is based on the MPM
criterion, it does not depend on the order in which observations are received (this is
also true for MAP and entropy-based criteria). Therefore, the optimal policyδ∗ has the
property that the choice of the next sample at steph depends only on(Āh−1, xĀh−1):

δ∗h
(
(A1, xA1), . . . , (Ah−1, xAh−1)

)
= δ∗h

(
(Āh−1, xĀh−1)

)
.

This will be rigorously demonstrated in Proposition 1 (Section 4). The fact that the
optimal action choice only depends on the union of past observations does not imply
that the above defined sampling problem is not adaptive. Indeed, sample choices and
observations are interleaved, meaning that the optimal policy δ∗ is a function. In par-
ticular, it is true that, given a fixed set of observations, the order in which they were
received influences neither the probability of this set, northe quality of the map that
can be constructed from it. However, new samples are chosen with respect to the set of
observations obtained so far, which makes the OASMRF problem, both sequential (a
sequence of samples choice) and adaptive (two different hidden maps will lead to two
different sequences of samples, for a fixed policy). On the contrary, in a static sampling
problem, the optimal policy would be independent of the hidden mapx.

Example 1. Weed sampling in a crop field.
For our case study, quite naturally the modeling choices arethe following: n is the
number of quadrats, the edges in the graphG link first order neighbor quadrats,Xi is
the weed density class in quadrati, andΩ is the set of possible classes. For a given
adaptive sampling policy and a given hidden mapx, a trajectory is the succession of
pairs of sampled quadrats and corresponding observed density classes at every sam-
pling steps. In practice we will consider only policies thatexplore one quadrat per step
(L = 1).
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Exact resolution of the OASMRF problem is intractable (see [5] for a complexity
study). In the next section we will present a factored MDP model of this optimization
problem. It will allow us to solve it approximately by applying Reinforcement Learning
(RL) principles [31].

3.2. How to represent and handle cost constraints?

So far, we have considered a sampling budget in terms of a number,H , of allowed
sampling steps and a fixed numberL of sampled variables per step. This has been
defined regardless of any notion of observation costs. In this section, we will discuss
more general sampling cost models and discuss how they can behandled within the
proposed OASMRF model.

Optimizing a trade-off between restoration quality and cost. In order to optimize a
global trade-off between restoration quality and cost it ispossible to include a measure
of sampling cost, which has to give values commensurate withthe restoration quality.
Then, cost and quality measures can be added in the definitionof U , to form the adap-
tive sampling policy quality.
However, one may question the assumption that cost and restoration quality measures
be commensurate. One way to avoid this assumption is to consider a sample budget
constraint instead of including sample costs into the functionU , as we suggest next.

Maximizing restoration quality under cost constraint. This choice will be the one
used by our procedure. Instead of considering thatL × H sites can be sampled, we
can consider a global (integer-valued) sampling budgetB (e.g. a time budget), and as-
sume that each subsetA ∈ O has a different (integer) sampling cost, denotedSC(A).
It may as well be that sample costs depend on the observed values of the variables,
xA : SC(A, xA). This cost functionSC is not used in the definition ofU , but rather
for the definition of the space of allowed trajectories,{(A1, xA1), (A2, xA2) . . .}. In
that case the length of a trajectory is no more constant. It depends on the number of
samples needed to exhaust the budget and of the corresponding observations. To make
understanding easier and to simplify notations, we will consider throughout the paper
that trajectories have constant length (SC(A, xA) = 1). But we will see in Sections 6
and 8 that the LSDP procedure proposed in this paper to solve approximately (2) can
handle the more general case whereSC(A, xA) is not constant.

Minimizing cost under restoration quality constraint. Conversely, one could also
consider that the objective is to minimize the sampling budget, and that we are given a
MPM restoration quality threshold. Sampling should be continued until the restoration
quality threshold is met, and then stopped. Then, the optimization problem would
be to find the sampling policy of minimum expected cost, whichallows to compute
restored maps which quality is above the fixed threshold. Onedifficulty to apply the
simulation-based procedure proposed in this paper would bethat the MPM value has to
be computed at every sampling step, in order to check whetherthe end of a trajectory
is reached. These computations would make the optimizationproblem harder to solve.
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Example 2. Weed sampling in a crop field.
For weed sampling, the cost of a trajectory is defined as the sum of the cost of each
sampling step. The cost for a given step is defined asSC(i, xi), a function of both the
sampled quadrati and the corresponding observed density class,xi. It represents the
time needed to assess the weed class in a quadrat and depends both on the class of the
weed on interest and on the number and classes or other weeds present in quadrati.

4. FINITE HORIZON MDP MODELLING OF THE OASMRF PROBLEM

A finite-horizon MDP model [28] is a 5-tuple< S,D, T, p, r >, whereS is a finite
set of systemstates, D is a finite set of availabledecisions, T = {1, . . . , H} is a finite
set of decision steps, termedhorizon. p is a set oftransition functionspt, t = 1 . . .H ,
wherept(st+1|st, dt) indicates the probability that statest+1 ∈ S results when the
system is in statest ∈ S and decisiondt ∈ D is implemented at timet ∈ T . A
terminal statesH+1 ∈ S results when the last decision is applied, at decision stepH .
r is a set ofreward functions: rt(st, dt) ∈ R is obtained when the system is in state
st at timet anddt is applied. Aterminal rewardrH+1(sH+1) is obtained when state
sH+1 is reached at timeH + 1.

A decision policy(or policy, for short),π = {π1, . . . , πH}, is a set of decision
functionsπt : S → D. Once a decision policy is fixed, the MDP dynamics becomes
that of a finite Markov chain overS, with transition probabilitypt(st+1|st, πt(st)).
Thevalue functionV π : S × T → R of a policyπ is defined as the expectation of the
sum of future rewards, obtained from the current state and time step when following
the Markov chain defined byπ:

V π(s, t) = Eπ

[
H∑

t′=t

rt
′

(St′ , π(St′)) + rH+1(SH+1) | St = s

]
, ∀(s, t) ∈ S × T.

Here the notationSt in capital letter represents the random variable associated to the
state at timet, while st is a possible realization.
Solving a MDP amounts to finding anoptimal policyπ∗ which value is maximal for
all states and decision steps:V π∗

(s, t) ≥ V π(s, t), ∀π, s, t (it can be proved that there
always exists at least one optimal policy, see [28]).

We now model the OASMRF problem in the MDP framework. It corresponds to
the graphical representation of Figure 2.

State space.statest, t = 1, . . . , H+1 summarizes current information about variables
indexed inO: if sampleĀt−1 was explored and observationsxĀt−1 were obtained at
previous sampling steps,

st = (Āt−1, xĀt−1), ∀t = 2, . . . , H + 1 ands1 = (∅, ∅).

It may be convenient to modelst as a vector of length|O|, wheresti = −1 if site
i has not yet been sampled, andsti = k, k ∈ Ω if valuek has been observed on sitei.
For instance, let us consider the case whereO = R = V = {1, 2, 3, 4} andK = 2. If
at timet = 1 site 1 is observed in state 1 and at timet = 2 site 3 is observed in state 1,
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Figure 2: MDP model of a OASMRF problem with horizonH = 2. Rectangular nodes represent state
values, circles represent actions and diamonds represent immediate rewards.

then we have the two notaitonss3 = (1,−1, 1,−1) or s3 = ((1, 3), (1, 1)).

Decision space.A decisiondt is a sampleAt ⊆ O such that|At| ≤ L. In practice, it
will never be optimal to sample a site twice (since observations are assumed to be reli-
able). So, we can restrict the set of decisions to those satisfying dt ∩ dt

′

= ∅, ∀t′ < t.
Continuing of the above example, ifd3 = 2 and site2 is observed in state 2, we have
s4 = (1, 2, 1,−1) or s4 = ((1, 2, 3), (1, 2, 1)). Note that ifst andst+1 are given, it is
straightforward to recover the decisiondt.

Horizon. Decision steps in the MDP correspond to decision steps in theOASMRF
problem. Thus,T = {1, . . . , H}.

Transition functions. If st = (Āt−1, xĀt−1 ) anddt = At, the transition function of
the MDP can be derived straightforwardly from the original MRF distributionP:

pt
(
st+1 | st, dt

)
= P

(
xAt | xĀt−1

)
, ∀t ∈ T,

wherexAt is the realization ofXAt encoded inst+1. Note that for all statesst+1

corresponding to observations incompatible with statest, this transition probability
will be zero.

Reward functions.∀t = 1, . . . , H , rewards are set to zero:

rt(st, dt) = 0, ∀t ∈ T, st, dt.

Note that rewards could be non zero if the objective was to optimize a trade-off
between restoration quality and sampling costs (see Section 3.2).

After decisiondH has been applied at decision stepH , and statesH+1 = (ĀH , xĀH )
has been reached, a final rewardrH+1(sH+1) is obtained. It is defined as the quality
of the MPM reconstruction (see equation (1)):
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rH+1(sH+1) =
∑

i∈R

[
max
xi∈Ω

{
P(xi | xĀH )

}]
.

The optimal policy for the above-defined MDP is a set of functions associating new
samples to unions of past sample outputs. It thus has the samestructure as an OASMRF
adaptive sampling policy. Furthermore, we can establish the following proposition:

Proposition 1. An optimal policy for the MDP model of an OASMRF problem provides
an optimal adaptive policy for the initial OASMRF problem.

Proof (Sketched). The proof is only sketched here, the full version is in the Appendix
section. The proof follows three steps and uses the fact thatthe quality of a policy does
not depend on the order in which observations are obtained:

(i) We define a functionφ, transforming any MDP policyπ into a valid OASMRF
policy δ = φ(π), which defines decisions independently of the order in which
past observations were received, and show thatV (φ(π)) = V π((∅, ∅), 1).

(ii) We establish that, for any partial history (past observations), the value of an
optimal OASMRF policy starting from these observations does not depend on
the order in which they were received. As a consequence, we can limit the search
for optimal policies of the OASMRF problem to policies prescribing decisions
which do not depend on the order of observations.

(iii) We show that any such OASMRF policyδ can be transformed into a MDP policy,
through a transformationµ, and thatV (δ) = V µ(δ)((∅, ∅), 1).

As a result of these three steps, ifπ∗ is an optimal policy for the MDP encoding of the
OASMRF problem, thenφ(π∗) is optimal for the OASMRF problem.

✷

In the following we will use the same notationδ to represent both OASMRF and MDP
policies.

The finite-horizon MDP model of the OASMRF problem has state and action
spaces of exponential size in the size of the original problem. However, explicit repre-
sentation of the problem (and its solution policy) can be avoided, thanks to the use of
RL algorithms. We describe the RL approach in the next section.

5. CANDIDATE APPROACHES FOR SOLVING OASMRF

5.1. Exact dynamic programming

Let us define the state-action value function, also calledQ-function associated to
any policyδ of a finite-horizon MDP problem:

Qδ(s, d, t) = rt(s, d) +
∑

s′∈Succt(s,d)

pt(s′|s, d)V δ(s′, t+ 1).

This function represents the expected reward when applyingdecisiond in states at
time t and thereafter following policyδ. Succt(s, d) = {s′, pt(s′|s, d) > 0} is the set
of possible successors ofs whend is applied at timet. In the OASMRF problem the
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size ofSucct(s, d) can be small. From theQ-function of a policyδ, it is straightforward
to computeδ and its valueV δ. Thebackwards inductionalgorithm [28] is based on
this property and computes exactly the optimal policyδ∗ of any finite-horizon MDP. It
consists in, first, initializing the value function of the optimal policy at timeH + 1 for
all possible final states:

V ∗(s,H + 1) = rH+1(s),

and then solving iteratively the following equations:

∀t = H, . . . , 1 and ∀s, d ∈ S × D,

Q∗(s, d, t) = rt(s, d) +
∑

s′∈Succt(s,d)

pt(s′|s, d)V ∗(s′, t+1),

V ∗(s, t) = max
d

Q∗(s, d, t).

At each iteration the optimal policy is progressively built, as follows:

δ∗(s, t) = argmax
d

Q∗(s, d, t).

HereV ∗ andQ∗ are simpler notations respectively forV δ∗ andQδ∗ . Remark that the
last equation can be written for any policyδ and not only the optimal one. Therefore
any policyδ is totally specified by itsQ-function,Qδ. However, since the OASMRF
problem typically involves a factored state space,|S| is huge, so the above system
has too many equations and variables (|S| × |D| × H) to be used. Therefore, we
have to look for approximate solution methods instead of exact ones. To do this, we
can explore two families of heuristic approaches for solving OASMRF:one-step-look-
ahead approachesandreinforcement learning basedapproaches.

5.2. Heuristic approaches

Heuristic approaches are methods for sample selection which provide an arbitrary
(most likely suboptimal) sample in reasonable time. These methods can either (i) solve
exactly a simpler optimization problem which approximatesthe original one or (ii)
provide policies maximizing a function which approximatesthe optimalQ-function,
Q∗.
One-step-look-ahead heuristics.One-step-look-ahead heuristics provide policies that
optimize (exactly or approximatively) the immediate reward. This amounts to adopt
a simpler definition of theQ-function, whereV δ(s′, t + 1) is simply replaced by
rt+1(st+1, δ(st+1)). Involved rewards can also be approximated.
Such heuristics have been proposed, either in Statistics orin Artificial Intelligence,
which can be applied to solve the OASMRF problem. In spatial sampling of natural
resources, random and regular sampling are classic heuristic approaches [7]. Another
classical method to sample 0/1 variables is Adaptive Cluster Sampling (ACS, [33]).
Recently, [26] proposed a heuristic (BP-max heuristic), which consists in sampling, at
each decision step, locations where the conditional marginal probabilities are the least
informative (i.e. the closest to12 in the 0/1 case), in order to solve (2), (see Section
7.1 for a formal definition). It has been shown, experimentally, to outperform random,
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Heuristic Description Properties
BP-max at each step, sampled sites are coarse approximation of

those with highest remaining uncertaintythe original MRF, but fast
in their maximal marginal

MI optimization of the mutual information intractable for MRF with
more than a few nodes (20)

TD(λ) estimation of the optimalQ-function intractable for MRF with
by reinforcement learning more than a few nodes (20)

combined with tabular representation
LSPI estimation of the optimalQ-function not adapted

by reinforcement learning to finite-horizon MDP
combined with linear approximation

Table 1: Summary of existing candidate heuristic methods tosolve the OASMRF problem. Note that BP-max
is fast, while the other methods are very time consuming.

regular and ACS heuristics. In [16], the authors proposed tooptimize a mutual infor-
mation (MI) criterion to design sampling policies in Gaussian fields. However, we will
see that exact application of this method is out of reach for problems with more than
a few nodes (see Section 8). Finally, generalization ton-steps-look-ahead heuristics is
presented in [19].

Reinforcement learning based approaches.The main idea of RL approaches ([31])
is to use repeated simulatedexperiences(st, dt, rt, st+1), instead of exact dynamic
programming, in order to estimateQ∗. As opposed to one-step-look-ahead heuris-
tics, the exact definition of theQ-function is used butV δ(s′, t + 1) is now approxi-
mated by an average over simulations. In practice, the approximation ofQ∗ can be
computed for each triple(s, d, t), for example using the TD(λ) algorithm [31]. This
algorithm is known to asymptotically converge to theQ∗ function but cannot be ap-
plied to large factored MDPs, since the number of triplets(s, d, t) becomes huge.
Then a common method is to compute a linear approximation of the Q-function:
Qw(s, d, t) =< w, φ(s, d, t) >, wherew ∈ R

m is a vector of parameters values
and the vector of featuresφ : (S,D, T ) → R

m is a mapping from state-action pairs to
real-valuedm-dimensional vectors. Simulations are used to compute values ofw that
lead to a good approximation ofQ∗. In general little can be said about the convergence
of such algorithms and no universal properties are known. However, in some cases,
performance bounds [2, 21] or convergence guarantees [18, 32] can be found. Algo-
rithms for computingw for a specific choice of features are, for example,LSPI [17]
andFitted Q-iteration[8, 23]. A review of approximate methods for solving MDP can
be found in [3] or in [27].

6. LEAST SQUARES DYNAMIC PROGRAMMING

We now present the procedure we propose to compute an approximate solution
to the original OASMRF problem. This procedure, referred toas the Least Square
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Dynamic Programming (LSDP) algorithm, is not limited to this problem. It can be
used to solve any finite-horizon MDP as long as the model (transitions and rewards) is
known explicitly. So we first describe it in its general form and then show how it can
be specialized to solve the OASMRF problem.

6.1. Main principles of LSDP

To approximateQ∗, the main ideas of the algorithm we propose is to combine i) a
time-dependent parameterized representation of theQ-function, ii) least-squares esti-
mation of the parameters, iii) Dynamic Programming iterations and iv) a sampling of
the complete least-squares system built from simulations of MDP transitions.

Parameterized representation of theQ-function. As in LSPI or fittedQ-iteration,
we consider an approximationQw of Q∗ as a linear combination ofm arbitraryfea-
tures. When the horizon is finite, the optimal policy needs not be stationary. Therefore,
we propose to define a different set of weights{wt

i}i for each time stept:

Q∗(s, d, t) ≈ Qw(s, d, t) =
∑

i=1..m

wt
iφi(s, d, t), ∀s ∈ S, d ∈ D, t ∈ T , and

Q∗(s,H + 1) = Qw(s,H + 1) = rH+1(s), ∀s ∈ S.

Least-squares estimators.For a given stept the weights{wt
i}i are computed

using the approximate version of the dynamic programming equations. They are com-
puted as the least-squares estimators associated to the following system:

∀(s, d) ∈ S × D,
∑

i=1..m

wt
iφi(s, d, t) = rt(s, d) +

∑

s′∈Succt(s,d)

pt(s′|s, d)V w(s′, t+ 1),

whereV w(s, t+ 1) = max
d′

∑

i=1..m

wt+1
i φi(s, d

′, t+ 1). (3)

Equations (3) form a set of|S| × |D| linear equations for each time stept ∈ T ,
with variableswt

i , i = 1..m. In general these systems are clearly over-constrained
(|S| × |D| ≫ m), this is why we look for least-squares approximate solutions, instead
of exact ones.

Dynamic programming. The dynamic programming part of LSDP comes from
the fact that the systems are solved backwards fort = H to 1, each solution vector
{wt+1

i }i being plugged into the system at timet.

Sampling of the complete least-squares system.At a given stept, system (3) is
too large to build whenS is factored, not to mention solving. Therefore, we suggest
to samplethis system, by considering only a subset of equations, corresponding to a
subset of statesB = {(s, d, t)} ⊆ S×D×T , (calledbatch[29]). System (3) becomes:

∀(s, d) s.t. (s, d, t) ∈ B,
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∑

i=1..m

wt
iφi(s, d, t) = rt(s, d) +

∑

s′∈Succt(s,t)

pt(s′|s, d)V w(s′, t+ 1),

whereV w(s, t+ 1) = max
d′

∑

i=1..m

wt+1
i φi(s, d

′, t+ 1). (4)

We propose to build the batchB from a finite set of simulated trajectories of the
MDP, starting ins1, obtained by simulating successive transitions. So doing,we have
the guarantee that every 4-uplet(s, d, t, s′) ∈ B effectively corresponds to a reachable
configuration. At each transition of a trajectory (from(s, d, t) to s′), decisiond is
chosen according to theε-greedy method: with probability1−ε the decision is the one
maximizing the current estimationQw and with probabilityε the decision is chosen
with uniform probability among all possible ones. Note thatε and the batch size are
the only parameters to tune in LSDP.

6.2. LSDP algorithm in practice

From a set of weights we can straightforwardly derive the approximateQ-function
and thus an approximation of the optimal policy and its value. Therefore, ifδk is the
current approximation of the optimal policy at iterationk of LSDP, iterationk+1 goes
as follows:

• Construction of the new batchBk. It depends onδk since we apply theε-greedy
method to choose the decisions used to simulate transitions.

• Approximate resolution of (4) for each decision step, basedon a least-squares
estimation. The weights are updated and the corresponding policy δtemp is eval-
uated.

• Updating of the policy: if the value ofδtemp is higher than that ofδk, then
δk+1 = δtemp. Otherwiseδk+1 = δk. The evaluation ofδtemp is obtained
through MC simulations as the average over a large number of simulated trajec-
tories of the total reward gained along these trajectories.

There is no guarantee that policyδtemp improves the current policy(δk) in state
s1. This is the reason why we compare their values. Ifδtemp does not improveδk, the
iteration is once again initialized withδk. Since the batch generation is a stochastic
procedure, the new batch will be different fromBk, and we will obtain a new candidate
policy δtemp. This comparison step within one LSDP iteration guaranteesthat the suc-
cessive policies returned by the algorithm are of increasing value. Simulation is used
to estimate policy values, these estimations may well be incorrect but they hopefully
preserve policies values ranking.

In practice, LSDP is initialized with a set of weights (one set per decision step in
the MDP horizon). Then a maximum number of iterations is fixed, and when reached,
the current policy is returned. See Figure 3 for a schematic representation of LSDP.

In the case where the resources constraints are not defined bya fixed number of
sampling steps but by a maximal budgetB, LSDP can still be applied. We simply
defineQ-functions and features as functions ofb, the budget used so far, instead of
functions of decision stepst performed so far. As a consequence, the sets of weights
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are also indexed by the budget already spent. A trajectory isstopped when no action
can be apply with the remaining budget. We will adopt this representation to solve the
weed sampling problem (see Sections 7 and 8).

Figure 3: Schematic representation of the LSDP algorithm.

7. Application of LSDP to the OASMRF problem

In order to apply the LSDP algorithm to the OASMRF problem, wetake into ac-
count the problem structure i) to define featuresφi and ii) to propose a time efficient
batch construction method. It also requires iii) to be able to compute efficiently (in
terms of time complexity) conditional marginals of the formP(xi | xA). These quan-
tities are necessary to compute transition probabilities,to evaluate the final reward (the
MPM value) and, as we will see, to compute the features. The solutions to these three
points are described in Section 7.1. Together, they define one possible instantiation of
LSDP for solving the OASMRF problem. We also present two alternative instantia-
tions, based on different choices for the features definition or the quality of a trajectory
(Section 7.2).

7.1. LSDP implementation for the OASMRF problem

Features choice.We chose to define one feature per variable in the MRF (m = n).
The features definition is derived from the BP-max heuristic(see [26] and section 5).
This heuristic consists in selecting for sampling, at each sampling step, the variables
which remain the most uncertain. Uncertainty is measured bythe maximal conditional
marginalmaxxi∈Ω P(xi | xA): a low value indicates high uncertainty. This greedy
heuristic can also be defined as the policy which maximizes ateach decision step the
following quantity

∑n
i=1 maxxi∈Ω P(xi | xA), whereA ⊆ O is the set of sites sampled

so far. Since when a sitei has been sampled (i ∈ A), statexi is known, we have
maxxi∈Ω P(xi | xA) = 1 for i ∈ A. Therefore, the BP-max heuristic can be obtained
as the greedy policy with respect to a parametrizedQ-functionQ1 with the following
features, and all weights equal to 1:∀i ∈ {1, . . . , n},

φi(s, d, t) =
(
1− 1{i=d})max

xi∈Ω
P
(
xi | xA

)
+ 1{i=d}. (5)
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We adopt definition (5) to define the LSDP features for the OASMRF problem. We
initialize the LSDP algorithm with weights all equal to 1. Then, the LSDP algorithm
performs successive updates in order to improve this initial set of weights.

Batch construction. Simulating trajectories in the OASMRF problem is costly since,
for each transition, one has to simulate observationsxAt+1 from the MRF conditional
distributionP(xAt+1 | xAt). This requires to apply the Gibbs Sampling algorithm
[10] a large number of times, which is rather costly, thus severely limiting the size and
number of batches that can be constructed. However, larger batches can be constructed
if we divide the construction into two phases. First, we simulate, off-line, abatch of
maps, {x1, . . . xp}, from P. It will be used for all iterations of the LSDP algorithm.
The construction of this batch is done using Gibbs Sampling,and induces a single
overhead cost (which can be large) for the whole algorithm. Then, at a given iteration
k of LSDP, trajectories are easy to simulate: i) a mapx is selected uniformly at random
in the batch, ii) actions are chosen following theε-greedy method with respect to the
current policy, and iii) successive statesst follow immediately by reading the values
of the sampled variables corresponding to the current decision. The batch of states
B is built as the set of all states encountered in all trajectories. This second phase of
trajectories simulation is fast. Furthermore, simulated trajectories do not have to be
stored (only the batch of maps does), thus saving much memoryspace. In addition, we
can establish that this 2-step procedure is a valid method tosimulate transitions of the
MDP encoding of the OASMRF problem. More formally, we establish the following
lemma

Lemma 1. For a given action trajectory(d1, . . . , dH), a state trajectory(s1, . . . , sH+1)
simulated according to the following 2-step scheme has the same joint probability dis-
tribution as a trajectory simulated according to the OASMRFMDP model transition
function:

1. Simulate a mapx according to the joint distributionP(.).
2. Deduce iteratively the values(s1, . . . , sH+1) according tos1(i) = −1 ∀i ∈ O

and:

∀t ∈ {1, . . . , H}, st+1(i) = st(i) if dt(i) = 0 andst+1(i) = dt(i)xi else.

(We recall that a site is visited at most once during a trajectory).

A proof of this Lemma is given in the Appendix.

Approximation of P(xi | xA). The Belief Propagation(BP) algorithm [24] can be
used to compute (approximately)P(xi | xA) . However since this evaluation has to be
performed a huge number of times, BP cannot be applied in practice. So we propose
to use the distributioñP defined below as an approximation ofP(xi | xA):

P̃(xi | xA) = P
BP (xi) +

∑

j∈A

[
P
BP (xi | xj)− P

BP (xi)

]
. (6)

This approximation does not necessarily belong to[0, 1] but sums to one. It has the
advantage to be fast to compute. Indeed, before running LSDP, all marginals and con-
ditional marginalsPBP (xi) andPBP (xi|xj) are computed using BP, inducing a fixed
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overhead computational cost. Then, within an iteration of LSDP, we can compute
P̃(xi | xA) in an incremental way sincẽP(xi | xA∪xj) = P̃(xi | xA)+P

BP (xi|xj)−
P
BP (xi). Our approximation is ad-hoc and we could have considered more sound

methods to define an approximation ofP(xi | xA) from thePBP (xi) andPBP (xi|xj).
Different options are discussed in [1]. In particular the authors pointed out the supe-
riority of methods based on multiplication instead on addition. We did not explore
this option since ours provided good empirical results and does not require any extra
parameters estimation.

Example 3. Weed sampling in a crop field.
In our case study, budget is defined by a maximum timeTmax than can be spent in
the field for sampling. Each sampling step has a different duration since it depends
on the location of the sampled site and on the observed density class. Therefore two
trajectories of a given policyδ can have different lengths: they are stopped when any
choice for an extra sampling step would lead to a total sampling time higher thanTmax.
When applying LSDP, we consider the case whereb takes integer values and we solve
(4) for every valueb of time spent so far in the field encountered in the batch so far,
instead of every decision step. For a givenb, the subset of equations in (4) corresponds
to the states in batchBk reached after spending a timeb in the field.

7.2. Two variants of LSDP for OASMRF

Static version of LSDP.It is possible, by changing the features definition, to design
a static policy for the OASMRF problem. Here by static we meanthat the choice of
the next sample does not depend on the value of the variables observed in the previous
sampling steps. It only depends on their locations. Therefore the set of sampled sites
does not depend on the realizationx of the hidden map and it can be computed in
advance, before actually sampling the sites. Such a static policy can be obtained by
considering the following definition for the features,∀i ∈ {1, . . . , n},

φi(s, d, b) = 1{i=d}∪{si 6=−1}.

The feature is equal to zero for all sites not sampled (at the current step or in previous
ones) and 1 otherwise. In our experiments, we will compare this static policy to the
above-defined version of LSDP.

Entropy based LSDP.The OASMRF problem and the LSDP algorithm have been de-
scribed for a measure of sampling policy quality based on theMPM criterion (1). This
choice is not arbitrary since with this definition the procedure used to restore the MRF
state from a sample output and the procedure used to define thesampling policy quality
rely on the same criterion. Still, other classical options can be considered to define the
sampling policy quality. We could, for instance, define the OASMRF problem with an
entropy-based criterion. In this case, since entropy has tobe minimized, we define:

U
(
A, xA

)
= −H(P(XR | xA)) =

∑

xR

P(xR | xA) log(P(xR | xA)),
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with rH+1 defined accordingly. The steps of the LSDP algorithm would remain roughly
unchanged with the entropy criterion except that the features definition should be
adapted to:∀i ∈ {1, . . . , n},

φi(s, d, b) = −
(
1− 1{i=d})H(P(Xi | xA)) + 1{i=d},

whereA ⊆ O is the set of indices of the previously observed variables. Evaluating
marginal entropy is not simpler than evaluating conditional marginals. In order to
approximate these quantities we could again use approximation (6).

Note that the entropy criterion does not provide a rule to estimate the variablesXR

from a sample output. This reconstruction step still has to be performed using MPM or
MAP methods.

8. EXPERIMENTAL EVALUATION

We present simulated sampling problems and one real problemon weed sampling
in a crop field to illustrate the gain of using LSDP instead of classical heuristics or
RL-based solution algorithms. We compared LSDP to the random heuristic, the LSDP-
static policy, the BP-max policy, TD(λ) with tabular representation of theQ-function,
and LSPI. LSPI and LSDP were implemented with the same features definition and
were run withǫ = 0.9. We also compared LSDP to a greedy algorithm based on the
Mutual Information(MI) criterion [16].

The OASMRF problem considered is the following. The graphG is a regular grid
andR = O = V . One variable is observed at each decision step (L = 1) and sampling
costs are null on the three first sets of experiments. We considered the following Potts
model distribution:∀ x ∈ {0, 1}n

P
(
x
)
∝ exp

(
1

2

∑

(i,j)∈E

1{xi=xj}

)
.

4× 4 grid. This small problem was introduced in the experiments since we were
able to compute the corresponding optimal policy, using thebackward induction algo-
rithm (see Section 5), and the exact value of any policy. TD(λ) was run withλ = 0.1,
using theε-greedy method for action choice (ǫ = 0.1). It was run using 675000 sim-
ulated state-action trajectories, in order to reach convergence. To be comparable, we
ran LSDP and LSPI with a batch of 100 maps and 6750 iterations (in practice a few
hundred iterations are enough). For LSDP the value of the policy obtained at the last
iteration of the algorithm was returned, and for LSPI the value of the best policy among
all iterations was returned.

The first conclusion is that the absolute difference betweenthe values of all policies
is small: an absolute increase of the percentages of 2.2 at most. We also compared the
policies in terms of normalised gain compared to the random one δR (Figure 4): the
score of a given policyδ is defined asscore1(δ) = V (δ)−V (δR)

V (δ∗)−V (δR) .
Among RL algorithms, TD(λ) is the best and LSDP gives very similar results. In

comparison, LSPI shows a poor behaviour, always returning dominated policies. Sur-
prisingly the relative values of the MI and LSPI policies decrease with the number of
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Figure 4: OASMRF problem with 16 variables:score1 of LSDP and classical one-step-look-ahead and
RL-based heuristic policies. A policy withscore1 equal to 0 is a policy with the same value as the random
policy.

observed variables, while the opposite behavior is observed for the BP-max heuristic.
The poor performance of the BP-max heuristic with small sample size is explained by
the fact that with few observed sites, all sites have similarmarginal probabilities. In
that situation we arbitrarily choose the site to sample as the one with the lowest index
in V .

10× 10 grid. For this problem size, only LSDP, LSDP-static, LSPI, BP-maxand
random policy can be computed. For LSDP, LSDP-static and LSPI we used a batch size
of 1000 maps and1000 iterations. The value of a policy was estimated by Monte Carlo
approximation. We modifiedscore1(δ) into score2(δ) = V (δ)−V (δR)

|V (δBP−max)−V (δR)| : since
the value of an optimal policy cannot be computed,δBP−max serves as a reference.
Results are displayed on Figure 5.

Number of observed variables (H)

Figure 5: OASMRF problem with 100 variables:score2 of LSDP, LSDP-static and LSPI policies. A policy
with score2 equal to 0 (resp. 1) is a policy with the same value as the random (resp. BP-max) policy.

20



We observed again the poor performance of the LSPI algorithm(dominated by the
random policy forH = 10 to 20). On the contrary, LSDP performs quite better than
the BP-max heuristic for small sample sizes. LSDP also performs better than LSPI, in
terms of computation time: forH = 40, an iteration takes about 7 seconds for LSDP,
77 seconds for LSPI. For these reasons (poor performance, high computation time), we
did not consider LSPI in the following experiments.

The LSDP-static policy also leads to an improvement compared to BP-max, but
lower than with LSDP: this example and the previous one demonstrate the interest of
looking for adaptive policies.

Constrained moves problem.We compared LSDP, BP-max and random policies
on a more realistic sampling problem, involving constrained moves on the grid for
observing sites. The agent starts by sampling the site at thetop-left corner of the grid.
Then, after having observed a site, the agent can only move todistance-2 sites for the
next observation..

Figure 6: Constrained moves problem with 100 variables:score2 of LSDP policy. A policy withscore2
equal to 0 (resp. 1) is a policy with same value as the random (resp. BP-max) policy.

We again observed that the absolute difference between all policies remained small
(forH = 10, the value of the LSDP policy is61.7while the value of the BP-max policy
is 59.4). LSPI showed the same poor behaviour than in the previous experiment. As we
expected, the gain provided by LSDP in terms of relative improvement of the random
policy (H ≤ 20, see Figure 6) is significant when the sample size is small (Figure 6).

Sampling under cost constraintsWith this set of experiments we introduced dis-
tincts costs valuesSC(i, xi) and we considered the problem of maximising the restora-
tion quality under the constraint of a fixed allocated budgetB. We considered three
different cost functionsSC(A, xA). For the type I and type II, cost depends only on
the site location. With cost I, the sampling cost increases with the distance to the grid
boundary, while with cost II, we have two different costs in the two diagonals (see Fig-
ure 7). With the type III cost, we consider a functionSC which depends only on the
value of the observation:SC(i, xi) = 2 if xi = 1 and 1 otherwise. We ran the LSDP,
BP-max and random policy on a 20× 10 grid and for a budgetB = 38. For LSDP
we used a batch of size 4000 or 2000, and 1000 iterations. Results in terms of policy
values and numbers of sites sampled are presented in Table 2.For the three types of
cost function, one can observe that the ranking of the three policies values is always

21



Type I cost Type II cost Type III cost

Policy Value sampled sites Value sampled sites Value sampled sites
LSDP 64.80 27.3 (2.5) 63.6 22.8 (0.7) 65.4 25.6 (1.7)
BP-max 61.77 19 (1.9) 60.4 15.8 (1.9) 64.7 25.6 (1.8)
Random 60.27 26.65 (2.8) 59.7 15.6 (2.3) 63.7 25.6 (1.9)

Table 2: Values and mean number of visited sites under different configurations of cost constraints, for
the LSDP, BP-max and random policies. Values between parentheses are standard deviations for the mean
number of visited sites.

LSDP> BP-max> random. The LSDP policy distributes the budgetB in a way that
enables to sample more sites than with BP-max.

Figure 7: Left: type I repartition of costs, costs are respectively of 1, 2 and 4 for black, grey and white sites.
Right: type II repartition of cost, costs are respectively of 1 and 4 for black and white sites.

Weed sampling in a crop field under time constraint. We also applied LSDP
to the problem of designing adaptive policies for weed sampling in a crop field, de-
scribed in Section 2. A spring barley field has been divided into a regular grid of
13× 13 quadrats of 12.96m2 area each. The density classes of the weed speciesGal-
ium Aparinewas recorded on each quadrat to construct the vectorx. The observationxi

in quadrati is the weed density class and belongs to one of the three following classes:
0 (no weeds), 1 (less than one plant per square meter), 2 (between 1 and 3 plants per
square meter). We considered different MRF models corresponding to different prop-
erties and we selected the model with the highest BIC value [13]. This model was an
anisotropic Potts model with external field:

Pβ

(
x
)
∝ exp

(∑

i∈V

αxi
+ βt

∑

(i,j)∈Et

1{xi=xj} + βo

∑

(i,j)∈Eo

1{xi=xj}

)
.

SubsetsEt andEs respectively represent the subsets of edges in tillage direction and in
the orthogonal direction, since tillage can be responsiblefor a difference of spatial cor-
relation between these two directions. The estimated parameters were:(α0, α1, α2) =
(0,−0.03,−3.58) and (βt, βo) = (0.71, 0.12). They have been estimated from the
observed vectorx by maximisation of the pseudo-likelihood approximation [4]. The
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(a) (b)

(c) (d)

Figure 8: Sampling policies for weeds mapping. (a) true density map ofGalium Aparine, and MPM recon-
struction based on (b) LSDP sampling policy, (c) BP-max sampling policy, (d) a random policy. Sampled
quadrats are marked by ax. White, gray and black quadrats correspond respectively todensity classes 0, 1
and 2.

cost functionSC(i, xi) represents the time needed, in seconds, for density class assess-
ment in a quadrat (a site of the MRF). To define this function, we used a regression
model based on factors identified as the most relevant by experts. Here the cost value
SC(i, xi) both depends on the quadrat locationi and the observed density classxi.
The influence of the quadrat location is due to the influence ofthe number and density
classes of the other weeds species present in quadrati. These data were also recorded
when samplingGalium Aparine. The time needed for abundance estimation increases
slowly with the density class. The minimum and maximum observation durations are
respectively 190 seconds and 360 seconds. The mean observation duration is about
300 seconds with 35 seconds standard deviation. For this experiment, sampling budget
was fixed to 9000 seconds (2h30).

We applied the three policies LSDP, BP-max and random to sample and reconstruct
the original weed abundance map used to build the MRF model. LSDP was applied
with a batch size of 4000 and 1000 iterations. The true density map ofGalium Aparine
and maps estimated from sample outputs provided by the threepolicies are presented
on Figure 8. Note that in the true map there is only one quadratin class 2. This is not
rare in weed maps, but whatever the sampling method, it is very unlikely that a MPM
(or MAP) reconstruction classifies correctly this particular quadrat.

Once again the two adaptive policies increase the quality ofthe reconstructed map
compared to the random one: the numbers of quadrats where thedensity classes are
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well estimated are 125, 124 and 111 respectively, for policies LSDP, BP-max and ran-
dom. The difference between the two restorations provided by the adaptive policies is
small. However, the corresponding explorations of the cropfield are different. As an
illustration, Figures 9 and 10 display, for the two adaptivepolices, the results of the
successive sampling steps, grouped by 6 successively sampled quadrats. One can see
from these figures that the sampled quadrats are more scattered across space with the
LSDP policy. And this is the case even for the first sampling steps. On the contrary,
the BP-max policy concentrates most of the sampling in the area where the weed is ob-
served at density class 1. Then, since the LSDP policy takes into account the remaining
budget to decide which quadrat to sample next, it was able to observe one more quadrat
than the BP-max policy (38 instead of 37).

9. CONCLUSION

In this article, we have provided a factored MDP model to represent problems of
optimal adaptive sampling of spatial processes expressed in the MRF framework. Our
second contribution is a genericbatch mode RLalgorithm, LSDP, which can be ap-
plied to any large state-space finite-horizon MDP problem, as soon as the MDP model
is known explicitly. Then, our last contribution is an experimental evaluation of the
LSDP approach for solving the OASMRF problem. Our experimental work enables
us to draw the following conclusions. First, in small problems where the optimal pol-
icy can be computed, we notice that the performance of a purely random policy is
quite close to that of the optimal one. This seems to also holdfor larger problems,
where the estimated value of the random policy remains closeto that of the LSDP pol-
icy. However, in real-life applications of sampling for mapping, small errors in the
reconstruction of maps can lead to a significant increase in management costs (think of
imperfect mapping and eradication of invasive species, leading to future catastrophic
outbreaks). Second, for large problems, non-parameterized RL approaches (such as
TD(λ)) are too computationally intensive to apply, and the LSPI approach does not
perform well. On the contrary, both BP-max heuristic and theLSDP algorithm provide
good results (provided that the sampling budget is large enough, as far as BP-max is
concerned). BP-max is less computationally expensive to apply than LSDP. However,
its main drawback is that the choice of the sample does not take into account its cost.
The budget constraint can only be used to decide when to stop asampling trajectory.
In contrast, LSDP can handle cost functions and our experiments show that when sam-
pling costs are nonhomogeneous the superiority of LSDP overBP-max and random
policies is increased.

Our work has similarities with other recent approaches [15,19, 25, 26] to sam-
pling in graphical models. Most of these approaches combineheuristic estimations of
policy values with greedy or dynamic programming approaches. [19], in particular,
have defined a dynamic programming approach to decision in graphical models, sim-
ilar to the one presented in [26] and in the present work. Their objective is, as ours,
to define a sampling strategy, but their reward function is simpler to compute than a
reconstruction quality in MRF (they consider an additive aggregation of simple reward
functions). However, they face similar problem to ours, with a decision-tree too large
to explore completely to build an adaptive sampling policy.While LSDP tackles this
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LSDP BP-max

Figure 9: Locations of sampled quadrats and max-marginal values for LSDP (left column) and BP-max
(right column) policies. From top to bottom, each figure respectively shows the cumulated samples 1 to 6,
7 to 12 and 13 to 18. Previously sampled quadrats are marked with a× and the 6 new ones with a+. The
grey scale indicates the remaining uncertainty before the 6new sampling steps: black (resp. white) encodes
a max-marginal equals to 1/2 (resp. 1).
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LSDP BP-max

Figure 10: Locations of sampled quadrats and max-marginal values for LSDP (left column) and BP-max
(right column) policies. From top to bottom, each figure respectively shows the cumulated samples 19 to 24,
25 to 30 and 31 to 37 (for BP-max) or 38 (LSDP). Previously sampled quadrats are marked with a× and the
6 new ones with a+. The grey scale indicates the remaining uncertainty beforethe 6 new sampling steps:
black (resp. white) encodes a max-marginal equals to 1/2 (resp. 1).
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problem by “sampling” complete trajectories of the full decision tree, [19] suggest to
explore a bounded-depth subtree (of reasonable size) of thefull decision tree, with
heuristic values attached to the leaves. Theoretical and experimental comparisons of
both approaches are left for further research.

This work opens several directions for future work: on the problem of sampling in
spatial random fields in one hand, and on more general problems of sequential decision
under uncertainty. Regarding the framework and algorithm we proposed for spatial
sampling, a first possible extension would be to consider other definitions of sample
quality measures. In this paper, the measure used to illustrate the approach is the MPM
value. However, the MDP encoding and the application of LSDPdo not crucially de-
pend on the quality measure definition. Other criteria, suchas MAP, or Entropy should
be explored. It would probably require to define new features, as we have illustrated
for the entropy case, and belief propagation algorithms could still be used to compute
approximately MAP or entropy values.
We largely discussed the different options to introduce cost constraints in the optimal
sampling problem. We have modelled our sampling problem as aproblem of opti-
mising reconstruction quality, under sampling budget constraint. However, one could,
dually, be interested in finding sampling policies achieving a minimum reconstruc-
tion quality threshold, while minimising the sampling cost. An MDP encoding of this
problem is still possible and the LSDP algorithm could be applied. It would require
an MPM evaluation at every sampling step to check if the minimal quality is reached,
but this can be evaluated approximately based on our time efficient approximation of
the conditional marginals. Other forms of sampling cost could also be discussed: these
could be more general than the ones we have considered in the paper. These could
be linked, for example, to a maximum sampling trajectory duration, modelled as a
sum of transitions(s, a, s′) costs. Finally, even the choice of a MRF to model map
uncertainty can be challenged, while keeping the approach we proposed. One could
easily adapt the principles of our approach to continuous space models, provided that
the number of potential sampling locations be finite. In a MRF, each variable typically
take values in a finite set of small size. We could consider applying LSDP to problems
with larger (but still finite) domains, when counts data should be modelled. The only
requirement would be to be able to efficiently compute conditional marginals and sim-
ulate full maps. If the domain of the variable to map is continuous, this rises the more
complex question of the definition of MDP on continuous statespace.

Then, as we already mentioned, the LSDP algorithm is not specific to the reso-
lution of the optimal sampling problem. One important contribution of this work is
a new model-based RL algorithm for large size finite-horizonMDP. This means that
it can be applied to solve problems of sequential decision under uncertainly where
the state and/or decision space are/is large and factored (eg. invasive species control,
biodiversity conservation, weeds management, ...). MDP formalisms already exist to
model the control of spatial processes in time: Factored MDP(FMDP) [12] and Graph-
based MDP (GMDP) [30], for example. The structure of these MDPs shares numerous
common points with the MDP model of the OASMRF problem. Clearly, the LSDP
approach could be adapted to approximately solve FMDP or GMDP problems, when
the horizon is finite.
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Appendix

Proof of Proposition 1:

First, let us defineh1 = ((∅, ∅)) and∀t = 2, ..., H ,ht = ((A1, xA1), . . . , (At−1, xAt−1)).
From any historyht, a unique MDP statest(ht) can be defined ass1(h1) = (∅, ∅) and

∀t = 2, ..., H , st(ht) =
(
∪t−1
k=1 A

k, x∪t−1
k=1A

k

)
. Then, we define the following trans-

formationφ from the set of MDP policies to the set of OASMRF policies. Forπ, a
MDP policy,δ = φ(π) is defined as: for anyt = 1 . . .H and any reachable trajectory
ht, δt(ht) = πt(st(ht)).

(i) We first show thatV π((∅, ∅), 1) = V (φ(π)). Indeed, we recall that

V π((∅, ∅), 1) = Eπ

[H+1∑

t=1

rt | s1 = (∅, ∅)
]

=
∑

s2,...,sH+1

P(s2, . . . , sH+1 | π, s1 = (∅, ∅))
[ H∑

t=1

rt(πt(st)) + rH+1(sH+1)
]
,

whereP(s2, . . . , sH+1 | π, s1) is the probability of the state trajectory(s2, . . . , sH+1),
starting froms1 and following policyπ. Note that for any “feasible” MDP state trajec-
torys1, . . . , sH+1 we can define a unique historyhH+1 = ((A1, xA1), . . . , (AH , xAH )),
whereAt is the set of vertices involved inst+1 and not inst. Then:

P(s2, . . . , sH+1 | π, s1) =

{
0 if state trajectory not reachable,
P(xA |) otherwise.

with A = ∪H
t=1A

t. In addition, we have that:rt(π(st)) = 0 andrH+1(sH+1) =∑
r∈R maxxr∈Ω

{
P(xr | xA)

}
. Finally

V π((∅, ∅), 1) =
∑

hH+1∈τφ(π)

P(xA |)

[
− α

H∑

t=1

∑

a∈At

ca +
∑

r∈R

max
xr∈Ω

{
P(xr | xA)

}]

=
∑

hH+1∈τφ(π)

P(xA)U(A, xA)

= V (φ(π)).
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(ii) Then, we prove by backwards induction that an optimal policyδ∗ for the
OASMRF problem can be defined, which prescribes successive samples independently
of the order of past observations. Let us considerδ∗,H first.

δ∗,H((A1, xA1), . . . , (AH−1, xAH−1)) = argmax
AH

∑

x
AH

P(xAH |xA1 , . . . , xAH−1)U(A, xA),

whereA = A1∪. . .∪AH . BothP(xAH |xA1 , . . . , xAH−1) andU(A, xA) do not depend
on the order of observationsxA1 , . . . , xAH−1 . Thus,δ∗,H does not depend on the order
of its arguments.
Now, at timeh = H − 1:

δ∗,H−1((A1, xA1), . . . , (AH−2, xAH−2)) = arg max
AH−1

∑

x
AH−1

∑

x
AH

P(xAH−1 , xAH |xA1 , . . . , xAH−2 , δ∗,H(. . .))U(A, xA).

Sinceδ∗,H does not depend on the order of its arguments,δ∗,H−1 is also independent
of the order of its argumentsxA1 , . . . , xAH−2 .
Following the same reasoning forh = H−2, . . . , 1, we prove that an optimal policyδ∗

can be computed, which prescribes samples independently ofpast observations. This
result implies that we can limit the search for optimal policies of the OASMRF prob-
lem to policiesδ prescribing actions which do not depend on the order of observations.

(iii) Let us now consider a given policyδ of the OASMRF in our limited search
space. We can derive a policyπ of the corresponding MDP model. The construc-
tion is also by induction:π1((∅, ∅)) = δ1, and for t = 2 to H and a reachable
statest we define a history((A1, xA1), . . . , (At−1, xAt−1)) of size t-1, where the
order in which observations are made are choosen arbitrarily, and we setπ(st) =
δt((A1, xA1), . . . , (At−1, xAt−1 )). With this procedure,π is defined only for states
st reachable from policyδ. For other states, the policy is set to an arbitrary de-
cision (the value ofπ will not depend on this choice since the corresponding state
will never be reached). Let us callµ this transformation from a OASMRF policy
to a MDP policy. Following the same reasoning as in(i), we can easily show that
V µ(δ)((∅, ∅), 1) = V (δ).

(iv) Finally, letπ∗ be the optimal policy of the MDP model of the OASMRF prob-
lem:

V π∗

(s, t) ≥ V π(s, t) ∀π, s, t

Therefore the policyφ(π∗) is optimal for the OASMRF problem. Indeed, letδ be
a given policy of the OASMRF problem (with the property of independence on the
observations order) andµ(δ) the corresponding policy of the MDP model. We have
that

V π∗

((∅, ∅), 1) ≥ V µ(δ)((∅, ∅), 1),

and sinceV π∗

((∅, ∅), 1) = V (φ(π∗)) andV µ(δ)((∅, ∅), 1) = V (δ), we obtainV (φ(π∗)) ≥
V (δ). This establishes Proposition 1.
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Proof of Lemma 1:
For a given action trajectory(d1, . . . , dH), let us consider a state trajectory(s1, . . . , sH+1)
simulated according to the following 2-step scheme.

1. Simulate a mapx according to the joint distributionP(.).
2. Deduce iteratively the values(s1, . . . , sH+1) according tos1(i) = 0, ∀i ∈ O

and:

∀t ∈ {1, . . . , H}, st+1(i) = st(i) + dt(i)xi. (7)

We have that

P(s1, . . . , sH+1 | d1, . . . , dH) =
∑

xV ∈Ωn

P(xV )P(s1, . . . , sH+1 | xV , d
1, . . . , dH).

The probabilityP(s1, . . . , sH+1 | xV , d
1, . . . , dH) is either equal to zero or to1, since

only one state trajectory can be reached fromxV and(d1, . . . , dH) according to (7).
Furthermore, given(d1, . . . , dH), the state trajectory(s1, . . . , sH+1) can be reached
from any configurationxV which agrees with the observations of this state trajectory
on the subsetA of sites visited by the action trajectory(d1, . . . , dH). Thus, ifx′

A is the
set of observations collected onA along the state trajectory(s1, . . . , sH+1)

P(s1, . . . , sH+1 | d1, . . . , dH) =
∑

xV ∈Ωn

P(xV )1{xA=x′

A},

which by definition is equal toP(x′
A).

Let us now evaluate the propability to observe the same statetrajectory(s1, . . . , sH+1),
given(d1, . . . , dH), when simulating according to the OASMRF MDP transition func-
tion:

P(s1, . . . , sH+1 | d1, . . . , dH) = P(x′
d1)

H∏

t=2

P(x′
dt | x′

dt−1 , . . . , x
′
d1).

Using the Bayes rule, one can see thatP(x′
d1)

∏H
t=2 P(x

′
dt | x′

dt−1 , . . . x
′
d1) is exactly

P(x′
d1 , . . . , x

′
dH ), which is equal toP(x′

A).
Therefore, with the two simulation schemes, for a given action trajectory(d1, . . . , dH)

the same state trajectories can be reached (those where visited sites are coherent with
the actions) and each state trajectory has the same probability in both schemes.
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