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Abstract:

Markov random fields (MRF) offer a powerful representationrasoning on large
sets of random variables in interaction. A classical, bfftadilt inference task is the
evaluation of the most probable assignment of a variablergithe values of some
others (Maximum Posterior Marginal probability compuatiMPM). Linked to that
problem, optimising the choice of the variables to obseaveample) in order to max-
imise the MPM probabilities is even more difficult. In the €iedf spatial statistics,
the design of sampling policies has been largely studiekdrtase of continuous vari-
ables, using tools from the geostatistics domain. In the M&$e with discrete-valued
variables, some heuristics have been proposed for therdpsidplem but there ex-
ists no universally accepted solution, in particular whensidering adaptive policies,
as opposed to static ones. In this paper we formalise thdegrobf optimal adaptive
sampling in a MRF as a finite-horizon Markov Decision Pro¢®&3P) with a factored
state space. A policy of this MDP is a non stationnary denisie which associates a
set of sampling locations to the set of past observationsirgpthis MDP amounts to
computing the optimal adaptive sampling policy accordimg given quality criterion.
The translation of the initial optimization problem intcetiMDP framework enables
to exploit the Reinforcement Learning (RL) paradigm and toppse an original al-
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gorithm for its approximate resolution. This generic pidwe, named Least Square
Dynamic Programming (LSDP), combines a parameterizee@sgptation of the value
of a policy, the construction of a batch of simulated trajeies of the MDP and a
backwards induction algorithm. It is not only dedicatedte bptimal adaptive sam-
pling problem but can be used to solve any factored MDP undie fihorizon. Then
LSDP can be specialized to solve the above-mentioned sagymioblem. Based on an
empirical comparison of the performance of LSDP with erigtbne-step-look-ahead
sampling heuristics and solutions provided by classicalaRjorithms, the following
conclusions can be derived: (i) a naive heuristic, coimgish sampling sites where
marginals are the most uncertain, is already an efficienpagiapproach. (ii) LSDP
outperforms all the classical RL approaches we have tegti®dLSDP outperforms
the heuristic approach in cases when sampling costs arenifotm over the set of
variables, or sampling actions are constrained.

Keywords: Heuristic and optimal sampling design, sampling cost, dyingro-
gramming, Markov decision process, weed mapping

1. INTRODUCTION

The questions of building probabilistic models of spatiedgesses and building
plausible reconstructions of the process from the modelofrseérved data are classic
and have mobilized several research fields in spatial Statisr probabilistic graphical
models communities. Nearly as classical is the questioesifyhing optimasampling
policiesallowing to build reconstructions of high probability whre model is known.
This question is more complex to solve than the pure recoctsbn problem and can-
not be solved optimally in general. This sampling desigrbfmm has been tackled in
spatial statistics [7, 20] and artificial intelligence [1%, 25]. It is even more complex
in the case of adaptive sampling, where the set of sampleslisichosen sequentially
and observations from previous sampling steps are takemauount to select the next
sites to explore [33].

The case of sampling real-valued observations (e.g. teatyeror pollution moni-
toring) has been the most studied, mainly within the geissizdal framework of Gaus-
sian random fields and kriging. Much less attention has beahtp the case of sam-
pling variables with finite state space. However, this peabhrises naturally in many
studies about biological systems, where observationseapdcies abundance classes,
disease severity classes, presence/absence values #mtitlie, we focus on this case
and propose, similarly to [15, 25, 26], to define the corresiimg optimal sampling
problem within the framework of Markov random fields (MRFO[L MRF are well
adapted to model variables with finite state space. Theyf@restance, very popular
in image analysis to model image segmentation problems.n#pbiag policy can be
staticor adaptive In the first case, the set of sampled sites is chosen onceoaadl f
at the beginning of the survey (see [9] for a recent work oticssampling of counts
data). With an adaptive policy, the survey is divided intocgssive steps and the next
set of sampled sites is chosen according to previous oligmrgaObviously, adaptive
policies are more efficient than static ones, but may notysvie applicable. In [15],
the authors considered the sampling problem in a particalse of MRF, defined on



polytrees. They looked for static sampling policies, as2i6]] The work in [26] was
the first proposition of a naive heuristic solution to desagradaptive sampling policy
for the general MRF model. The heuristic was derived fromrangt simplification
of the model. Here we extend the work of [26] by proposing ariséia policy built
from simulations of the exact MRF model. For this, we propmsencode the opti-
mal adaptive sampling problem as a finite-horizon MarkoviSien Process (MDP,
[28]) with factored state space. A policy for this MDP is a gkhon stationary deci-
sion rules (one per sampling step) which associate a seingblsay locations to the
set of past observations. Thus the MDP optimal solution igesrzan optimal adap-
tive sampling policy for the MRF reconstruction problemgacling to a given quality
criterion. Solving MDPs with factored state space is hatds ho easier than solv-
ing the adaptive sampling problem in MRF. However, castimg dptimal sampling
problem within the MDP framework allows us to exploit priplgs from the family
of Reinforcement Learnin(RL, [31]) approaches which have been proposed to solve
approximately large (or factored) state space MDPs.

RL approaches allow to solve MDPs approximately by makirgafsimulations
of the process dynamics. They can be usedineto construct adaptive policies step-
by-step, computing only the current action to apply fromdbeof past observations,
or they can be usedff-line, computing a complete policy before any observation is
actually made. Off-line approaches focus their computatieffort prior to policy
execution, while on-line approaches alternate action adatjpn phases and action
execution phases. The approach we propose in this papeof§-me RL algorithm.

As we will demonstrate, classical RL algorithms cannot haiad to solve the op-
timal sampling problem without being adapted. Thereforepnevide a new generic
RL algorithm that can be used to solve approximately anyelatgte-space finite hori-
zon MDPs: thd_east Square Dynamic Programmiatgorithm (LSDP). LSDP relies
on three main ingredients: (1) the value function of a palqyarameterized as a linear
combination of features; (2) simulated trajectories of P are computed off-line
and stored in @atch (3) the weights of the linear approximation are those which
minimize the least-square error evaluated on the simuladgectories. We then show
how to specialize this generic algorithm to the problem dfropl adaptive sampling
in MRFs. We show experimentally that this algorithm imprewwer classical “one-
step-look-ahead” heuristics and RL approaches, thus girayia reference algorithm
for sampling design.

This paper starts with a description of the case study thévated this work: weed
sampling in a crop field (Section 2). Then, the MRF formalaabf the optimal adap-
tive spatial sampling problem is introduced in Section 3. sklew how to model it
as a finite-horizon factored MDP in Section 4 and we discuassatal RL solutions
for computing approximations of the optimal policy, in Sent5. Then, we describe
the LSDP algorithm in Section 6 and its application to thebfem of sampling in
MRF in Section 7. We present an empirical comparison betweenstep-look-ahead
approaches, classical RL algorithms and LSDP, on toy pnobknd on the weed sam-
pling problem in Section 8. Some methodological and apperdpectives of this work
are discussed in Section 9.



2. CASE STUDY: WEED SAMPLING IN A CROP FIELD

In arable fields, weeds are responsible for yield loss [22Rhbee they are com-
peting with crop for resources and they can be host for pgasaaind diseases. In the
meantime, the role of weeds in agro-ecosystem food websamaviding ecological
services has been established [11]. Therefore new weedagaarent policies have
to be designed. As a consequence, as a prerequisite to rmagaig¢here has been a
growing interest for the study of the spatial repartitiom@feds in crops. Such studies
are usually based on maps.

A map of weed density classes is usually built from a prolistiiimodel of weed
spatial repartition and from a sample output. The field isodgmosed into a set of
guadrats and a sample is a subset of the quadrats. The sanyaéis the set of density
classes assessed at each sampled quadrat. Observaticrtsfanel class assessment is
very time consuming. It requires people with profound kremge in order to recognize
the different weed species. Therefore a crucial problem ¢hbose which quadrats in
the field should be observed in order to ensure a reconstfmctg of good quality
for a reasonable sampling time. A lot of attention has beed fpathe development
of spatial sampling methods for weed mapping [6, 34]. Howevene are adaptive.
In this paper we will propose a method to design adaptivecigaiof weed sampling.
When applying an adaptive policy, the sampling procedudigled into successive
steps and the quadrats sampled at a given step are given bgisdoderule which
associate previous observations (locations and densitges$) to a set of quadrats. To
apply our method and compute the corresponding adaptivelsagrpolicy we will
provide a model of the joint distribution of the density dlas at each quadrat as that of
a Markov random field (MRF) and a model of sampling cost basethe time spent
for assessing the density class into a quadrat (see Segtion 8

3. OPTIMAL ADAPTIVE SAMPLING IN MARKOV RANDOM FIELDS

In this section we formalize the problem of optimal adapsiaenpling in a MRF.

3.1. Problem statement

Let X = (X4,...,X,) be a vector of discrete random variables taking values in
O = {0,...,K}"™ V = {1,...,n} is the set of indices of the vectdf and an
element; € V will be called asite The distributionP of X is that of a MRF (also
namedundirected graphical modgWwith associated grapfi = (V, E), whereE C V2
is a set of undirected edges (see Figure 1 for an exampleyddter: = (x1,...,2,)
is a realization ofX and we adopt the following notation:s = {z;}ic5, VB C V.
Then the joint distribution of( is a Gibbs distributionP(X = z) o< [ cc Ve(2e),
where(C is the set of cliques of” and theV ., ¢ € C, are strictly positive potential
functions [14].

Let us assume that we want to reconstruct the vekton a specified subsé& C V
of sites of interest and that, for this, we can only acquiramétéd number of obser-
vations on a subséd? C V of observable sites. We will assume thatu O = V
and intersection betwean and R can be non-empty. The sampling problem is then
to select a set of sited C O, named assample where X will be observed. When



sampleA is chosen, aample output: 4 results, from which the MRF distributiof

is updated. Intuitively, our objective is to choodeso that the updated distribution
P(-|z4) becomes amformativeas possible, in expectation over all possible sample
outputsz 4. We measure how informative a distribution is by using somassical
information criteria such aslaximum Posterior Marginalser Maximum A Posteriori
(see next paragraph).

In the following we describe the different elements allogvin formally define the
problem of Optimal Adaptive Sampling in a MRF (OASMREF).

Reconstruction. When a sample output, is available, thélaximum Posterior Marginal
(MPM) criterion can be used to derive an estimatgrof the hidden map r:

TR = {xf | i€ R, x=argnaxP(z; | xA)} .
T, EQ

Alternately, other reconstruction criteria, such ashteximum A PosterioifMAP)
criterion [25] could be considered. The hidden map wouldhe® reconstructed as the
mode of the joint conditional distributidR(z | z.4).

Adaptive sampling policy. In adaptive sampling, the sampleis chosen sequentially.
The sampling plan(the sequence of samples) is divided idfosteps. A" C O is
the sample explored at stépe {1,..., H} andx 4» is the sample output at stép
The sample size is boundei(’| < L) and Ay is the set of all policies satisfying
|A"| < L,Vh. The choice of sampld” depends on the previous samples and outputs.
An adaptive sampling policy = (6%, . .., 6) is defined by an initial sampld! and
functions (decision rules)” specifying the sample chosen at step 2, depending on
the results of the previous step®:((A', z41),..., (A" 1 z4n-1)) = A" Therefore
the policy describes the decision rules for all possiblelaéidmaps:. A trajectory
(AY,241),..., (A" x,n) is the succession of samples and sample outputs encoun-
tered when applying policy to a particular realization. The set of all trajectories
which can be followed by policy is 75. We will assume throughout the paper that
observations are reliable. As a consequence, we will onhsicer policies visiting
each site at most ondel” N A" = 0,Vh # 1).

Figure 1 shows an example of an adaptive sampling policyhéndase where
H =3,L =1andK = 1. A static policy is a particular case where the sample
visited at each step is the same for each trajectory.

Quality of a sampling policy. The quality of a policy is measured as the expected
quality of the estimatox7, that can be obtained from In practice, since applying a
policy 6 may lead to different trajectorig$ A", z 4»))n=1..z, €ach trajectory having
its own probability to occur, it is useful to first define theadjty U of a trajectory
(A", 2 4n))n=1..7 as afunction of A x 11 ), whereA” = Uy, g A

U((A" 2 an))h=t1..1) = U(A" 2 40) = max {P(xl | wAH)}. 1)
i€R"



AE[2)

Figure 1: Tree representation of an adaptive sampling yoliop: graphG associated to the MRF model
(n = 8). Bottom: policy tree representation of an adaptive pofmysampling in this MRF, for. = 1,
H = 3 andK = 1 (the final sample outputs are not represented). Two differmlisationsc of the MRF

will lead to two different trajectories in the policy tree.



The quality of a trajectory is directly related to our magppurpose since it is equal
to the expected number of well reconstructed sites whenphtad repartition model
is P and the only available information is;=. The quality of a sampling policy is
then defined as an expectation over all possible trajestorie

V((S) = Z P(IAH)U(AH,ng).

(AH,J;AH VETs

Remark that this definition of the quality of a sampling pplkian be adapted to the
MAP criterion. It amounts to replacing the sum of the locatditional mode proba-
bilities by the joint conditional mode probability. In semt 7 we will show that our
approach can also be adapted tceatropydefinition of trajectory quality.

Optimal adaptive sampling in MRF (OASMRF). Finally the problem of optimal
adaptive sampling amounts to finding the policy of highesility

0" = argmax V(9). (2)
Note that since our definition of the quality of a trajectosybiased on the MPM
criterion, it does not depend on the order in which obseowatiare received (this is
also true for MAP and entropy-based criteria). Therefdre gptimal policys* has the
property that the choice of the next sample at $te@pends only 00A" 1, 2 71-1):

6*h((A1,mA1), . (Ah-l,mAh,l)) - 5*h((;‘1h-1,mgh,l)).

This will be rigorously demonstrated in Proposition 1 (8&t®d). The fact that the
optimal action choice only depends on the union of past elsiens does not imply
that the above defined sampling problem is not adaptive.elthdeample choices and
observations are interleaved, meaning that the optima&tyét is a function. In par-
ticular, it is true that, given a fixed set of observationg, tcinder in which they were
received influences neither the probability of this set, therquality of the map that
can be constructed from it. However, new samples are choitemegpect to the set of
observations obtained so far, which makes the OASMRF pnopt®th sequential (a
sequence of samples choice) and adaptive (two differedehidnaps will lead to two
different sequences of samples, for a fixed policy). On tmreoy, in a static sampling
problem, the optimal policy would be independent of the kidchapz.

Example 1. Weed sampling in a crop field.

For our case study, quite naturally the modeling choicestagefollowing: n is the
number of quadrats, the edges in the graplink first order neighbor quadratsX; is
the weed density class in quadratand(? is the set of possible classes. For a given
adaptive sampling policy and a given hidden magm trajectory is the succession of
pairs of sampled quadrats and corresponding observed tledsisses at every sam-
pling steps. In practice we will consider only policies tkeaplore one quadrat per step
(L=1).



Exact resolution of the OASMRF problem is intractable (d8ddr a complexity
study). In the next section we will present a factored MDP elad this optimization
problem. It will allow us to solve it approximately by apphg Reinforcement Learning
(RL) principles [31].

3.2. How to represent and handle cost constraints?

So far, we have considered a sampling budget in terms of a eyiib of allowed
sampling steps and a fixed numberof sampled variables per step. This has been
defined regardless of any notion of observation costs. ldéction, we will discuss
more general sampling cost models and discuss how they charied within the
proposed OASMRF model.

Optimizing a trade-off between restoration quality and cos. In order to optimize a
global trade-off between restoration quality and costitdssible to include a measure
of sampling cost, which has to give values commensuratetivéhiestoration quality.
Then, cost and quality measures can be added in the defioitidnto form the adap-
tive sampling policy quality.

However, one may question the assumption that cost andaéstoquality measures
be commensurate. One way to avoid this assumption is to @emnaisample budget
constraint instead of including sample costs into the fiondl/, as we suggest next.

Maximizing restoration quality under cost constraint. This choice will be the one
used by our procedure. Instead of considering fhat H sites can be sampled, we
can consider a global (integer-valued) sampling budgjét.g. a time budget), and as-
sume that each subsdte O has a different (integer) sampling cost, denated A).

It may as well be that sample costs depend on the observedsvafuhe variables,
x4 Sc(A,z4). This cost functionSc is not used in the definition df, but rather
for the definition of the space of allowed trajectori€é6A’, x 41), (A%, 242)...}. In
that case the length of a trajectory is no more constant. dedés on the number of
samples needed to exhaust the budget and of the corresparizfiarvations. To make
understanding easier and to simplify notations, we willsidar throughout the paper
that trajectories have constant lengfiz:(A, z4) = 1). But we will see in Sections 6
and 8 that the LSDP procedure proposed in this paper to spiw@aimately (2) can
handle the more general case wh8eg A, x 4 ) is not constant.

Minimizing cost under restoration quality constraint. Conversely, one could also
consider that the objective is to minimize the sampling midgnd that we are given a
MPM restoration quality threshold. Sampling should be pured until the restoration
quality threshold is met, and then stopped. Then, the op#ititin problem would
be to find the sampling policy of minimum expected cost, whatlbws to compute
restored maps which quality is above the fixed threshold. dffieulty to apply the
simulation-based procedure proposed in this paper woulddie¢he MPM value has to
be computed at every sampling step, in order to check whétlkeznd of a trajectory
is reached. These computations would make the optimizatioiolem harder to solve.



Example 2. Weed sampling in a crop field.

For weed sampling, the cost of a trajectory is defined as tme gtithe cost of each
sampling step. The cost for a given step is define&s, z;), a function of both the
sampled quadrat and the corresponding observed density clags/t represents the
time needed to assess the weed class in a quadrat and depzthdsithe class of the
weed on interest and on the number and classes or other weesksn in quadrai.

4. FINITE HORIZON MDP MODELLING OF THE OASMRF PROBLEM

A finite-horizon MDP model [28] is a 5-tuple S, D, T, p, r >, whereS is a finite
set of systenstates D is a finite set of availabldecisionsT = {1,..., H} is a finite
set of decision steps, termadrizon p is a set otransition functiong?,t = 1... H,
wherept(stt1]st, d') indicates the probability that staté™! € S results when the
system is in state’ € S and decisiond® € D is implemented at time € T. A
terminal states””t! € S results when the last decision is applied, at decision Btep
r is a set ofreward functions r(st,d') € R is obtained when the system is in state
st at timet andd® is applied. Aterminal rewardr*!(s+1) is obtained when state
sH+1is reached at timé&l + 1.

A decision policy(or policy, for short),m = {!,..., 7}, is a set of decision
functionsr? : S — D. Once a decision policy is fixed, the MDP dynamics becomes
that of a finite Markov chain ove$, with transition probabilityp® (s’ *1|s?, wt(s?)).
Thevalue function’™ : S x T' — R of a policyr is defined as the expectation of the
sum of future rewards, obtained from the current state and step when following
the Markov chain defined by:

H
V(s t) =Ex | >t (ST, 7(ST) + T (SHH) | 8" = 5| V(s,t) e Sx T.

t'=t

Here the notatior$? in capital letter represents the random variable assattatéhe
state at time, while st is a possible realization.
Solving a MDP amounts to finding aptimal policyn* which value is maximal for
all states and decision stegg™ (s,t) > V7 (s,t),Vm,s,t (it can be proved that there
always exists at least one optimal policy, see [28]).

We now model the OASMRF problem in the MDP framework. It cepends to
the graphical representation of Figure 2.

State spacestates’, t = 1,..., H+1summarizes currentinformation about variables
indexed inO: if sample A*~! was explored and observationg._. were obtained at
previous sampling steps,

st = (A" xg0o0),Vt=2,..., H+1ands' = (0,0).

It may be convenient to modet as a vector of lengthO|, wheres! = —1 if site
i has not yet been sampled, asjd= k, k € Q if value k has been observed on site
For instance, let us consider the case where R =V = {1,2,3,4} andK = 2. If
attimet = 1 site 1 is observed in state 1 and at time 2 site 3 is observed in state 1,



ri(s?) = Yien | MaXqy 0 {]P(JLH | 1'_4'uA2)}

Figure 2: MDP model of a OASMRF problem with horizdih = 2. Rectangular nodes represent state
values, circles represent actions and diamonds represemtdiate rewards.

then we have the two notaitor$ = (1, —1,1,—1) or s = ((1,3), (1,1)).

Decision spaceA decisiond! is a sampled?! C O such thafA?| < L. In practice, it
will never be optimal to sample a site twice (since obseovetiare assumed to be reli-
able). So, we can restrict the set of decisions to thoseigatisd’ N d* = 0, V¢’ < t.
Continuing of the above example,df = 2 and site2 is observed in state 2, we have
st=(1,2,1,-1)ors* = ((1,2,3),(1,2,1)). Note that ifs* ands'** are given, it is
straightforward to recover the decisidh

Horizon. Decision steps in the MDP correspond to decision steps irOth8 MRF
problem. Thus7 = {1,..., H}.

Transition functions. If s = (A*~1, 2 4.-1) andd® = A', the transition function of
the MDP can be derived straightforwardly from the origindRMdistributionP:

pt(5tJrl | st,dt) = IP’(xAt | xAtfl),vt eT,

wherex 4: is the realization ofX 4« encoded ins**t!. Note that for all states!*!
corresponding to observations incompatible with stdtethis transition probability
will be zero.

Reward functions.Vt = 1,..., H, rewards are set to zero:
rt(st,d") =0, VteT,s' d.

Note that rewards could be non zero if the objective was tinope a trade-off
between restoration quality and sampling costs (see $e81).

After decisiond” has been applied at decision stépand stata” ! = (A% x zu)
has been reached, a final rewafé"! (s’+1) is obtained. It is defined as the quality
of the MPM reconstruction (see equation (1)):

10



The optimal policy for the above-defined MDP is a set of fumts$iassociating new
samples to unions of past sample outputs. Itthus has thesteamsture as an OASMRF
adaptive sampling policy. Furthermore, we can establistidhowing proposition:

Proposition 1. An optimal policy for the MDP model of an OASMRF problem piesi
an optimal adaptive policy for the initial OASMRF problem.

Proof (Sketched). The proof is only sketched here, the full vergdan the Appendix
section. The proof follows three steps and uses the facthbatuality of a policy does
not depend on the order in which observations are obtained:

(i) We define a functiorp, transforming any MDP policyt into a valid OASMRF
policy 6 = ¢(), which defines decisions independently of the order in which
past observations were received, and showtHat(w)) = V™ ((0,0), 1).

(i) We establish that, for any partial history (past obsgians), the value of an
optimal OASMRF policy starting from these observationssinet depend on
the order in which they were received. As a consequence, wirgi the search
for optimal policies of the OASMRF problem to policies prebing decisions
which do not depend on the order of observations.

(iii) We show that any such OASMRF poligycan be transformed into a MDP policy,
through a transformation, and thatl’ (5) = V*() ((9,0),1).

As aresult of these three stepsrif is an optimal policy for the MDP encoding of the
OASMRF problem, them(7*) is optimal for the OASMRF problem.

O
In the following we will use the same notatiério represent both OASMRF and MDP
policies.

The finite-horizon MDP model of the OASMRF problem has statd action
spaces of exponential size in the size of the original prabldowever, explicit repre-
sentation of the problem (and its solution policy) can beided, thanks to the use of
RL algorithms. We describe the RL approach in the next sectio

5. CANDIDATE APPROACHES FOR SOLVING OASMRF

5.1. Exact dynamic programming

Let us define the state-action value function, also callefiinction associated to
any policys of a finite-horizon MDP problem:

Qs t)=r'(sd)+ Y, s AVt 1),
s’€Succt(s,d)

This function represents the expected reward when apptigcisiond in states at
time ¢ and thereafter following policy. Succ!(s,d) = {s',p'(s'|s,d) > 0} is the set
of possible successors efwhend is applied at timg. In the OASMRF problem the

11



size ofSucct(s, d) can be small. From th@-function of a policy, it is straightforward
to computes and its valuel’. The backwards inductioralgorithm [28] is based on
this property and computes exactly the optimal polityf any finite-horizon MDP. It
consists in, first, initializing the value function of thetpal policy at timeH + 1 for
all possible final states:

V*(s,H +1) = rfTl(s),

and then solving iteratively the following equations:

Vt=H,...,1 and Vs, deSxD,

Q (s, dt) = rsd+ Y Pl VIS D),
s’€Succt(s,d)
V*(s,t) = InCEllXQ*(S,d, t).

At each iteration the optimal policy is progressively buals follows:

0%(s,t) = arg max Q*(s,d,1).

HereV* andQ* are simpler notations respectively f6f  andQ® . Remark that the
last equation can be written for any poliéyand not only the optimal one. Therefore
any policys is totally specified by itgQ-function,Q°. However, since the OASMRF
problem typically involves a factored state spaf#, is huge, so the above system
has too many equations and variablgS| (x |D| x H) to be used. Therefore, we
have to look for approximate solution methods instead otegaes. To do this, we
can explore two families of heuristic approaches for sg\OASMRF:one-step-look-
ahead approachesndreinforcement learning basexpproaches.

5.2. Heuristic approaches

Heuristic approaches are methods for sample selectiorhvgnmvide an arbitrary
(most likely suboptimal) sample in reasonable time. Thesthods can either (i) solve
exactly a simpler optimization problem which approximates original one or (i)
provide policies maximizing a function which approximathe optimalQ-function,
Q.

One-step-look-ahead heuristicsOne-step-look-ahead heuristics provide policies that
optimize (exactly or approximatively) the immediate reghail his amounts to adopt
a simpler definition of theQ-function, whereV®(s’,t + 1) is simply replaced by
ritl(st*1 §(st*1)). Involved rewards can also be approximated.

Such heuristics have been proposed, either in Statistids Artificial Intelligence,
which can be applied to solve the OASMRF problem. In spatiad@ing of natural
resources, random and regular sampling are classic hewjgiroaches [7]. Another
classical method to sample 0/1 variables is Adaptive CiuSsanpling (ACS, [33]).
Recently, [26] proposed a heuristiBR-max heuristif; which consists in sampling, at
each decision step, locations where the conditional margirmbabilities are the least
informative (i.e. the closest té in the 0/1 case), in order to solve (2), (see Section
7.1 for a formal definition). It has been shown, experiméwtt outperform random,
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Heuristic Description Properties

BP-max at each step, sampled sites are coarse approximation of

those with highest remaining uncertaintythe original MRF, but fast
in their maximal marginal

Mi optimization of the mutual information| intractable for MRF with
more than a few nodes (20)
TD()) estimation of the optima-function intractable for MRF with
by reinforcement learning more than a few nodes (20)
combined with tabular representatior
LSPI estimation of the optimal-function not adapted
by reinforcement learning to finite-horizon MDP

combined with linear approximation

Table 1: Summary of existing candidate heuristic methodslee the OASMRF problem. Note that BP-max
is fast, while the other methods are very time consuming.

regular and ACS heuristics. In [16], the authors proposesbtonize a mutual infor-
mation (MI) criterion to design sampling policies in Gaassfields. However, we will
see that exact application of this method is out of reach foblems with more than
a few nodes (see Section 8). Finally, generalizatiom-gteps-look-ahead heuristics is
presented in [19].

Reinforcement learning based approachesThe main idea of RL approaches ([31])
is to use repeated simulatesperiencegs?, d', !, s'*1), instead of exact dynamic
programming, in order to estimatg*. As opposed to one-step-look-ahead heuris-
tics, the exact definition of th@-function is used but’?(s’,t + 1) is now approxi-
mated by an average over simulations. In practice, the appation of Q* can be
computed for each triplés, d,t), for example using the TD\) algorithm [31]. This
algorithm is known to asymptotically converge to tQé function but cannot be ap-
plied to large factored MDPs, since the number of tripletsd, t) becomes huge.
Then a common method is to compute a linear approximatiorhef(t-function:

Q% (s,d,t) =< w,¢(s,d,t) >, wherew € R™ is a vector of parameters values
and the vector of features: (S, D,T) — R™ is a mapping from state-action pairs to
real-valuedn-dimensional vectors. Simulations are used to computesgadfiw that
lead to a good approximation @f*. In general little can be said about the convergence
of such algorithms and no universal properties are knownweyer, in some cases,
performance bounds [2, 21] or convergence guarantees 218aB be found. Algo-
rithms for computingw for a specific choice of features are, for examp8PI[17]
andFitted Q-iteration[8, 23]. A review of approximate methods for solving MDP can
be found in [3] or in [27].

6. LEAST SQUARES DYNAMIC PROGRAMMING

We now present the procedure we propose to compute an app@texisolution
to the original OASMRF problem. This procedure, referrecasothe Least Square
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Dynamic Programming (LSDP) algorithm, is not limited tostlgroblem. It can be
used to solve any finite-horizon MDP as long as the modelgitians and rewards) is
known explicitly. So we first describe it in its general formdathen show how it can
be specialized to solve the OASMRF problem.

6.1. Main principles of LSDP

To approximate&)*, the main ideas of the algorithm we propose is to combine i) a
time-dependent parameterized representation oftfienction, ii) least-squares esti-
mation of the parameters, iii) Dynamic Programming itenasgi and iv) a sampling of
the complete least-squares system built from simulatioMP transitions.

Parameterized representation of thel)-function. Asin LSPI or fitted)-iteration,
we consider an approximatiadp” of Q* as a linear combination of arbitraryfea-
tures When the horizon is finite, the optimal policy needs not béahary. Therefore,
we propose to define a different set of weighis }; for each time step:

Q*(s,d,t) ~ Q¥(s,d,t) = > wlgi(s,d,t),Vs €S, deD,teT, and
1=1..m
Q* (s, H+1)=Q"(s, H+1) = rHTl(s),VseS.

Least-squares estimators.For a given steg the weights{w!}; are computed
using the approximate version of the dynamic programming#gns. They are com-
puted as the least-squares estimators associated to liheifig system:

V(s,d) € S x D,

Z wigi(s,d,t) = r'(s,d) + Z p'(s'|s, )V (s’ t+ 1),
i=1..m s’€Succt(s,d)
whereV"(s,t +1) = max Z wit (s, d' t+ 1). (3)

i=1..m

Equations (3) form a set dfS| x |D| linear equations for each time stepe T,

with variablesw!,i = 1..m. In general these systems are clearly over-constrained
(IS] x |D| > m), this is why we look for least-squares approximate sohgjonstead

of exact ones.

Dynamic programming. The dynamic programming part of LSDP comes from
the fact that the systems are solved backwardg fer H to 1, each solution vector
{w!*1},; being plugged into the system at time

Sampling of the complete least-squares systenAt a given stept, system (3) is
too large to build whers is factored, not to mention solving. Therefore, we suggest
to samplethis system, by considering only a subset of equationsesponding to a
subset of state8 = {(s,d,t)} C S xD x T, (calledbatch[29]). System (3) becomes:

V(s,d) s.t. (s,d,t) € B,
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S wlei(s,dit) = ri(s,d)+ > pl( s, V(s t+ 1),
i=1..m s’ €Succt(s,t)
whereV®(s,t+1) = max Z witgi(s,d' t 4 1). 4)

1=1..m

We propose to build the batdh from a finite set of simulated trajectories of the
MDP, starting ins;, obtained by simulating successive transitions. So daigghave
the guarantee that every 4-upletd, t, s') € B effectively corresponds to a reachable
configuration. At each transition of a trajectory (frqm d, t) to s’), decisiond is
chosen according to thegreedy method: with probability— e the decision is the one
maximizing the current estimatioR* and with probabilitys the decision is chosen
with uniform probability among all possible ones. Note thatnd the batch size are
the only parameters to tune in LSDP.

6.2. LSDP algorithm in practice

From a set of weights we can straightforwardly derive theaximate-function
and thus an approximation of the optimal policy and its valUieerefore, ifé* is the
current approximation of the optimal policy at iteratibof LSDP, iteratiornk + 1 goes
as follows:

e Construction of the new batdB*. It depends or* since we apply the-greedy
method to choose the decisions used to simulate transitions

e Approximate resolution of (4) for each decision step, base least-squares
estimation. The weights are updated and the correspondiiqyp¢™? is eval-
uated.

e Updating of the policy: if the value of**? is higher than that of*, then
§k+1 = gtemp  Otherwised*t! = 6. The evaluation ob**? is obtained
through MC simulations as the average over a large numbémodated trajec-
tories of the total reward gained along these trajectories.

There is no guarantee that polié§#™? improves the current policg”) in state
s1. This is the reason why we compare their values!9f"? does not imprové*, the
iteration is once again initialized with*. Since the batch generation is a stochastic
procedure, the new batch will be different frdsfi, and we will obtain a new candidate
policy 6%, This comparison step within one LSDP iteration guarantessthe suc-
cessive policies returned by the algorithm are of increpsalue. Simulation is used
to estimate policy values, these estimations may well beriect but they hopefully
preserve policies values ranking.

In practice, LSDP is initialized with a set of weights (oné jger decision step in
the MDP horizon). Then a maximum number of iterations is fixaw when reached,
the current policy is returned. See Figure 3 for a schemegicasentation of LSDP.

In the case where the resources constraints are not definadikgd number of
sampling steps but by a maximal buddet LSDP can still be applied. We simply
define@-functions and features as functionsipfthe budget used so far, instead of
functions of decision stepsperformed so far. As a consequence, the sets of weights
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are also indexed by the budget already spent. A trajectastofgped when no action
can be apply with the remaining budget. We will adopt thigespntation to solve the
weed sampling problem (see Sections 7 and 8).

LSDP Monte-Carlo
weight s evaluation
updates 7
B > (w', Q") »<_Improve!
Batch No e
generation !
w o~ w
< QU+ Q“

Figure 3: Schematic representation of the LSDP algorithm.

7. Application of LSDP to the OASMRF problem

In order to apply the LSDP algorithm to the OASMRF problem,talee into ac-
count the problem structure i) to define featugesand ii) to propose a time efficient
batch construction method. It also requires iii) to be ableampute efficiently (in
terms of time complexity) conditional marginals of the foBifi; | x4). These quan-
tities are necessary to compute transition probabiliteesyaluate the final reward (the
MPM value) and, as we will see, to compute the features. Theisos to these three
points are described in Section 7.1. Together, they defiegossible instantiation of
LSDP for solving the OASMRF problem. We also present tworaliéve instantia-
tions, based on different choices for the features defimiticthe quality of a trajectory
(Section 7.2).

7.1. LSDP implementation for the OASMRF problem

Features choice.We chose to define one feature per variable in the MRF= n).
The features definition is derived from the BP-max heuri&ee [26] and section 5).
This heuristic consists in selecting for sampling, at earhing step, the variables
which remain the most uncertain. Uncertainty is measurati&ynaximal conditional
marginalmax,,cq P(z; | z4): a low value indicates high uncertainty. This greedy
heuristic can also be defined as the policy which maximizesel decision step the
following quantity} ;" , max,,co P(z; | z4), whereA C O is the set of sites sampled
so far. Since when a sitehas been sampled € A), statex; is known, we have
max,,cqP(z; | xa) = 1fori € A. Therefore, the BP-max heuristic can be obtained
as the greedy policy with respect to a parametrigeflinction@! with the following
features, and all weights equal to: € {1,...,n},

¢i(s,d,t) = (1— ]l{i:d})glgép(wi | 24) + Liiay (5)
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We adopt definition (5) to define the LSDP features for the OA&RSMproblem. We
initialize the LSDP algorithm with weights all equal to 1. &rhy the LSDP algorithm
performs successive updates in order to improve this Iisigieof weights.

Batch construction. Simulating trajectories in the OASMRF problem is costlycgin
for each transition, one has to simulate observations: from the MRF conditional
distributionP(z 4¢+1 | z4:). This requires to apply the Gibbs Sampling algorithm
[10] a large number of times, which is rather costly, thusesely limiting the size and
number of batches that can be constructed. However, laggeinds can be constructed
if we divide the construction into two phases. First, we datry off-line, abatch of
maps {z,...2P}, from P. It will be used for all iterations of the LSDP algorithm.
The construction of this batch is done using Gibbs Samplmgl induces a single
overhead cost (which can be large) for the whole algorithhrenT at a given iteration
k of LSDP, trajectories are easy to simulate: i) a map selected uniformly at random
in the batch, ii) actions are chosen following thgreedy method with respect to the
current policy, and iii) successive statésfollow immediately by reading the values
of the sampled variables corresponding to the current idecisThe batch of states
B is built as the set of all states encountered in all trajéesorThis second phase of
trajectories simulation is fast. Furthermore, simulategettories do not have to be
stored (only the batch of maps does), thus saving much mespage. In addition, we
can establish that this 2-step procedure is a valid metheihtolate transitions of the
MDP encoding of the OASMRF problem. More formally, we esistbthe following
lemma

Lemma 1. For agiven action trajectoryd’, . .., df), a state trajectorys?, . .., st +1)
simulated according to the following 2-step scheme hasaheegoint probability dis-
tribution as a trajectory simulated according to the OASMKBP model transition
function:
1. Simulate a map: according to the joint distributiofP(.).
2. Deduce iteratively the valugs?, . .., s7+1) according tos! (i) = —1Vi € O
and:

vte{1,...,H}, s"(i) = s'(i) if d'(i) = 0 ands' T (i) = d'(i)x; else
(We recall that a site is visited at most once during a trajeg}.

A proof of this Lemma is given in the Appendix.

Approximation of P(x; | z4). The Belief PropagationBP) algorithm [24] can be
used to compute (approximate§jz; | x4) . However since this evaluation has to be
performed a huge number of times, BP cannot be applied irtipeacSo we propose
to use the distributioff defined below as an approximation®fz; | z4):

Bl | 0a) = P27 (a0) + 30 [P (o 2) ~ PP (o), ©
JEA
This approximation does not necessarily belondotd| but sums to one. It has the

advantage to be fast to compute. Indeed, before running L&8DMarginals and con-
ditional marginal$®” (z;) andPB (z;|x;) are computed using BP, inducing a fixed
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overhead computational cost. Then, within an iteration 8DP, we can compute
P(z; | z4) inanincremental way sind®(z; | x4 Uz;) = P(z; | 4) + PP (2;|z;) —
PBP(z;). Our approximation is ad-hoc and we could have considereg: rmound
methods to define an approximationRifr; | = 4) from thePB¥ (z;) andPB (z;|x;).
Different options are discussed in [1]. In particular théhaws pointed out the supe-
riority of methods based on multiplication instead on addit We did not explore
this option since ours provided good empirical results amgschot require any extra
parameters estimation.

Example 3. Weed sampling in a crop field.

In our case study, budget is defined by a maximum fiipg, than can be spent in
the field for sampling. Each sampling step has a differenation since it depends
on the location of the sampled site and on the observed getlags. Therefore two
trajectories of a given policy can have different lengths: they are stopped when any
choice for an extra sampling step would lead to a total santgiime higher thaff,, ...
When applying LSDP, we consider the case wlhdskes integer values and we solve
(4) for every value of time spent so far in the field encountered in the batch so far
instead of every decision step. For a givetthe subset of equations in (4) corresponds
to the states in batcB* reached after spending a tinben the field.

7.2. Two variants of LSDP for OASMRF

Static version of LSDP.It is possible, by changing the features definition, to desig
a static policy for the OASMRF problem. Here by static we m#wat the choice of
the next sample does not depend on the value of the variabées\ed in the previous
sampling steps. It only depends on their locations. Theedlwe set of sampled sites
does not depend on the realizatiorof the hidden map and it can be computed in
advance, before actually sampling the sites. Such a stalicypcan be obtained by
considering the following definition for the featur&g,c {1,...,n},

(bi(sa d, b) = ]l{i:d}u{si;éfl}-

The feature is equal to zero for all sites not sampled (at tineent step or in previous
ones) and 1 otherwise. In our experiments, we will compaigestatic policy to the
above-defined version of LSDP.

Entropy based LSDP.The OASMRF problem and the LSDP algorithm have been de-
scribed for a measure of sampling policy quality based otMB# criterion (1). This
choice is not arbitrary since with this definition the progeslused to restore the MRF
state from a sample output and the procedure used to defisary@ing policy quality
rely on the same criterion. Still, other classical optioas be considered to define the
sampling policy quality. We could, for instance, define th®SMRF problem with an
entropy-based criterion. In this case, since entropy hhas tminimized, we define:

U(Aza) = —HP(Xg |24)) =) Plar | wa)log(P(er | z4)),

TR
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with »H+1 defined accordingly. The steps of the LSDP algorithm woutdaia roughly
unchanged with the entropy criterion except that the festutefinition should be
adaptedtovi € {1,...,n},

(bi(s,d, b) = 7(1 — ﬂ{l:d})H(]P)(Xl | IZ?A)) + ﬂ{i:d}a

whereA C O is the set of indices of the previously observed variablegaluating
marginal entropy is not simpler than evaluating conditlomarginals. In order to
approximate these quantities we could again use approxim@).

Note that the entropy criterion does not provide a rule toresde the variableX i
from a sample output. This reconstruction step still hastpdrformed using MPM or
MAP methods.

8. EXPERIMENTAL EVALUATION

We present simulated sampling problems and one real protteweed sampling
in a crop field to illustrate the gain of using LSDP instead lafssical heuristics or
RL-based solution algorithms. We compared LSDP to the ramtieuristic, the LSDP-
static policy, the BP-max policy, TD{ with tabular representation of th{g-function,
and LSPI. LSPI and LSDP were implemented with the same featdefinition and
were run withe = 0.9. We also compared LSDP to a greedy algorithm based on the
Mutual Information(MI) criterion [16].

The OASMREF problem considered is the following. The grépts a regular grid
andR = O = V. One variable is observed at each decision siep: (1) and sampling
costs are null on the three first sets of experiments. We dereil the following Potts
model distribution¥ x € {0,1}"

1
]P’(z)o<exp (5 Z ]l{zi_zj}).

(i,9)€E

4 x 4 grid. This small problem was introduced in the experiments sineeware
able to compute the corresponding optimal policy, usingdidnekward induction algo-
rithm (see Section 5), and the exact value of any policy. M)Ias run withA = 0.1,
using thes-greedy method for action choice € 0.1). It was run using 675000 sim-
ulated state-action trajectories, in order to reach cgemee. To be comparable, we
ran LSDP and LSPI with a batch of 100 maps and 6750 iterationgréctice a few
hundred iterations are enough). For LSDP the value of thigypobtained at the last
iteration of the algorithm was returned, and for LSPI theieadf the best policy among
all iterations was returned.

The first conclusion is that the absolute difference betvtieenalues of all policies
is small: an absolute increase of the percentages of 2.2 stt M& also compared the
policies in terms of normalised gain compared to the randosva (Figure 4): the
score of a given policy is defined ascorel(§) = %

Among RL algorithms, TDX) is the best and LSDP gives very similar results. In
comparison, LSPI shows a poor behaviour, always returnimgilated policies. Sur-
prisingly the relative values of the Ml and LSPI policies desse with the number of
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Number of observed variables (H)

Figure 4: OASMRF problem with 16 variablescorel of LSDP and classical one-step-look-ahead and
RL-based heuristic policies. A policy witkrorel equal to 0 is a policy with the same value as the random
policy.

observed variables, while the opposite behavior is obsefimethe BP-max heuristic.
The poor performance of the BP-max heuristic with small damjze is explained by
the fact that with few observed sites, all sites have sinmarginal probabilities. In
that situation we arbitrarily choose the site to sample aotie with the lowest index
inV.

10 x 10 grid. For this problem size, only LSDP, LSDP-static, LSPI, BP-raax
random policy can be computed. For LSDP, LSDP-static and i8Rised a batch size
of 1000 maps and 000 iterations. The value of a policy was estimated by Monte &€arl
approximation. We modifieslcore1(8) into score2(8) = ‘V((s;}ffZ‘:)(f’;)(éR”: since
the value of an optimal policy cannot be computégdp_...... Serves as a reference.
Results are displayed on Figure 5.

6

©LSDP
H1.SPI
@ Static LSDP -

score2

5 10 15 20 25 30 35 40
Number of observed variables (H)

Figure 5: OASMRF problem with 100 variablescore2 of LSDP, LSDP-static and LSPI policies. A policy
with score2 equal to O (resp. 1) is a policy with the same value as the rar{desp. BP-max) policy.
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We observed again the poor performance of the LSPI algorittominated by the
random policy forH = 10 to 20). On the contrary, LSDP performs quite better than
the BP-max heuristic for small sample sizes. LSDP also pexddetter than LSPI, in
terms of computation time: faif = 40, an iteration takes about 7 seconds for LSDP,
77 seconds for LSPI. For these reasons (poor performarmgtechimputation time), we
did not consider LSPI in the following experiments.

The LSDP-static policy also leads to an improvement compayeBP-max, but
lower than with LSDP: this example and the previous one destnate the interest of
looking for adaptive policies.

Constrained moves problem.We compared LSDP, BP-max and random policies
on a more realistic sampling problem, involving constrdimeoves on the grid for
observing sites. The agent starts by sampling the site dbgh&eft corner of the grid.
Then, after having observed a site, the agent can only mogdistance-2 sites for the
next observation..

25
81sDpP

5 10 15 20
Number of observed variables (H)

Figure 6: Constrained moves problem with 100 variablesire2 of LSDP policy. A policy withscore2
equal to O (resp. 1) is a policy with same value as the randesp(-BP-max) policy.

We again observed that the absolute difference betweenlallgs remained small
(for H = 10, the value of the LSDP policy 1.7 while the value of the BP-max policy
is59.4). LSPI showed the same poor behaviour than in the previquererent. As we
expected, the gain provided by LSDP in terms of relative mupment of the random
policy (H < 20, see Figure 6) is significant when the sample size is smau(Eib).

Sampling under cost constraintsWith this set of experiments we introduced dis-
tincts costs valueS¢ (7, «;) and we considered the problem of maximising the restora-
tion quality under the constraint of a fixed allocated budgetWe considered three
different cost functions$- (A4, z4). For the type | and type Il, cost depends only on
the site location. With cost I, the sampling cost increasis thie distance to the grid
boundary, while with cost I, we have two different costshie two diagonals (see Fig-
ure 7). With the type Il cost, we consider a functiSp which depends only on the
value of the observatiorS¢ (4, z;) = 2 if ; = 1 and 1 otherwise. We ran the LSDP,
BP-max and random policy on a 2010 grid and for a budgeB = 38. For LSDP
we used a batch of size 4000 or 2000, and 1000 iterations.ltR@sterms of policy
values and numbers of sites sampled are presented in Tabler2he three types of
cost function, one can observe that the ranking of the thodieips values is always
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| Type | cost | Type |l cost | Type Ill cost |

Policy Value | sampled siteg Value | sampled siteg Value | sampled siteg
LSDP 64.80| 27.3(2.5) | 63.6 22.8(0.7) | 65.4 25.6 (1.7)
BP-max | 61.77 19 (1.9) 60.4 15.8(1.9) | 64.7 25.6 (1.8)
Random| 60.27| 26.65(2.8) | 59.7 15.6 (2.3) | 63.7 25.6 (1.9)

Table 2: Values and mean number of visited sites under diffeconfigurations of cost constraints, for
the LSDP, BP-max and random policies. Values between pgases are standard deviations for the mean
number of visited sites.

LSDP > BP-max> random. The LSDP policy distributes the budggin a way that
enables to sample more sites than with BP-max.
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Figure 7: Left: type | repartition of costs, costs are resipely of 1, 2 and 4 for black, grey and white sites.
Right: type Il repartition of cost, costs are respectiveiyl and 4 for black and white sites.

Weed sampling in a crop field under time constraint. We also applied LSDP
to the problem of designing adaptive policies for weed samgph a crop field, de-
scribed in Section 2. A spring barley field has been dividdd e regular grid of
13 x 13 quadrats of 12.942 area each. The density classes of the weed sp€ciks
ium Aparinewas recorded on each quadrat to construct the vectdhe observatiom;
in quadrat is the weed density class and belongs to one of the threeviolipclasses:
0 (no weeds), 1 (less than one plant per square meter), 2€batlvand 3 plants per
square meter). We considered different MRF models corretipg to different prop-
erties and we selected the model with the highest BIC val@g [Ihis model was an
anisotropic Potts model with external field:

]P’B(x)o<exp<2axi+ﬂt Z Lizi=z;3 + Bo Z ]l{m—wj}).

eV (i,7)EE: (i,5)€E,

Subsetds; andE; respectively represent the subsets of edges in tillagettireand in
the orthogonal direction, since tillage can be responédrla difference of spatial cor-
relation between these two directions. The estimated pateswere{«g, a1, o) =
(0,—0.03, —3.58) and (8:, B,) = (0.71,0.12). They have been estimated from the
observed vector. by maximisation of the pseudo-likelihood approximatioh [#he
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(@) (b)

(c) (d)

Figure 8: Sampling policies for weeds mapping. (a) true itiemsap of Galium Aparing and MPM recon-
struction based on (b) LSDP sampling policy, (c) BP-max damgppolicy, (d) a random policy. Sampled
guadrats are marked byma White, gray and black quadrats correspond respectivetietwsity classes 0, 1
and 2.

cost functionS¢ (i, x;) represents the time needed, in seconds, for density classsas
ment in a quadrat (a site of the MRF). To define this functior,used a regression
model based on factors identified as the most relevant byresgdere the cost value
Sc(i,x;) both depends on the quadrat locatioand the observed density class
The influence of the quadrat location is due to the influenda@humber and density
classes of the other weeds species present in quadrbese data were also recorded
when samplingsalium Aparine The time needed for abundance estimation increases
slowly with the density class. The minimum and maximum obston durations are
respectively 190 seconds and 360 seconds. The mean olizerdatation is about
300 seconds with 35 seconds standard deviation. For theriexent, sampling budget
was fixed to 9000 seconds (2h30).

We applied the three policies LSDP, BP-max and random to ksamgl reconstruct
the original weed abundance map used to build the MRF modeDR.was applied
with a batch size of 4000 and 1000 iterations. The true densdip ofGalium Aparine
and maps estimated from sample outputs provided by the fuléses are presented
on Figure 8. Note that in the true map there is only one quadidass 2. This is not
rare in weed maps, but whatever the sampling method, it iz welikely that a MPM
(or MAP) reconstruction classifies correctly this partanujuadrat.

Once again the two adaptive policies increase the qualitiiefeconstructed map
compared to the random one: the numbers of quadrats whedetigity classes are
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well estimated are 125, 124 and 111 respectively, for pegi€iSDP, BP-max and ran-
dom. The difference between the two restorations provigeth® adaptive policies is
small. However, the corresponding explorations of the dield are different. As an
illustration, Figures 9 and 10 display, for the two adaptiadices, the results of the
successive sampling steps, grouped by 6 successively sdmpadrats. One can see
from these figures that the sampled quadrats are more sthteross space with the
LSDP policy. And this is the case even for the first samplirggpst On the contrary,
the BP-max policy concentrates most of the sampling in the ehere the weed is ob-
served at density class 1. Then, since the LSDP policy taitesiccount the remaining
budget to decide which quadrat to sample next, it was ablbserye one more quadrat
than the BP-max policy (38 instead of 37).

9. CONCLUSION

In this article, we have provided a factored MDP model to eepnt problems of
optimal adaptive sampling of spatial processes expressthe iMRF framework. Our
second contribution is a geneti@tch mode Rlalgorithm, LSDP, which can be ap-
plied to any large state-space finite-horizon MDP problesysaon as the MDP model
is known explicitly. Then, our last contribution is an exipgental evaluation of the
LSDP approach for solving the OASMRF problem. Our experitalenwork enables
us to draw the following conclusions. First, in small prahkewhere the optimal pol-
icy can be computed, we notice that the performance of a ypuagldom policy is
quite close to that of the optimal one. This seems to also faldarger problems,
where the estimated value of the random policy remains ¢t8eat of the LSDP pol-
icy. However, in real-life applications of sampling for nppg, small errors in the
reconstruction of maps can lead to a significant increaseaimagement costs (think of
imperfect mapping and eradication of invasive specieslihegpto future catastrophic
outbreaks). Second, for large problems, non-parameteRteapproaches (such as
TD()\)) are too computationally intensive to apply, and the LSBjdraach does not
perform well. On the contrary, both BP-max heuristic andu8®P algorithm provide
good results (provided that the sampling budget is largeighoas far as BP-max is
concerned). BP-max is less computationally expensive ptyapan LSDP. However,
its main drawback is that the choice of the sample does netitdak account its cost.
The budget constraint can only be used to decide when to stapaling trajectory.
In contrast, LSDP can handle cost functions and our expeatisrshow that when sam-
pling costs are nonhomogeneous the superiority of LSDP Bffemax and random
policies is increased.

Our work has similarities with other recent approaches [1%,25, 26] to sam-
pling in graphical models. Most of these approaches comténeistic estimations of
policy values with greedy or dynamic programming approach9], in particular,
have defined a dynamic programming approach to decisioraiphgzal models, sim-
ilar to the one presented in [26] and in the present work. fTolgjective is, as ours,
to define a sampling strategy, but their reward functionnspdér to compute than a
reconstruction quality in MRF (they consider an additivgr@gation of simple reward
functions). However, they face similar problem to oursjwvadtdecision-tree too large
to explore completely to build an adaptive sampling polig¢hile LSDP tackles this
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Figure 9: Locations of sampled quadrats and max-marginaksafor LSDP (left column) and BP-max
(right column) policies. From top to bottom, each figure extpely shows the cumulated samples 1 to 6,
7 to 12 and 13 to 18. Previously sampled quadrats are markédawi and the 6 new ones with-&. The
grey scale indicates the remaining uncertainty before thewssampling steps: black (resp. white) encodes
a max-marginal equals to 1/2 (resp. 1).
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Figure 10: Locations of sampled quadrats and max-margisakes for LSDP (left column) and BP-max
(right column) policies. From top to bottom, each figure sxtpely shows the cumulated samples 19 to 24,
2510 30 and 31 to 37 (for BP-max) or 38 (LSDP). Previously dachguadrats are marked withxaand the

6 new ones with a+. The grey scale indicates the remaining uncertainty befueés new sampling steps:
black (resp. white) encodes a max-marginal equals to 16p (1.
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problem by “sampling” complete trajectories of the full dgon tree, [19] suggest to
explore a bounded-depth subtree (of reasonable size) diithdecision tree, with
heuristic values attached to the leaves. Theoretical apdrerental comparisons of
both approaches are left for further research.

This work opens several directions for future work: on thetyem of sampling in
spatial random fields in one hand, and on more general pra@ésequential decision
under uncertainty. Regarding the framework and algorithenproposed for spatial
sampling, a first possible extension would be to considegradefinitions of sample
quality measures. In this paper, the measure used to dtadtne approach is the MPM
value. However, the MDP encoding and the application of LSIomot crucially de-
pend on the quality measure definition. Other criteria, ascMAP, or Entropy should
be explored. It would probably require to define new featuasswe have illustrated
for the entropy case, and belief propagation algorithmsccsiill be used to compute
approximately MAP or entropy values.

We largely discussed the different options to introduce coastraints in the optimal
sampling problem. We have modelled our sampling problem pohlem of opti-
mising reconstruction quality, under sampling budget traist. However, one could,
dually, be interested in finding sampling policies achigvanminimum reconstruc-
tion quality threshold, while minimising the sampling ca&h MDP encoding of this
problem is still possible and the LSDP algorithm could beliagp It would require
an MPM evaluation at every sampling step to check if the matiquality is reached,
but this can be evaluated approximately based on our timgesftiapproximation of
the conditional marginals. Other forms of sampling costd@ailso be discussed: these
could be more general than the ones we have considered iratfex.pThese could
be linked, for example, to a maximum sampling trajectoryation, modelled as a
sum of transitiongs, a, s’) costs. Finally, even the choice of a MRF to model map
uncertainty can be challenged, while keeping the approacpneposed. One could
easily adapt the principles of our approach to continuoasspodels, provided that
the number of potential sampling locations be finite. In a M@&t€h variable typically
take values in a finite set of small size. We could considelyampypLSDP to problems
with larger (but still finite) domains, when counts data dddae modelled. The only
requirement would be to be able to efficiently compute comddl marginals and sim-
ulate full maps. If the domain of the variable to map is combins, this rises the more
complex question of the definition of MDP on continuous sigiace.

Then, as we already mentioned, the LSDP algorithm is notifipéc the reso-
lution of the optimal sampling problem. One important cdmttion of this work is
a new model-based RL algorithm for large size finite-horidIDP. This means that
it can be applied to solve problems of sequential decisiashetumincertainly where
the state and/or decision space are/is large and factogednieasive species control,
biodiversity conservation, weeds management, ...). MDR&isms already exist to
model the control of spatial processes in time: Factored NEWPDP) [12] and Graph-
based MDP (GMDP) [30], for example. The structure of theseRdBhares numerous
common points with the MDP model of the OASMRF problem. Qigahe LSDP
approach could be adapted to approximately solve FMDP or BMidblems, when
the horizon is finite.
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Appendix

Proof of Proposition 1:

First, letus defing! = ((0,0)) andvt = 2,.... H,ht = ((A*,241), ..., (A7 2 401)).
From any history:?, a unique MDP state’(h*) can be defined ag (h!) = (0, ) and
Vt =2,..,H, st(ht) = (ui;ll Ak,xuzillAk). Then, we define the following trans-
formation ¢ from the set of MDP policies to the set of OASMRF policies. o

MDP policy,d = ¢(r) is defined as: forany= 1... H and any reachable trajectory
ht, §t(ht) = wt(st(h?)).

(i) We first show that/ ™ ((0, 0), 1) = V(¢(n)). Indeed, we recall that

H+1
Vﬂ((qu))a 1) = Eﬂ'[ Z rt | st = (@70)]
= 3 P, s st = ((Z),@))[Zrt(ﬂ't(st))+rH+1(sH+1) :

whereP(s2,. .., s+l | 1, s!) is the probability of the state trajectofy?, . .., s +1),
starting froms! and following policyr. Note that for any “feasible” MDP state trajec-
torys!, ..., s’+1 we candefine a unique histohy! 7! = (A, 2 41), ..., (A" 2 4n)),
whereA' is the set of vertices involved istt! and not inst. Then:

P(SQ, st Es sl) _ 0 if state trajec'tory not reachable,
P(z 4 |) otherwise.

with A = UL, A%, In addition, we have thatr!(w(s')) = 0 andrH+1(sH+1) =
> epmaxy co {P(z, | z4)}. Finally

VT((0,0),1) = Z P(za |)[— az Z Ca + Zggg {]P’(ac,. | J:A)}
reR

hH+1ET¢(Tr) t=1 ac At

= Z ]P’(acA)U(A,xA)
hH+1€T¢(ﬂ-)

= V(o(m)).
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(1¢) Then, we prove by backwards induction that an optimal pobityfor the
OASMREF problem can be defined, which prescribes succesmmples independently
of the order of past observations. Let us consite¥ first.

(A 2 A1), (AT g gm)) = arg max > P(@anlrar, ..., x40-1)U(A 24),

T AH

whered = A'U.. .UAH . BothP(x gu |z 41,...,240-1) andU(A, x4) do not depend
on the order of observations,: , . ..,z 4z—:. Thus,6* ¥ does not depend on the order
of its arguments.
Now, at timeh = H — 1:

SHHTL(AY 2 41), ..., (AH 72 2 4m2)) = arg max

AH-1
T AH—1

> P@an-v,wamlar, .. w2, 67 ))U(Az4).

T AH

Sinces* does not depend on the order of its argumeritd! —! is also independent
of the order of its arguments,1, ...,z 40-2.

Following the same reasoning fbr= H—2, ..., 1, we prove that an optimal poliey
can be computed, which prescribes samples independentigsbfobservations. This
result implies that we can limit the search for optimal pielcof the OASMRF prob-
lem to policiesy prescribing actions which do not depend on the order of ebsiens.

(i4i) Let us now consider a given poligyof the OASMREF in our limited search
space. We can derive a poliey of the corresponding MDP model. The construc-
tion is also by induction:7*((0,0)) = &', and fort = 2 to H and a reachable
states’ we define a history((A, z41),..., (A" 2 4:-1)) of size t-1, where the
order in which observations are made are choosen arbjtrarid we setr(s!) =
SH((AY 2 41), ..., (AP 2 40-1)). With this procedurer is defined only for states
st reachable from policyy. For other states, the policy is set to an arbitrary de-
cision (the value ofr will not depend on this choice since the corresponding state
will never be reached). Let us call this transformation from a OASMRF policy
to a MDP policy. Following the same reasoning agin we can easily show that
VEO((0,0),1) = V(6).

(iv) Finally, let7* be the optimal policy of the MDP model of the OASMRF prob-

lem:

V™ (s,t) > V™(s,t) v, s,t
Therefore the policys(7*) is optimal for the OASMRF problem. Indeed, l&the
a given policy of the OASMRF problem (with the property of @mkndence on the
observations order) and(d) the corresponding policy of the MDP model. We have
that

VT((0,0),1) = VFO((0,0), 1),
andsincd’™ ((0,0), 1) = V(¢(x*)) andV O ((p,0),1) = V(4), we obtainV/ (¢(r*)) >
V(9). This establishes Proposition 1.
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Proof of Lemma 1:
For agiven action trajectoryl’, . . ., d), let us consider a state trajectdsy, . . ., s7+1)
simulated according to the following 2-step scheme.

1. Simulate a map according to the joint distributioR(.).
2. Deduce iteratively the valugs!, ..., s#*!) according tos' (i) = 0, Vi € O
and:

vt e {1,...,H}, s (i) = st (i) + d' (i) (7)
We have that
P(st,...,sf+ | ab, ... d") = Z P(zy)P(st, ..., s | zy,db, ... dT).

Ty EQ™

The probabilityP (st ..., s#*1 |z, db, ..., d*) is either equal to zero or tg since
only one state trajectory can be reached frepnand (d*, . . ., d*) according to (7).
Furthermore, giverid', ..., d"), the state trajectorys', ..., s’+1) can be reached
from any configuratiorry, which agrees with the observations of this state trajectory
on the subsetl of sites visited by the action trajectofy', . . ., d**). Thus, if2/, is the

set of observations collected ohalong the state trajectory?, ..., s 1)

P(s',...s" [d' L dT) = ) Plav) e ,—a)

Ty EQ™

which by definition is equal t&(z', ).

Let us now evaluate the propability to observe the sametsgéetory(s?, ..., s7 1),
given(d', ..., d"), when simulating according to the OASMRF MDP transitiondun
tion:

H
P(s,....sft [ dt, .. d") = P(aly) HIP(JULN | Zhyecay o, xip).
t=2

Using the Bayes rule, one can see thét/, ) ]_[f':2 P(xly | 2l s, ..2l,) is exactly
P(2)y, ...,z ), which is equal td(z'y).

Therefore, with the two simulation schemes, for a giveroadtiajectory(d, . . ., d)
the same state trajectories can be reached (those whaezl\dites are coherent with
the actions) and each state trajectory has the same pritypabiloth schemes.
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