

Isolation and characterization of 15 microsatellite loci in the poplar rust fungus, Melampsora larici-populina, and cross-amplification in related species

Benoît Barres, Christian Cyril Dutech, Axelle Andrieux, Henri Caron, Jean

Pinon, Pascal Frey

▶ To cite this version:

Benoît Barres, Christian Cyril Dutech, Axelle Andrieux, Henri Caron, Jean Pinon, et al.. Isolation and characterization of 15 microsatellite loci in the poplar rust fungus, Melampsora larici-populina, and cross-amplification in related species. Molecular Ecology Notes, 2005, 6 (1), pp.60-64. 10.1111/j.1471-8286.2005.01137.x . hal-01005053

HAL Id: hal-01005053 https://hal.science/hal-01005053

Submitted on 31 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Isolation and characterization of 15 microsatellite loci in the poplar rust fungus, *Melampsora larici-populina*, and cross-amplification in related species

BENOÎT BARRÈS,* CYRIL DUTECH,† AXELLE ANDRIEUX,* HENRI CARON,† JEAN PINON* and PASCAL FREY*

*UMR IAM, Pathologie Forestière, INRA Nancy, 54280 Champenoux, France, †UMR BIOGECO, INRA Pierroton, 33612 Cestas, France

Abstract

We developed 15 microsatellite loci in the poplar rust fungus, *Melampsora larici-populina*, using two enrichment protocols. Polymorphism of each locus was assessed on a panel of 30 isolates, comprising three subpanels (world, regional and local scales). Thirteen loci were polymorphic with three to eight alleles detected. The 15 loci were also tested on five related *Melampsora* species, *M. allii-populina*, *M. medusae* f. sp. *deltoidae*, *M. larici-tremulae*, *M. rostrupii* and *M. pinitorqua*, and partial or global cross-amplification events were detected.

Keywords: Basidiomycete, cross-species amplification, enriched library, *Melampsora larici-populina*, microsatellites

Received 24 June 2005; revision received 8 July 2005; accepted 18 July 2005

The Basidiomycete Melampsora larici-populina causes foliar rust on Populus species from the sections Aigeiros and Tacamahaca and their hybrids (Frey et al. 2005). During the last few decades, this pathogen has caused important economic losses to poplar cultivation in Europe - mainly based on Populus × euramericana and Populus × interamericana hybrids - due to the breakdown of several major resistance genes (Pinon & Frey 2005). Random amplified polymorphic DNA markers were developed for *M. larici-populina* to compare genetic diversity between strains occurring on cultivated hybrid poplar stands and wild riparian Populus nigra stands (Frey et al. 2005). However, observed heterozygosity cannot be detected in this dicaryotic fungus with these dominant markers, which prompted a search for codominant microsatellite markers. Microsatellite markers have already been developed on several Basidiomycetes including rust fungi (e.g. Enjalbert et al. 2002).

Since microsatellites seem to be less frequent in fungal genomes than in other organisms (Lim *et al.* 2004), the strategy of isolating loci in *M. larici-populina* was to build an

Correspondence: P. Frey, Fax: +33383394069; E-mail: frey@nancy.inra.fr enriched library for microsatellites. Total genomic DNA was extracted from M. larici-populina isolates 93ID6 and 98AG31 (Table 1) using DNeasy Plant Mini Kit (QIAGEN) after grinding 5 mg of urediniospores with glass beads (Pei et al. 1997). A first library was constructed according to Edwards et al. (1996) using Hybond membranes with two hybridization rounds. A second enriched library using biotinylated oligoprobes and streptavidin-coated magnetic beads was constructed following the protocol of Dutech et al. (2000) to increase the number of loci. Both libraries were enriched with (TC)₁₀ and (TG)₁₀ motifs and cloned using a TOPO TA Cloning Kit (Invitrogen). In the second library, a colony blot screening according to Estoup *et al*. (1993) and a polymerase chain reaction (PCR) size screening using vector's primers were performed to select clones larger than 500 bp and containing microsatellite motifs. In the first library, 104 clones were selected and sequenced, and 20 contained a microsatellite motif larger than 20 bp in length. In the second library, 3930 clones were screened and 978 gave a positive response for microsatellite presence. After size screening, 96 clones were sequenced and 17 were chosen for primer design. Primers were designed using PRIMER 3 software (Rozen & Skaletsky 2000) and tested

PRIMER NOTE 61

Table 1 Isolates of Melampsora spp. used in the study. Pathotypes of Melampsora larici-populina determined as described in Pinon & Frey (2005)

Species	Isolate code	Pathotype	Original host	Collection site	Year
Melampsora larici-populina					
World subpanel	97A1	0	Populus × euramericana	Morocco	1997
rioria suspanei	97A3	3-4	P. niora	New Zealand	1997
	97110	3-4	P × euramericana 'I-488'	South Africa	1997
	97EA2	4	Populus sp	China	1997
	97C3	1-3-4-5-6-7	P × interamericana 'Beaupré'	UK	1997
	98 A F 3	2	Populus sp	Finland	1998
	99D1	3_4	P trichocarna	Iceland	1000
	00 A 19	0	P × auramaricana (1-188'	Chilo	2000
	08 A D1	124578	$1 \cdot \times eurumericana 'B 71085 / 11'$	Balaium	1009
	95US1	3-4	P. niora (Italica'	USA	1995
Regional subnanol	94775	1_3_4_5_7	P × auramaricana (Choy)	N Franco	100/
Regional subpanel	94ZZJ 05 A A LI 1 2	124567	D × interamericana (Booupré)	NE France	1994
	05VD5	124567	D × interamericana 'Booupré'	SW/ France	1995
	95XI 5 05XM2	12457	P. × interamericana (Peolere)	W France	1995
	957.002	1-3-4-3-7	P. × interamericana boelare	vv France	1995
	98AG31	3-4-7	P.× interamericana Beaupre	N France	1998
	98AO2	3-4-7	P. × interamericana 'Beaupre'	SW France	1998
	00M10	3-4-7-8	$P. \times interamericana$ '69038–1'	NE France	2000
	01L31	2-3-7	P. × euramericana 'A4A'	C France	2001
	01L66	1-2-3-4-5-7	P. × euramericana 'Laxo 7'	NE France	2001
	02AO33	4	P. nigra	SE France	2002
Local subpanel	991006	3-4	P. × euramericana 'Robusta'	NE France	1999
	991009	2-4	P.×euramericana 'Robusta'	NE France	1999
	991036	3-4-7	P. × euramericana 'Robusta'	NE France	1999
	991046	2-3-4	P.×euramericana 'Robusta'	NE France	1999
	991056	1-4-5	P.×euramericana 'Robusta'	NE France	1999
	991061	1-3-4-5-6	P.×euramericana 'Robusta'	NE France	1999
	991094	1-2-3-4-5-7	P. imes euramericana 'Robusta'	NE France	1999
	991108	4	P.×euramericana 'Robusta'	NE France	1999
	991179	3-4-5	P. × euramericana 'Robusta'	NE France	1999
	991192	4-7	P. × euramericana 'Robusta'	NE France	1999
	93ID6	3-4	P. × euramericana 'I 45-51'	NE France	1993
Melampsora allii-populina	98Z1	_	Arum sp.	SE France	1998
	98Z3	_	Allium sp.	SE France	1998
	98Z4	_	Allium sp.	SE France	1998
	98Z5	_	Allium sp.	SE France	1998
	98Z6	_	Arum sp.	SE France	1998
	98Z9	_	Muscari comosum	SE France	1998
	98Z10	_	Allium porrum	SE France	1998
	89A1	_	$P. \times euramericana$ 'Altichiero'	SW France	1989
	96B6-1	_	Allium vineale	NE France	1996
	96M24-2	_	Muscari comosum	NE France	1996
	97M2	_	Allium sphaerocephalum	NE France	1997
	97N1	_	Arum maculatum	NE France	1997
	94HY8	_	P niora	SE France	1994
	94IV7	_	P niora	SE France	1994
	91F4	_	P × euramericana 'Robusta'	W France	1991
	91L5	_	P.×interamericana 'Beaupré'	W France	1991
Melampsora medusae	88MM2	_	P.×interamericana 'Beaupré'	SW France	1988
f. sp. deltoidae	97CN1	_	$P. \times interamericana$ 'Boelare'	SW France	1997
1	98B1	_	P. imes interamericana '87002-21'	South Africa	1998
	98D1	_	P. imes euramericana '5006'	South Africa	1998
	99A3	_	P. × interamericana 'Hoogvorst'	SW France	1999
	99T2	_	P. × interamericana 'Hazendans'	NE France	1999
	01Z1	_	P. deltoides	Canada	2001

Table 1 Continued

Species	Isolate code	Pathotype	Original host	Collection site	Year	
	01Z2	_	P. deltoides	Canada	2001	
	01Z4	_	P. deltoides	Canada	2001	
	01Z5	_	P. deltoides	Canada	2001	
	01Z11	_	<i>P.×interamericana '</i> Unal'	Canada	2001	
	02AZ5	_	P. deltoides	Canada	2002	
	02AZ6	_	P. deltoides	Canada	2002	
	02AZ7	_	P. deltoides	Canada	2002	
	02AZ8	_	P. deltoides	Canada	2002	
	02AZ11	—	P. × jackii	Canada	2002	
Melampsora larici-tremulae	01F1	_	P. tremula	NE France	2001	
Melampsora rostrupii	01G1	_	Mercurialis perennis	NE France	2001	
Melampsora pinitorqua	00S1	_	P. tremula	SW France	2000	
	00S2	_	P. tremula	S France	2000	
	0053	_	P. tremula	C France	2000	

on a panel of 30 *M. larici-populina* isolates comprising three nested geographical (world, regional, local) subpanels with high pathotype diversity (Table 1).

PCR was performed using a PTC-200 Peltier Thermal Cycler (MJ Research) with 5 min at 95 °C followed by 40 cycles of 60 s at 94 °C, 90 s at annealing temperature and 60 s at 72 °C and a final extension step of 30 min at 60 °C. PCR was carried out in 20 μ L final reaction volumes containing 15 ng template DNA, 2 μ L of 10× reaction buffer, 1.5 mM MgCl₂, 0.2 mM dNTP, 0.5 U *Taq* polymerase (Sigma) and 0.2 μ M forward and reverse primers. Out of 37 loci tested, 22 failed to have an interpretable pattern of migration on a 2% agarose gel because of multiple bands or unexpected allele size. Forward primers of the remaining 15 loci (Table 2) were labelled to allow size and dye multiplexing. PCR products were separated, sized and analysed on a CEQ 8000 Genetic Analysis System (Beckman Coulter).

Out of 15 loci tested, 13 were found to be polymorphic with three to eight alleles (Table 2). Expected and observed heterozygosities as well as a test for Hardy-Weinberg expectation were computed using GENEPOP 3.4 (Raymond & Rousset 1995). Departure from expected results was significant for eight loci, which could be explained by either a nonequilibrium state of the population, the sampling structure or a low frequency of null alleles. Locus µMLP22 was suspected to be uniparentally inherited because of the total lack of heterozygotes within the panel. The sequence adjacent to this locus was shown to exhibit 56% identity (29/51 amino acids) with the 5' end of the cytochrome c oxydase subunit 2 gene of the mitochondrion of the Basidiomycete Crinipellis perniciosa using NCBI's BLASTX program (Altschul et al. 1997), strongly suggesting that µMLP22 was a mitochondrial locus. All other loci did not show any significant homology with nucleotide or protein databases.

Loci μ MLP12 and μ MLP13 were isolated from the same clone sequence and are thus physically linked, with a 90-bp interval between the two microsatellite motifs. Nevertheless, no significant linkage disequilibrium (P < 0.01) was detected among all pairs of loci for the 30 isolates of the test panel, according to an exact test performed with GENEPOP 3.4.

All loci were tested for cross-species amplification against *M. allii-populina* (16 isolates), *M. medusae* f. sp. *deltoidae* (16 isolates), *M. larici-tremulae* (1 isolate), *M. rostrupii* (1 isolate) and *M. pinitorqua* (3 isolates). Six loci resulted in global or partial amplification with some related species, but very few intraspecific polymorphisms were detected (Table 2).

Acknowledgements

We thank Christine Delaruelle, Annegret Kohler, Céline Lalanne, Patrick Léger and Martina Peter for their advice and help. This work was partly funded by grants from GIP ECOFOR and from INRA.

References

- Altschul SF, Madden TL, Schäffer AA *et al.* (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research*, **25**, 3389–3402.
- Dutech C, Amsellem L, Billotte N, Jarne P (2000) Characterization of (GA)_n microsatellite loci using an enrichment protocol in the neotropical tree species *Vouacapoua americana*. *Molecular Ecology*, 9, 1433–1435.
- Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. *BioTechniques*, **20**, 758–760.
- Enjalbert J, Duan X, Giraud T et al. (2002) Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Molecular Ecology Notes, 2, 563–565.
- Estoup A, Solignac M, Harry M, Cornuet JM (1993) Characterization of $(GT)_n$ and $(CT)_n$ microsatellites in two insect species: *Apis*

were indicated. *Significant difference between $H_{\rm E}$ and $H_{\rm O}$ (P < 0.05)

Melampsora GenBank Expected T_a size (bp) (°C) Number of alleles (size in bp) Melampsora medusae Melampsora Melampsora Melampsora H_{O} Locus Accession nos Primer sequences (5'-3') Repeat motif of cloned allele size (bp) $H_{\rm E}$ allii-populina f. sp. deltoidae larici-tremulae rostrupii pinitorqua uMI P09 DO059602 (CA) C(CA) A(CA)171 60 4 0.40 0.47 0/1/ 0/16 0/10/10/2 F1 TCAACAACCAAACCAATCAAAC

Table 2 Characteristics of microsatellite loci isolated from Melampsora larici-populina. T_a, annealing temperature; H_F, unbiased expected heterozygosity; H_O, observed heterozygosity; for each combination of related species and locus, ratio between positive isolates and total number of isolates tested, as well as apparent fragment size when cross-amplification occurred,

µMLF09	DQ039802	R1 CARGAACCAAACCAATCAAAC	$(CA)_2 C(CA)_5 A(CA)_5$	171	60	4 (159 165 167 169)	0.40	0.47	0/10	0710	0/1	0/1	0/3
uMI P12	DO059603	F1 TCCTTCACAAACCATACTCCTG	(AAC) () (AAC) ()	245	60	7	0.70	0.63	0/16	0/16	0/1	0/1	0/3
μινιει 12	DQ007000	R1 accentraticaccaaccaacc	(AAG) ₁₀ ()(ATG) ₂ (AAG) ₄	210	00	(239 242 245 247 248 250 266)	0.70	0.00	0710	0710	0/1	0/1	070
uMI P13	DO059604	F1 CTTCTTCCTCCACAAACCTC	(TG)	187	60	4	0.45	0.47	0/16	0/16	0/1	0/1	0/3
μινιεί ιο	DQ000001	R1 CCATA A ACCOCCTGATTTTC	(10)11	107	00	(189 191 193 203)	0.15	0.17	0710	0710	0/1	0/1	070
uMI P20	DO059605	F1 стразастольтосью	(TG)	181	60	3	0.07	0.07	0/16	0/16	0/1	0/1	0/3
μινιεί 20	DQ007000	R1 AAACCAACCAACCATACCAC	(10)10	101	00	(177 179 181)	0.07	0.07	0710	0710	0/1	071	070
uMI P22	DO059606	F1 сосаттетаттатталасаса	(TTA) ()(TTA ATTAC) ()(TTC)	315	60	4	0.62	0.00*	16/16	16/16	0/1	1/1	0/3
µ11111 22	DQ007000		(11)8()(1111110)11()(10)7	010	00	(312 318 324 330)	0.02	0.00	280 hp	291 hp	0/1	274 bp	070
uMI P24	DO059607	F1 сапсассоссалоститаас	(TTC) ()(TTC)	154	60	1	0.00	0.00	0/16	0/16	0/1	0/1	0/3
μινιει 21	DQ007007	R1 approcesserecting	(10)8()(10)5	101	00	(156)	0.00	0.00	0710	0710	0/1	0/1	070
uMI P27	DO059608	F1 сапсстватиствителестетатис	(TTC) (TTTT)	250	60	4	0.49	0.13*	13/16	0/16	0/1	1/1	0/3
μινιει 2/	DQ007000	R1 TGGATGAGGATGATGAGAGG	(10),111(10),	200	00	(240, 242, 250, 252)	0.17	0.10	228–230 bp	0710	0/1	1/1	070
uMLP28	DO059609	F1 ATCCCATGGAATCCGAAATG	(CACCA) ()(CACCA).	459	60	6	0.29	0.21*	0/16	0/16	0/1	0/1	3/3
µ11121 20	2007007	R1 CCTCATTGACCTCGCACTTG	(chechy ₆ (iii)(chechy ₃	107	00	(395 434 439 444 459 469)	0.2	0.21	0,10	0710	0/1	0/1	317–347 bp
uMLP29	DO059610	F1 TGGACAAGTCCAAAATCATCAC	(CACCA).	298	60	3	0.07	0.04*	0/16	0/16	0/1	0/1	0/3
	- 2007010	R1 geteggagttgtggtagtgag	(_/ 0		(295, 300, 310)	0.01		0, 20	0, 20	•/ -	•7 -	0/0
uMLP30	DO059611	F1 TGATGGGTTAGATGATGATTCC	(TGTGTGT)_()	249	63	5	0.25	0.13*	0/16	0/16	0/1	0/1	0/3
<i>p</i>	- 2007000	R1 CAACACACAACAACACACAATTC	(TGTGTGT)()(TGTGTGT)			(247, 249, 256, 263, 314)	0.20		0, 20	0, 20	•, -	•7 -	0/0
uMLP31	DO059612	F1 CCACGACAGAGACGATATAGTTG	(GT),GCTG(GT)	194	54	6	0.22	0.20	0/16	0/16	0/1	0/1	0/3
	~~~~	R1 CTTTCCCACACTTGTTTTGC	(- ,3(- ,9			(182, 183, 184, 187, 190, 192)					-,	-,	- , -
uMLP32	DO059613	F2 CGGATGCCTTAAGACTGTGG	(TC)10	132	60	8	0.82	0.93*	0/16	1/16	1/1	0/1	2/3
	~~~~	R1 AAAGCCAACAAAGATGACCTG	10			(116, 122, 124, 126, 128, 136, 138, 140)				136 bp	118 bp	-,	118 bp
µMLP34	DQ059614	F3 gagaaatcgaacgccagaag	(AG)12AA(AG)	298	51	1	0.00	0.00	0/16	0/16	0/1	0/1	0/3
·	-	R2 TCAAAAGAATTGGGGACTGG	15			(268)							
µMLP36	DQ059615	F1 TTTGAAAAAGTAATCGGAAGTGTG	(AG)14	240	50	6	0.59	0.57*	0/16	0/16	0/1	1/1	0/3
	-	R1 TCAGGTTAGCTTTTCGTTGG	17			(226, 228, 230, 232, 236, 238)						228–236 bp	
µMLP37	DQ059616	F1 CCACGGTTGTGAAGTTGTATTC	(TC)10	224	60	3	0.50	0.63*	0/16	0/16	1/1	0/1	2/3
		R1 ACTTTGGACGTTCGATCACC				(222, 224, 226)					223-229 bp		225–231 bp
											-		·

mellifera and Bombus terrestris. Nucleic Acids Research, **21**, 1427–1431.

- Frey P, Gérard P, Feau N, Husson C, Pinon J (2005) Variability and population biology of *Melampsora* rusts on poplars. In: *Rust Diseases of Willow and Poplar* (eds Pei MH, McCracken AR), pp. 63–72. CAB International, Wallingford, UK.
- Lim S, Notley-McRobb L, Lim M, Carter DA (2004) A comparison of the nature and abundance of microsatellites in 14 fungal genomes. *Fungal Genetics and Biology*, **41**, 1025–1036.
- Pei MH, Whelan MJ, Halford NG, Royle DJ (1997) Distinction between stem- and leaf-infecting forms of *Melampsora* rust on *Salix viminalis* using RAPD markers. *Mycological Research*, **101**, 7–10.
- Pinon J, Frey P (2005) Interactions between poplar clones and *Melampsora* populations and their implications for breeding for durable resistance. In: *Rust Diseases of Willow and Poplar* (eds Pei MH, McCracken AR), pp. 139–154. CAB International, Wallingford, UK.
- Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. *Journal of Heredity*, **86**, 248–249.
- Rozen S, Skaletsky H (2000) PRIMER 3 on the WWW for general users and for biologist programmers. In: *Bioinformatics Methods and Protocols: Methods in Molecular Biology* (eds Krawetz S, Misener S), pp. 365–386. Humana Press, Totowa, New Jersey.