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Introduction

We are interested in the resolution of general Markov decision processes (MDP) with factored state and action spaces, called FA-FMDP [START_REF] Kim | Solving factored MDPs with large action space using algebraic decision diagrams[END_REF]. We are in particular interested in reward functions which constrain the system to be in an admissible domain, defined by several conditions, the longest time as possible.

There are few algorithms able to resolve FA-FMDPs with both a reasonable complexity and a reasonable quality of approximation. Some recent algorithms described in [START_REF] Raghavan | Planning in factored action spaces with symbolic dynamic programming[END_REF], can be used with affine algebraic decision diagrams (AADDs), which are more suited to multiplicative rewards than algebraic decision diagrams (ADDs). The drawback of these algorithms is that they are designed for binary state and action variables, and do not scale to variables with more than two modalities. Most of the other existing methods for solving MDPs with large state and action spaces make the assumption of an additive reward, like approximate linear programming [START_REF] Guestrin | Solving factored MDPs with continuous and discrete variables[END_REF] or mean field approaches [START_REF] Sabbadin | A framework and a meanfield algorithm for the local control of spatial processes[END_REF]. As an alternative, we propose to consider multiplicative rewards as an interesting way of modelling objectives defined as admissible domains, and because this trick, as we will see, allows to find methods of approximate policy evaluation.

Recently, several decision problems have been resolved with methods of inference in graphical models, an idea which has been recently called planning as inference [START_REF] Botvinick | Planning as inference[END_REF]. We may cite for example [START_REF] Toussaint | Probabilistic inference for solving discrete and continuous state Markov Decision Processes[END_REF] which proposes an EM algorithm for solving (non factored) MDPs or [START_REF] Liu | Belief propagation for structured decision making[END_REF] which proposes a belief propagation algorithm for solving influence diagrams. Our idea is to follow this trend and propose an (approximate) policy iteration type algorithm [START_REF] Puterman | Markov decision processes[END_REF] for solving FA-FMDPs with multiplicative rewards. This algorithm iterates over two steps : an evaluation step and an optimization step. In this communication, we focus on the approximate evaluation step of stochastic policies for FA-FMDPs with multiplicative rewards. The method we propose is based on the computation of normalization constants of factor graphs with increasing sizes by existing variational or belief propagation methods which are applicable on large size graphs.

Preliminaries

We consider a FA-FMDP [START_REF] Kim | Solving factored MDPs with large action space using algebraic decision diagrams[END_REF] with multiplicative rewards as a MDP < S, A, P, R, γ > where :

• S is the factored state space : S = n i=1 Si, with each Si a A (stochastic) factored policy is defined by : δ(a t |s t ) = m j=1 δj(a t j |pa δ (a t j )) where pa δ (a t j ) ⊂ {s t i , i = 1...n, a t j , j = 1...m}. It represents the probability of choosing A t = a t when the system is in state s t . We limit our study to problems where the directed graph generated by the paP (.) and pa δ (.) functions is acyclic over state and action variables in time steps t and t + 1. In this case, for a given factored policy δ and a given factored distribution on initial states P 0 (s 0 ) = n i=1 Pi(s 0 i |paP (s 0 i )) (with paP (s 0 i ) = ∅ ∀i = 1...n), the probability distribution over the finite horizon trajectories (s, a)0:t =< s 0 , a 0 , ..., s t , a t > may be represented as a DBN :

P δ ((s, a)0:t|P 0 ) = t t ′ =0 n i=1 Pi(s t ′ i |paP (s t ′ i )) m j=1 δj(a t ′ j |pa δ (a t ′ j ))
The objective of this paper is to provide a way to compute the value of a given factored policy δ for a given factored distribution on initial states. In a FA-FMDP this value is defined as :

V δ (P 0 ) = E +∞ t=0 γ t R(s t , a t ) P 0 , δ

A method for the evaluation of stochastic policies based on the computation of normalization constants

Let us use the linearity of the expectation in order to express the value of δ for P 0 in another way : Rα paR(R t α )

V δ (P 0 ) = +∞ t=0 γ t E[R(s t ,
We thus have V δ (P 0 ) = +∞ t=0 γ t C(t) where C(t) is the normalization constant of a factor graph [START_REF] Kschischang | Factor Graphs and the Sum-Product Algorithm[END_REF] as the one represented in Figure 1, whose variable nodes, represented by circles, are the s 0 i ...s t i , i = 1...n and a 0 j ...a t j , j = 1...m and the factor nodes, represented by squares, are the Pi, i = 1...n (repeated in each 'time slice'), δj, j = 1...m (repeated in each 'time slice') and Rα, α = 1...k (only in the last 'time slice'). Any technique allowing the computation of normalization constants of factor graphs may then be used successively to compute V δ (P 0 ). We may cite for example the junction tree algorithm [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] which is exact (and applicable only to problems with a reasonable treewidth), loopy belief propagation [START_REF] Kschischang | Factor Graphs and the Sum-Product Algorithm[END_REF] or generalized belief propagation [START_REF] Yedidia | Constructing free-energy approximations and generalized belief propagation algorithms[END_REF], tree-reweighted belief propagation [START_REF] Wainwright | Tree-reweighted belief propagation algorithms and approximate ML estimation via pseudo-moment matching[END_REF] which gives an upper bound, mean field [START_REF] Peyrard | Approximations de type champ moyen des modèles de champ de Markov pour la segmentation de données spatiales[END_REF] which gives a lower bound... We propose to deal with the infinite horizon by using a cut-off time t * managed with a parameter ǫ corresponding to the following condition :

γ t * +1
1-γ Rmax ≤ ǫ, guaranteeing an absolute error less than ǫ in the policy evaluation, in the (utopian) case where we can compute C(t) exactly. The evaluation of the policy is thus obtained by the computation of t * normalization constants. We thus have V δ (P 0 ) = +∞ t=0 γ t k α=1 Cα(t) where Cα(t) is the normalization constant of a factor graph which is slightly different from the one of figure 1, with only the reward feature α in the last time slice. With the same stopping time t * as before, the evaluation is obtained by the computation of kt * normalization constants.

Results of experiments on simulations will be given during the workshop, for small size problems in comparison with the MDP value (computed by matrix calculus), and for large size problems in comparison with an evaluation by Monte-Carlo simulations.

Conclusion

We have proposed an original way of evaluating a stochastic factored policy in the general case of FA-FMDPs, based on the computation of normalization constants of factor graphs with increasing sizes. The first results are encouraging. We are now thinking to an optimization procedure, in order to develop a policy iteration algorithm. The policy iteration algorithm iterates phases of policy evaluation and phases of greedy optimisation of the current policy δ : In our case where policies are stochastic, this greedy optimisation problem is a continuous optimisation problem (the parameters of the local functions δj, j = 1...m should be optimised). The difficulty of this optimisation problem depends on whether the function to maximise has some convexity property, which still has to be determined. In all cases, local optimisation methods (gradient-based approaches, for example), may allow to strictly improve the value of the current policy, which is generally sufficient for an approximate policy iteration algorithm to compute "satisfying" approximately optimal policies.

Figure 1 .

 1 Figure 1. Example of factor graph representing P δ ((s, a) 0:t |P 0 ) k α=1 Rα pa R (R t α ) for a given FA-FMDP with two state and action variables and two reward features (n = m = k = 2)

  ∀s ∈ S, δ ′ (s) = argmax a R(s, a) + γ s ′ P (s ′ |s, a)V δ (s ′ )
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i , i = 1...n, a t j , j = 1...m} ; R(s t , a t ) is supposed to be in R + and bounded by Rmax • γ ∈]0; 1[ is the discount factor.
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