
HAL Id: hal-01004997
https://hal.science/hal-01004997

Submitted on 11 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Mobile Agent Technology to Develop a
Collaborative Product Lifecycle Oriented Architecture

Khaled Bahloul, Nesrine Darragi, Yacine Ouzrout, Abdelaziz Bouras

To cite this version:
Khaled Bahloul, Nesrine Darragi, Yacine Ouzrout, Abdelaziz Bouras. Using Mobile Agent Technol-
ogy to Develop a Collaborative Product Lifecycle Oriented Architecture. International Journal of
Computer Science Issues, 2012, 9 (4), 15p. �hal-01004997�

https://hal.science/hal-01004997
https://hal.archives-ouvertes.fr

Using Mobile Agent Technology to Develop a Collaborative Using Mobile Agent Technology to Develop a Collaborative Using Mobile Agent Technology to Develop a Collaborative Using Mobile Agent Technology to Develop a Collaborative

Product Lifecycle Oriented AProduct Lifecycle Oriented AProduct Lifecycle Oriented AProduct Lifecycle Oriented Architecturerchitecturerchitecturerchitecture

Khaled Bahloul1,Nesrine Darragi1, Yacine Ouzrout2and Abdelaziz Bouras2

1Univ. Lille Nord de France, F-59000 Lille,

IFSTTAR, ESTAS, F-59650 Villeneuve d’Ascq, France

2DISP Laboratory

University of Lyon 2 (IUT Lumière)

160 Boulevard de l’Université, 69676 Bron Cedex – FRANCE

Abstract
Today product development activities are becoming more and

more agile, adaptable, and cost-effective. Multi-agent-based

system technology has found wide applications in managing

company’s information. This paper applies Multi-mobile-agent

technology in developing a collaborative architecture for product

lifecycle. By adopting the Aglets mobile agent platform, a generic

platform has been developed for managing legacy product data

and information across the product lifecycle. Different lifecycle

stage product data and information and their interaction and

administration are encapsulated, represented and operated with

different agents. The system aims to integrate mobile agents into

different locations so as to fully utilize the product lifecycle

information, and make the product lifecycle decision satisfying

the global target of the company. The architecture and the

working principle, framework and implementation of the system

are addressed in detail. The model of the mobile agents in the

system and the technique to realize them are also illustrated with

a real case example. The contribution of this paper is to develop

a generic architecture for product lifecycle based on the multiple

mobile agent technology, adopt the Aglets mobile agent platform

to develop a series of Aglet templates to encapsulate and manage

the different legacy product data and production information and

integrate them into the product lifecycle context. It cannot only

simulate real product lifecycle activities from design to recycling

but also provide an environment for managing lifecycle product

information.

Keywords:Mobile Agent, Product Life Cycle, Collaboration,
Multi-Agent Systems.

1. Introduction

Today, challenges faced by product development

teams include globalization, outsourcing, mass

customization, fast innovation and product traceability, etc.

These challenges enhance the need for collaborating

environments and knowledge management along the

product lifecycle stages. To meet such new requirements, a

generic architecture or framework is required to encourage

participants to share new ideas, methodologies, techniques,

systems, tools, languages, and best practices. The rapid

progress of emerging information and network

technologies such as Internet and Intranet is driving a

revolution of product design and manufacturing patterns

for companies. Networked or collaborative product design

and manufacturing as an emerging product development

paradigm is becoming the subject of research and practice

interests.

Numerous efforts have been made to improve the

management of product lifecycle information. A variety of

information systems and networks working within and

between product lifecycle and its supporting activities have

been developed to facilitate the flows of information.

However, there is a bottleneck, that is, how to develop the

networked interfaces for legacy product data and

information and resources including legacy software,

CAx/DFx
1
 and information sharing/exchange. Some

limitations are witnessed, such as, systems lacking

flexibility, program code maintenance and system security,

are not easily realized. There is also which of coordination

and integration between these systems. To solve this

problem, there two different schemes currently exist [Zhou

and Jiang 2005]:

1) Developing new network-centric or shared

information models;

2) Developing network-centric interfaces for legacy

product information model and manufacturing/ production

resources.

However, there are two reasons hindering the putting on

the practice on the first scheme. One is that a great deal of

legacy manufacturing resources have to be discarded if we

want to use new network-centric manufacturing resources

to replace old ones. Another is that such new

manufacturing resources need much stronger supports of

manpower, material resources, financing and techniques.

As a transitional solution, the second scheme has been the

subject of broad research and practice in recent years.

1
The acronym “CAx” is sometimes used as a generic term for the

various “computer-aided” systems used in manufacturing

industry. DFx means “Design for x”

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 1

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Through adopting APIs to modify and standardize the

networked interfaces, the legacy manufacturing resources

can be easily integrated into the networked manufacturing

systems. Currently, some middleware technologies, such as

CORBA, DCOM and multi-agents, have been applied to

implement these kinds of APIs, with great success [Zhou

and Jiang 2005].

A Multi-Agent System (MAS) is defined as a loosely

coupled network of agents that interact to solve problems

beyond the individual capabilities or knowledge of each

problem solver [Lesser and Durfee 1989]. MAS can be

used to model or actually perform tasks in a collaborative

product lifecycle management context or support systems

due to the similarities of the nature of these two systems.

In fact, to make the product development activities become

more and more agile, adaptable, and cost-effective, the

MAS technology has now been widely used in managing

product lifecycle information for modern companies. A

mobile agent is defined as a specialized kind of agent

which can move itself from one site to another by keeping

its essential properties and can take the current memory

status with it during its dislocation [3]. The mobile agent

technology is an emerging technology whose concept

comes from the area of MAS / distributed artificial

intelligence [15] [8]. It has the potential to provide a

convenient, efficient and robust programming paradigm for

distributed applications, even when partially connected

computers are involved. The mobile agent technology now

attracts many interests from the fields of distributed

systems, mobile computing, and electronic commerce,

among others. In these settings, our research in this paper

aims to propose a Multi-Mobile-Agent (MMA) based

solution (architecture) to benefit from advantages of the

MAS that represent a new way to analyze, design and

implant systems of complex product lifecycle

data/information processing as well as the mobility,

communication, autonomy and cognitive capabilities of

agents.

This paper aims to develop a framework based on the

multiple mobile agent technology for collaborative product

lifecycle. The contribution of this paper is to adopt Aglets

mobile agent platform to develop a series of Aglet

templates to encapsulate the different legacy product data

and information and integrate them into the product

lifecycle context.

The paper is structured as follows. Sections 2 and 3

provide an overview of the MMA technology and propose

its application for collaborative product lifecycle. Section 4

proposes MMA architecture for collaborative product

lifecycle (CPLC). Section 5 gives more details on the

implementation and validation of the proposed MMA

architecture for CPLC. Section 6 provides a case study to

illustrate and demonstrate how to apply the proposed

architecture to the case of a Wagon. This case study

presents a generic multi– mobile agent architecture

simulated in the PLM context of Wagon. Section 7

concludes the paper and some perspectives are also given.

2. Basic Concepts on Multi-Mobile-Agent

System Technologies

In our research context, an agent is considered as a piece of

software with the following basic properties [Christoforos

et al., 99]: 1) autonomy- an agent can act and control its

actions by itself, 2) ability to interact-an agent can

communicate with information sources and other agents to

exchange information, and 3) reasoning ability - an agent

has some means for decision-making about how to solve a

problem. These three essential properties make the

difference between an agent and a normal computational

process. Agents can be dynamically organized based on a

control or connection structure. Different types of agents

may represent different objects, with different authority

and capability, and perform different functions or tasks.

A MAS, consisting of a agent’s group taking specific roles

within an organizational structure [Durfee and Lesser

1989], is based on the notion that the system intelligence is

distributed among a set of agents which cooperate with

each other to coordinate their actions and objectives so that

problems can be solved. The MAS technology can provide

methodologies and techniques for modelling complex,

distributed and cooperative domains. It has been applied in

many domains, such as [Rabelo et al. 94] [Jennings 94]

[Fischer et al. 96] [Spinosa et al. 97]. Four important

characteristics are often mentioned as a rationale for

adopting the MAS technology [Bond and Gasser, 1988]:

1) Each agent has incomplete information or

capabilities for solving the problem with a limited

viewpoint;

2) Data, control, expertise, or resources are

inherently distributed;

3) The system is naturally regarded as a society of

autonomous cooperating components; and

4) The system contains legacy components

interacting with other components.

MAS and mobile agents have been widely used in Supply

Chain Management (SCM). Long et al. published a study

with focus on modeling and distributed simulation in

Supply Chain, assisted by MAS [Long et al., 2011]. Cheng

et al. presented a system of mobile agents ensuring the

order tracking to customers in a supply chain. The aim of

the mobile agent's use is to provide a data exchange

platform [Cheng and Wang, 2008]. Mobile network agents

are programs that can be dispatched from one computer

and transported to a remote computer for execution.

Arriving at the remote computer, they present their

credentials and obtain access to local services and data.

The remote computer may also serve as a broker by

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 2

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

bringing together agents with similar interests and

compatible goals, thus providing a meeting place at which

agents can interact. Specifically, a mobile agent is a

process that can migrate from one computer to another

during its execution. It possesses the facility to move while

carrying away its code, its data, as well as its state of

execution. Mobile agents can also communicate with each

other, clone, merge, and coordinate their computations.

Mobile agents are autonomous agents in the sense that they

control their relocation behaviour in pursuit of the goals

with which they are tasked. These properties are additional

reasons that make mobile agents a good candidate to be

used in a loosely coupled network environment. The

programming for mobile agents is a complementary

paradigm for the programming of distributed applications.

There are seven good reasons for using the mobile-agent

technology [Harrison et al. 00]:

1)Reduction of the network load: The agent can work

locally and also transports its program and its information

(state and properties).

2)Surmounts the latency of the network: While executing

itself locally, the agent avoids latency.

3)Encapsulation protocols: The agent can establish a

channel to implant a protocol ownership in a distant

execution environment.

4)A synchronous and autonomous execution: While the

network is breaking down or becoming slow, the agent

does not have to wait.

5)Dynamic adaptation: The agent is reactive and can

reconfigure itself on a network

6)Heterogeneous: The agent is independent on the platform

and it only depends on the environment of execution.

7)Robust and tolerant to failings: At the time of closing of

the plots, when warned before, agents can move

A mobile agent platform is a development environment

that offers APIs permitting the development and

management some mobile agents capable of evolving in a

distributed environment. Generally, a development

platform offers:

1)Some primitives permitting the managing the mobility of

agents (i.e., transfer from one node to other);

2) The primitive bound to relative environment releases to

the transfer of agents (arrived on a node, departure of a

node);

3)The primitive of communication adapted to the

distributed environments: synchronous and asynchronous

communication between agents.

The most advanced features include technologies such

as Java permitting the development of agents in the

heterogeneous environments. Two mobile agent types exist:

portable and importable agents. The portable agents are the

flat mobile agents that are Java based, in which there is no

problem of portability of one operating system to the other,

and the importable agents are the flat mobile agent that are

not Java based in which there are therefore problems of

portability. Here, we present a set of features that are

applicable in the choice of the platform. General features of

the flat mobile agents including programming language of

implementation, protocol network are [Papastavrou et al.,

99]:

1)Lifecycle of the agent

2)Mobility of the agent (e.g., control of the migration)

3)Communication of the agent (e.g., communication from

afar, synchronous, asynchronous….)

4)Functionalities of security (e.g., internal security

mechanism…)

5)Nature of the license (e.g., free, commercial software...)

Here are some flat mobile agent platforms that are

widely used and / or the best known (the list is not

exhaustive):

1)Aglets Software Development Kit (IBM Japan),

2)Grasshopper of IKV++ (Germany, Java based)

[Magedanz et al., 00],

3)Odyssey of General Magic (USA, Java based),

4)Voyager of ObjectSpace (USA, Java based),

5)Agents of the Darmouth College (USA, non-Java based),

6)OpenCybele of Intelligent Automation Incorporated

(USA, Java based).

3. Overview of the Multi-Mobile-Agent

Based Collaborative Product Lifecycle

In the literature reviews, a product consists of three

separate dimensions that when combined, form the

finalized product. In order to actively explore the nature of

a product further, those three different views should be

considered: the core product, the actual product, and finally,

the augmented product. These are known as the three levels

of a product [Kotler, 88] [Khosrowpour, 99].

- The core product is not the physical product; it

represents the benefit of the product that makes it valuable

to the customer.

- The actual product is the tangible, physical product.

- The augmented or increased product is the non-physical

part of the product. It may contain information and detailed

representations of the actual product.

In this context, the consideration of an intelligent

product capable of embedding and managing all or part of

its information, in order to launch and organize its own

manufacturing or simply to enable access to its

informational items, is probably one of the most promising

approaches of the last decade. The paradigm of an

improved product able to embed information is a first step

towards the evolution of core products.

During the last decade, the concept of «Intelligent

Product» has been widely used in manufacturing systems.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 3

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

This concept is often used to indicate a product equipped

with a specific technology that enables it to develop certain

capacities. Indeed, according to [Wong et al., 04] an

intelligent product possesses all or some of the following

features:

1. A unique identity

2. The capacity of communication with its environment

3. The capacity to retain or store data about itself

4. The capacity to use a language to display its features,

requirements etc.

5. The capacity to participate in or make decisions

relevant to its own destiny

Using these features, [Wong et al., 04] categorizes

product intelligence in two levels:

Level 1: information oriented intelligence that enables

the product to be conscious of its status, and to be able to

communicate about it. This level of intelligence is ensured

by the first three features of the previous list.

Level 2: In this case the product is supposed to be able

to influence and control operations related to its

manufacturing. This level of intelligence is said to be

decision-oriented. To achieve this level of intelligence the

product should ensure all features of the list below.

Jiao et al. proposed a system paradigm of mobile

agent collaboration, including the implementation of a

negotiation system for global manufacturing Supply Chain

[Jiao et al., 2005]. Mahdjoub et al. suggest a knowledge

management approach based on an expert knowledge agent

to facilitate the design process [Mahdjoub et al. 2009]. On

the other hand, Xu provides a cloud manufacturing system

inspired from cloud computing to ensure scalability of

resources and the complexity of manufacturing processes

[Xu, 2011]. The use of mobile agent is to support the inter-

connexion and the intercommunication with CAx

interfaces.

Through Product Lifecycle Management (PLM) we

gain access to managing and acting upon the gathered data

throughout the subsequent lifecycle phases. However, the

data flow must not remain unidirectional; it must also flow

from the design phase and production phase downstream

through the usage phase to the end of life phase, closing the

information loops across the entire product lifecycle. This

allows for access to relevant information at later stages of

the product lifecycle, enabling the optimisation of

downstream processes such as operation, maintenance or

repair. By this means, the total cost of product lifecycle and

the ownership of legacy data and systems can be reduced.

Product lifecycle management or support systems

(PLMS/PLCS) inherently have domain characteristics of

the MAS technology. The virtual enterprise (VE) concepts

can even impose changes in the way of a company

normally operates, i.e. from an isolated, non-cooperative

and selfish to a largely open, cooperative and democratic

way of working. Suitable information technology (IT) with

true partnership is one of key aspects to establish a

successful VE and, hence, to facilitate the collaborative

product lifecycle activities. To better exploit the potentials

of an intelligent agent approach or the MAS technology

within a product lifecycle context, the following

requirements need to be satisfied [Hardwick et al. 1996,

Rabelo et al. 1997, Zweben 1996]:

1. Information and company integration: A multi-

agent-approach requires an efficient information

management mechanism and flow to support a very

intensive information exchanging process. The more an

enterprise has its information suitably modelled and

integrated in all the involved product lifecycle activities -

the more efficient and reliable that process tends to be.

2. Standards for communication: An efficient PLM

or PLCS system requires companies to exchange

information with each other, with much more relevant

aspects when the mobile-agent-based approaches are

involved. However, different companiescan use different

information technologies. Thus, the use of standards is an

essential requirement to make possible a more "direct"

communication among them, both in terms of code and

semantics.

To achieve these issues, a product-centric information

management approach is employed in this research. A

Product Avatar [Cassina, 2008] is an abstraction of a

product. It is the virtual representation of a physical

product. The Product Avatar concept is proposed to

provide a suitable mechanism for the establishment of

architecture management information, supporting the

product-centric perspective described above, closing the

information loops and enabling a bidirectional information

flow. The Product Avatar's ability to participate and make

decisions or to operate upon information about [Cassina et

al. 2009] ensures itself functionalities. The Product Avatar

denotes a concept where individual products are viewed as

physical entities which are exclusively coupled with digital

entities representing them throughout their entire life-

cycles. To develop such a product-centric information

management system, a multiple mobile-agent technology is

proposed to solve the problems identified above and to

develop a collaborative product lifecycle architecture and

framework.

The basic working scenario of the proposed mobile

agents approach/technology for product lifecycle is as

follows: Once the product lifecycle (from its concept to

disposal) and its mission are formed, the administrator of

the product lifecycle creates the lifecycle stage mobile

agents according to its submissions and subtasks, such as

design agent, production agent, maintenance agent, and

recycling agent (see Section 4 below), imposes and

instructs them about the «mission» and dispatch them to

the product lifecycle stages in order to perform or end their

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 4

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

missions or tasks in the lifecycle. The modeling for a

generic mobile agent is described below. Details of

modeling and implementation for product lifecycle mobile

agents will be described in Sections 4 and 5.

Normally, a mobile agent life cycle is composed of five

general phases [Rabelo et al. 1997]: creation, mission

programming, dislocation, mission execution and mission

ending. The mission ending in turn involves two actions

which can be performed after the execution of its mission:

the mobile-agent (self-) killing or its return to the site

which has originally launched it. The modeling of a

mobile-agent can use the object-oriented modeling and

programming paradigm. This means that the mobile-agent

knowledge can be represented in terms of its attributes and

methods. The attributes of the mobile agent object indicate

its characteristics, including the identification, the site of

origin, the restrictions of time to perform its mission, the

specification of the access rights at the explored site, the

high level communication protocol ontology. The methods

of the mobile agent object describe the functionality by the

agent the mission programming of the mobile agent can be

carried out regarding the type of its mission, which means

that different classes of missions can be configurable or

can be developed along time. In the proposed approach,

creating mobile agents means instantiating the agent model

according to the coordinator’s objectives or the missions of

the mobile-agents and their related characteristics. Once an

agent finishes its mission it can either kill itself at its own

site or it can return to the administrator/coordinator site.

This behaviour also depends on the agent's mission. Many

mobile-agents may be located temporarily at a certain site.

Depending on its mission, the mobile agent may move

itself to other companieswith the information it had in the

previous site. This is especially useful when more complex

decisions in which a global view upon the product lifecycle

is necessary.

4. Proposed Multi-Mobile-Agent

Architecture for Collaborative Product

Lifecycle

In this section, we discuss the proposed mobileagent-

based collaborative product lifecycle architecture. In the

product lifecycle context, many "services" can take

advantage of mobile-agents, especially when they are

programmed to play as information providers (push

technology). These agents are listed below:

1) Administrator agent;

2) Product agent;

3) Concept/design agent;

4) Production agent;

5) Maintenance agent; and

6) Recycling agent.

The proposed architecture focuses on the product life-

cycle and its decomposed phases which are considered the

most interesting, such as design, production, maintenance

and recycling phases.

This architecture allows reducing the interactions

between these different phases and centralizes data on

same products. In this context, it is necessary to put

forward a methodology and framework for shaping the

product and its development during these phases. Our

objective is to put the product in the focus of the

architecture and to take into account the necessary

resources. The notion of the Product Avatar in Section 3

above can provide a suitable mechanism for the foundation

of the information management architecture. We shape

each enterprise as an agent; and each agent takes the

information concerning a phase in the product lifecycle.

Equally, we define the product agent in terms of

information concerning its structure from one phase to

another. This agent is the focus of the architecture; it

embeds the information and defines even the notion of the

Product Avatar. Finally, we use the administrator agent to

create of all other agents, each of which is in its machine

following well defined URL addresses. This agent does not

play any role after the creation of the other agents. During

its life-cycle, the product passes through different phases:

from the design to the recycling. The necessity to present a

collaboration environment encourages exchange and

communication between different actors concerned by

those phases. The proposed architecture guarantees a

communication level that assures the exchange between the

different agents and the agent producers. Interactions

between these agents are represented in the collaboration

diagram. Figure 1 shows an overall MMA architecture and

framework for collaborative product lifecycle. It can be

divided into four functional units: client sites, mobile agent

servers or runtime, mobile agent templates and legacy

product information and manufacturing resources.

To help us understand the usage of the architecture in the

product lifecycle, a UML use case diagram, as shown in

Figure 2, is used to analyze the MMA architecture and

possible scenarios occurring for the collaborative product

lifecycle. The icon of a man is a symbol as the actor for an

agent, and the ellipse diagram represents a use case. From

the use case diagram, five agents as actors are mainly

involved in collaboration of the product lifecycle

architecture. The system can save a lot of necessary

product information and system states, which are available

for product lifecycle management or support systems.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 5

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1Product lifecycle mobile agent framework

Fig. 2 Use case diagram for the global architecture

5. Implementation

The implementation of a prototype MMA system is based

on the IBM Aglet mobile agent platform as a collaborative

environment. In this section, we first give an overview of

the Aglet platform, and then provide more details on the

implementation of the proposed architecture in the Aglet

platform.

5.1. Overview of the Aglet Platform

Aglets Software Development Kit is a free platform from

(IBM), It offers an environment for programming mobile

agents in JavaTM over the internet. An Aglet represents the

next development forward in the evolution of executable

content on the Internet, introducing program code that can

be transported along with the information state. Aglets are

Java objects that can move on the Internet from one host to

another, i.e. an Aglet that executes on one host can

suddenly halt execution, dispatch itself to a remote host,

and resume execution there. When the Aglet moves, it

takes along its program code as well as its data and the

states of all the needed objects. A built-in security

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 6

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mechanism makes it safe to host entrusted Aglets. The

goals of the system are:

1) To rovid an easily comprehensive model for

programming mobile agents without requiring

modifications of the Java VM or native code.

2) To support dynamic and powerful communication that

enables agents to communicate with unknown agents

as well as well-known agents.

3) To design a reusable and extensible architecture.
4) To design a harmonious architecture with existing

Web/Java technology.

The Aglets architecture consists of two APIs (Aglet API

and Aglets Runtime Layer - The implementation of Aglet

API) and two implementation layers (Agent Transport and

Communication Interface and Transport Layer)

The Aglets runtime layer is the implementation of Aglet

API, which provides the fundamental functionality such as

creation, management or transfer of Aglets. This layer

defines the behaviour of APIs such as Aglet and

AgletContext, and can serve multiple AgletContext objects.

The transport layer is responsible for transporting an agent

to the destination in the form of a byte stream that contains

class definitions as well as the serialized state of the agent.

This layer is also defined as an API, called Agent Transfer

and Communication Interface (ATCI), which allows the

Aglets runtime to use the transport layer in a protocol-

independent manner. The implementation of ATCI is

responsible for sending and receiving an agent and

establishing a communication between agents. The current

Aglets implementation uses the Agent Transfer Protocol

(ATP), which is an application-level protocol for

transmission of mobile agents. ATP is modeled on the

HTTP protocol, and can be used to transfer the content of

an agent in an agent-system-independent manner. To

enable communication between agents, ATP also supports

message-passing.

When an aglet issues a request to dispatch itself to a

destination, the request travels down to the Aglets runtime

layer, which converts the Aglet into the form of a byte

array consisting of its state data and its code. If the request

is successful, the Aglet is terminated, and the byte array is

passed to the ATP layer through the ATCI. The ATP, which

is the implementation of ATCI, then constructs a bit stream

that contains general information such as the agent system

name and agent identifier, as well as the byte array from

the Aglets runtime.

5.2. System Implementation Architecture

We use the Aglet Java-Based internet agent to deploy our

architecture. The proposed architecture is based

fundamentally on four phases: the design phase, the

production phase, the maintenance phase and the recycling

phase. Relations between classes of the architecture are

presented in the class diagram, as shown in Figure 3.

Interactions between different objects involved in our

system are represented in UML sequence diagrams.

(1) Administrative Agent

The administrative agent (Figure 4) is able to:

a) Create each agent in its machine,

b) Capture features of the product as the name, category,

mark, identifier and date of creation. Users must have

already chosen the address URL among an existing list.

Such as:

• The Aglet is composed of several attributes and

methods.

• The attributes ensure the utility of Aglet in the

platform and characterize it while specifying:

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_Admin: Agletproxy)

• its context (Contexte_Ag_Admin: AgletContext)

The principal methods defining the events of Aglet:

run ():for the execution of Aglet

HandleMessage (): for the receiving messages starting

from other Aglets

SendMessage ():for sending messages towards other Aglets

Dispatch_Recycling_Agent():to dispatch the Recycling

Aglet

Dispatch_Concept_Agent():to dispatch the design Aglet

Dispatch_Production_Agent(): to dispatch the Production

Aglet

Dispatch_MaintenanceAgent(): to dispatch the

Maintenance Aglet

Dispatch_Product_Agent(): to dispatch the Product Aglet

Fig. 3 UML class diagram of the global architecture

(1) Administrative Agent

The administrative agent (Figure 4) is able to:

a) Create each agent in its machine,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 7

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

b) Capture features of the product as the name, category,

mark, identifier and date of creation. Users must have

already chosen the address URL among an existing list.

Such as:

• The Aglet is composed of several attributes and

methods.

• The attributes ensure the utility of Aglet in the

platform and characterize it while specifying:

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_Admin: Agletproxy)

• its context (Contexte_Ag_Admin: AgletContext)

The principal methods defining the events of Aglet:

run ():for the execution of Aglet

HandleMessage (): for the receiving messages starting

from other Aglets

SendMessage ():for sending messages towards other Aglets

Dispatch_Recycling_Agent():to dispatch the Recycling

Aglet

Dispatch_Concept_Agent():to dispatch the design Aglet

Dispatch_Production_Agent(): to dispatch the Production

Aglet

Dispatch_MaintenanceAgent(): to dispatch the

Maintenance Aglet

Dispatch_Product_Agent(): to dispatch the Product Aglet

Fig. 4UML State/Activity Diagram: Administrator Agent

(2) Conception Agents

All the activities performed by the design agent are

presented in the activity diagram (Figure 5). It allows us:

a) To enter, initially, the component list while specifying

features (name, identifying, type, mark) of every

component,

b) To provide the definition of the component

nomenclature while choosing the component among the

list, assigning a design, and then defining the list to be

composed,

c) To define the dismantling range which enables the

capture of the data that will be useful in the phase of

retaining the information about the dismantling range of a

component through a very definite operation following a

precise type,

d) To register of information,

e) To send information toward to product agent,

f) To allowed the product agent towards to migrate the next

phase (e.g., the production phase) while carrying all

information.

The Aglet of the design agent is composed of several

attributes and methods. The attributes ensure the utility of

the Aglet in the platform and characterize it while

specifying:

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_C: Agletproxy)

• its context (Context_Ag_C: AgletContext)

The principal methods defining the events of the Aglet

include:

Dismantling_Rang (): to save the range of dismantling of

the product

Bill_of_Material (): to save Bill of Material of the product

List_Component (): to save the list of the components of

the product

Dispatch_Product_Agent (): to dispatch the product agent

towards the next phase in the product lifecycle.

Fig. 5 UML Activity Diagram: design agent

 (3) Production Agent

Based on information saved in the product agent, the

production agent allows us:

a) To define the range of manufacture of the product while

choosing components treated among the list of components

in every operation, in addition to the machine and the

period of treatment,

b) To register these operations,

c) To send information towards the production agent, and it

also allows

d) The agent's migration towards the next service (the

maintenance service) while carrying all the information.

The Aglet is composed of several attributes and methods.

The attributes ensure the utility of the Aglet in the platform

and characterize it while specifying:

identification

Save

Information

reception

information

Send

Information

Component

Lis t

Bill of Material

Desmantling

Rang

reception

information

Product Agent

Concept Agent

Move

DispatchSend

information

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 8

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_P: Agletproxy)

• its context (Contexte_Ag_P: AgletContext)

 The principal method defining the events of Aglet:

Manufacturing_Range(): to define and save the range of

manufacturing

Fig 6 UML Activity diagram: Production Agent

(4) Maintenance Agent

The maintenance agent (Figure 7) creates the document of

maintenance while taking information saved on the product

as a basis. This agent allows: a) the capture of the date of

the maintenance operation, b) the definition of the

operation type: preventive maintenance, curative

maintenance or critical breakdown, c) the selection of

components treated in every operation , d) the capture of a

commentary for the description of the operation , e) the

safeguard of this information, f) Sending this information

towards the agent producers, and g) The agent's migration

towards the next service, while carrying all the

information. Note: in case of breakdown the maintenance

agent must send a message of information toward the

production agent.

The Aglet is composed of several attributes and methods.

The attributes ensure the utility of Aglet in the platform

and characterize it while specifying:

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_R: Agletproxy)

• its context (Contexte_Ag_R: AgletContext)

 The principal method defining the events of Aglet:

Maintenance_Type(): to define and save the range of

maintenance; in this operation the Aglet needs to have

information in Aglet Product.

Fig. 7 UML Activity Diagram: Maintenance Agent

(5) Recycling Agent

In the last phase (recycling phase), the recycling agent

consult all information (Figure 8); in addition it allows: the

capture of a commentary on the history of the product

allows us to define the definite ranges of disassembling.

The Aglet is composed of several attributes and methods.

The attributes ensure the utility of Aglet in the platform

and characterize it while specifying:

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_R: Agletproxy)

• its context (Contexte_Ag_R: AgletContext)

 The principal method defining the events of Aglet:

Recycling_Type(): to define and save the type of recycling,

in this operation the aglet needs to have information for

the Aglet Product.

Fig 8UML Activity Diagram: Recycling Agent

(6) Product Agent:

The product agent is the most important agent in the chain,

which is a carrier of information and moves according to

the other demanding agent. The collaboration diagram

(Figure 9) shows that the agent's displacement produces

localization to another phase (service) while following

events (Dispatch (URL)) of the other agents. It also shows

the exchange of messages between the agents; these

messages are essential information and data collected

constitute the product itself.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 9

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The Aglet is composed of several attributes and methods.

The attributes ensure the utility of Aglet in the platform

and characterize it while specifying:

• its identifier (myID: AgletID),

• its proxy (Proxy_Ag_R: Agletproxy)

• its context (Contexte_Ag_R: AgletContext)

 The principal methods defining the events of Aglet:

Save_List_CMP():to save the component list from the

Aglet design

Save_Bill_of_Material():to save the component list from

the Aglet design

Save_Range_Des(): to save the component list from the

Aglet design

Save_Range_Product(): to save the range of production

from the Aglet Production

Save_List_resource(): to save the component list from the

Aglet design

Save_Ope_Maintenance(): to save the range of

maintenance from the Aglet Maintenance

treatment_Recyclage():to save the type of recycling from

the Aglet Recycling

6. Case Study

The validation of the proposed architecture was done on

the basis of an industrial case study (Figure 10). We begin

with the definition of the Administrator Agent. Then, we

define other agents which represent the phases of the

product lifecycle: Design Agent, Production Agent,

Maintenance Agent and Recycling Agent. Each agent is

created with a specific IP address.

After creating the four synchronous agents, we create the

product agent, on the same IP address as the design agent.

At the beginning of the product lifecycle, we define the

components, the bill of material, the dismantling range, etc.

The product agent saves all data and changes its location to

move towards the next phase of the lifecycle regarding the

new IP address. In the production phase, we define the

range of production based on the saved data in the product

agent. Similarly, the product agent saves the data and

changes its location from a phase to another for the

following phases.

Fig 9UML Activity Diagram: Product Agent

Fig. 10 Case study activity diagram

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 10

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 11 Bill of materiel schema

Based on the proposed architecture in Section 3 and the

choice of the Aglets platform in Section 4, we present in

this section the application of the proposed architecture to

the of the wagon case. It presents a generic MMA

architecture simulated in the PLM context.

6.1. Wagon Lifecycle Analysis

In order to describe the product "Wagon" we present the

information defined in the following various phases.

(1) Conception phase: It is the period of time in the

product lifecycle during which the conceptual designs and

data are created, documented, and verified to satisfy the

customer’s requirements.

ORTEMS tools [ORTEMS, 2011] have allowed us to

develop a unique line of Supply Chain planning,

production and scheduling software. Based on these tools,

we give the following description of technical data which

describe the composition of the product. This configuration

is presented in Figure 11.

Dismantling task: it is to define the operations to recycle

the parts at the end of the product lifecycle.

(2) Production phase: It is to define the technical data

which describe the mode of manufacturing of the product.

Table 1 gives a list of the scheduled operations necessary

to carry out a part, a finished product or a sub-assembly,

working station and make-ready time and unit of execution

per operation, management of the validities.

(3)Maintenance Phase: The maintenance is defined as a

set of actions to maintain or to re-establish a good

condition in a specified state or in measure to assure a

determined service. Three types of maintenance are: a)

Preventive maintenance, done according to a bill book

established according to the time or the number of use

units, b) Curative maintenance, a policy of maintenance

that corresponds to an attitude of reaction to the more

uncertain events and that applies after the breakdown, and

c) Critical breakdown, which can cause works of

renovation, reconstruction or repair.

(4) Recycling phase: Recycling is a process, in which the

materials making up a product at the end of the lifetime are

re-used totally or partly. They are thus reintroduced into

the cycle of production from which the product results.

Table 1: The manufacturing range [ORTEMS]

The wording

Operation

Machine Code

Operation

Composed Component Time

Assembly Wagon Assembly ASS WG Wagon BI, BC, BPC 5 mn

Assembly Lower

block

Assembly ASS LB Lower Block

(BI)

PA, BR, CI 1 mn

Fixing Part 1 Fixing FIX P1 Part1 (PA) BR, AT 1 mn

Fixing Block

wheel

Fixing FIX BW Block wheel

(BR)

CR, FR, RO,

RM

2 mn

Turning Turning TOUR DS Driveshaft (AT) AA 1 mn

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 11

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Driveshaft

Machining Lower

support

Machining USIN LS Lower support

(CI)

TC 2 mn

Cutting Steel Cutting DECP S Sheet metal (TC) TA 1 mn

Fixing

Conduction Block

Fixing FIX CB Block

Conduction (BC)

TB, VL, LV,

CMP1

1 mn

Assembly CMP1 Assembly ASS CMP1 CMP1 MH, CMP2 1 mn

Assembly CMP2 Assembly ASS CMP2 CMP2 CMP3, CE 1 mn

Fixing Load Fixing FIX L CMP3 CMP4, CT 1 mn

Assembly CMP4 Assembly ASS CMP4 CMP4 MD, CS 1 mn

Machining

Superior support

Manufacturing USIN SS Superior Support

(CS)

TC 1 mn

Fixing Carries

load block

Fixing FIX CLB Block Carries

load (BPC)

CT, CMP5 2 mn

Usinage CMP5 Machining USIN CMP5 CMP5 FC, SS 1 mn

Machining

Support of

Security

Machining USIN SS Support of

Security (SS)

TC 1 mn

Folding Folding FLD Fork (FR) TL 2 mn

Smoothing Smoothing SMT Flat steel 1 (TL) AP 1 mn

_ _ Flat steel 2 (AP) _ _

_ _ Axis Steel (AA) _ _

_ _ Flat steel (TA) _ _

6.2. Prototype Aglet Agents

As discussed in Section 5, the Aglet platform is adapted to

our work context. This platform offers some services such

as mobility, communication between agents and integration

of the graphic interfaces. Aglets are defined for each phase

of the product life cycle; each Aglet is responsible for

managing various functionalities of each phase based on

the information provided by the produced agent. It stores in

turn its own information and launches of the dispatching

the product’s Aglet towards the next phase. To validate the

proposed architecture, we present the following prototype

and some screenshots as a deployment of the developed

concepts.

Administrator Agent:

With the administrator agent (Figure 12), the user can

identify the "Wagon" while specifying its features, and

then define the location/address of the machine on which

agents are going to be created one by one.

Fig 12Administrator agent interface

Design agent
Design agent (Figure 13) is concerned with the following

three phases : a) capture of a list of components (for the

bill-of-material), b) definition of the bill of material, and c)

range of dismantling.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 12

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 13Design agent interface

Production Agent: Elements of the component list in

Figure 14 are recovered from the product agent that

enters in communication with the production agent.

Fig. 14 Production agent interface

Maintenance Agent
The maintenance agent (Figure 15) defines the

maintenance of the product as follows, based on the

information stocked in the product agent.

Fig.15 Maintenance agent interface

Recycling Agent:
The recycling agent retains and takes data captured in the

Range of Dismantling as a basis; it presents some

commentaries on the state of composing them after the

operation of retaining.

Product Agent:
The product agent (Figure 16) is the centre of agent

services; it allows the exchange of information with all

other agents, as well as with pilots of the supply chain. The

product agent allows saving product structure data and

information; it defines the Product Avatar and ensures a

distributed architecture.

Fig.16 Product agent interface

Finally, all the data are saved in the mobile product agent;

this agent makes it possible for other agents to capture

necessary information for the effectiveness of the

operation. For example, for a critical detection of

breakdown the product agent is able to generate

information and transmit it to the design agent so as to

redesign the product and to define a new version. In this

operation, the product agent benefits from its mobility and

the multi-agent architecture to communicate with the other

agents and to move from one node of the network to

another across the phases of the product lifecycle.

7. Conclusion

This paper presented a mobile agent architecture/

framework for collaborative product lifecycle, which is

developed by adopting Java and mobile agent technologies.

The contribution of this paper is to adopt the Aglets mobile

agent platform to develop a series of aglet templates to

encapsulate the different legacy product information and

manufacturing resources and integrate them into product

lifecycle context. It not only simulates real product

lifecycle activities from design to recycle but also to

provide an environment for managing lifecycle product

information. The main advantage of an MMA-based

approach over the other approaches is the flexibility,

mobility or flow of information, dynamic adaptation,

collaboration and comfort for a company and the product

lifecycle architecture. One agent placed at one site can take

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 13

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

local decisions, filter unnecessary information, alter its

mission advantageously, learn about supplier behaviour,

and move to another site, actions which make the product

lifecycle management potentially more efficient and

intelligent. Beyond that, the application of this approach

appears to provide a more rational utilization of the

network, which means lower costs. The mobile-agent-

based approach can be utilized to provide an enterprise

with reliable and in time information about the product

lifecycle. With accurate information an enterprise can

improve its strategic, tactile and operational plans with

support for rapid decision-making, agile reaction and

collaboration for product development. One important

aspect of the future work is the study of a strong security

mechanism for protecting mobile agents.

Disclaimer

No approval or endorsement of any commercial product.

References

[1] Benetti, H., Beneventano, D., Bergamaschi, S., Guerra, F., and

Vincini, M. (2005). An Information Integration Framework

for E-commerce, Intelligent Systems, 17(1), pp. 18-25,

[2] Browne, J.; Sackett, P.; Wortmann, J., (1995). Future

manufacturing systems: Towards the extended enterprise,

Computer in Industry, Special Issue on CIM in the Extended

Enterprise, Vol. 25 N 3, pp.235-254.

[3] Camarinha-Matos, L. M., Vieira, W., (1997). Mobile Agents

and Remote Operation, Proceedings’ INES’97, Budapest.

[4] Cassina, J. (2008). Extended Product Lifecycle Management,

PhD thesis at Politecnico di Milano, April 2008

[5] Cassina, J., Cannata, A., Taisch, M., (2009). Development of

an Extended Product Lifecycle Management through Service

Oriented Architecture.

[6] Cheng, C.B., Wang, C. (2008). Outsourcer selection and order

tracking in a supply chain by mobile agents. International

Journal Computers and Industrial Engineering archive,

Volume 55, Issue 2, Pages 406–422

[7] Christoforos, P., Samaras, Pitoura, G. Evripidou, E. P. (1999).

Parallel Computing Using Java Mobile Agents.25th

Euromicro Conference Special session on Network

Computing.

[8] Demazeau, Müller J.P. (1990) ‘Distributed AI’, Vol. 1,

Elsevier North-Holland.

[9] Fischer, K., Müller, J., Heimig, I., Scheer, A., (1996).

Intelligent Agents in Virtual Enterprises.Proceedings

PAAM’96, pp.206-223.

[10] Finin, T. Frizson, R. (1994). KQML - A Language and

Protocol for Knowledge and Information Exchange.

Technical Report CS-94-02, Computer Science Department,

University of Maryland.

[11] Genesereth M., Singh N., (1994). A knowledge sharing

approach to software interoperability. Technical Report RL-

94-6, Logic Group, Department of Computer Science,

Stanford University.

[12] Guanhui Zhou and Pingyu Jiang (2005) ‘Using mobile

agents to encapsulate manufacturing resource over the

internet’, International Journal of Advanced Manufacturing

Technology, 25: 189-197.

[13] Hardwick M., Spooner D., Rando T., Morris C., (1996).

Sharing Manufacturing Information in Virtual

Enterprises.Communications of the ACM, Vol. 39 N 2,

pp.46-54.

[14] Harrison, C. G., Chessm, D. M., Kershenbaum, A. Mobile

Agents: are they a good idea? Research Report, IBM

Research Division.

[15]Huhns, M.N. (1987. Distributed Artificial Intelligence.

Pitman Pub., Morgan Kaufmann,

[16] Hsu, C., Gerhardt, L., and Rubenstein, S., (1994) ‘Adaptive

Integrated Manufacturing Enterprises: Information

Technology for the Next Decade’, IEEE Transaction on

System, Man and Cybernetics, 24(5), pp. 828-837.

[17] IBM Aglets Software Development Kit – available on

http://www.trl.ibm.com/aglets/

[18] IBM Product Lifecycle Management, http://www-

1.ibm.com/solutions/plm/

[19] IEEE Standard Computer Dictionary (1990) ‘A Compilation

of IEEE Standard Computer Glossaries’. New York, NY.

[20] Jennings, N. (1994). Cooperation in Industrial Multi-Agent

Systems’, World Scientific Publishing Co.

[21] Jiao, R., You, X. and Kumar, A. (2006). An agent-based

framework for collaborative negotiation in the global

manufacturing supply chain network. International Journal of

Robotics and Computer-Integrated Manufacturing, vol. 22,

no. 3, pp. 239-255.

[22] Kim, H., Kim H.S., Lee J.H., Jung J.M., Lee J.Y., and Do

N.C., (2006). A framework for sharing product information

across enterprise. International Journal of Advanced

Manufacturing Technology, 27: 610-618.

[23] Kotler, P., (1988). Marketing management: analysis,

planning, implementation, and control. Englewood Cliffs:

Prentice-Hall International’.

[24] Khosrowpour, M. (1999). Managing information technology

resources in organizations in the next millennium.In

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 14

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Information Resources Management Association International

Conference. Hershey, PA, USA.

[25] Kubota, F., Sato, S., and Nakano, M., (1999). Enterprise

Modeling and Simulation Platform Integrating Manufacturing

System Design and Supply Chain. IEEE International

Conference on Systems, Man, and Cybernetics, 4, pp. 511-

515.

[26] Long, Q. Lin, J. Sun, Z. (2011). Modeling and distributed

simulation of supply chain with a multi-agent platform.

International Journal of Advanced Manufacturing

Technology, 55:1241–1252.

[27] Magedanz, T. Bäumer, C Breugst, M. and Choy S.,

Grasshopper-A Universal Agent Platform Based on OMG

MASIF and FIPA Standards- IKV++ GmbH Germany,

available on http://www.ikv.de/

[28] Mahdjoub, M. Monticolo, D. Gomes, S. Sagot, J.C. (2010).

A collaborative Design for Usability approach supported by

Virtual Reality and a Multi-Agent System embedded in a

PLM environment. International Journal of Computer-Aided

Design, Vol 42, Issue 5, pp. 402–413

[29] ORTEMS, 2011, http://www.ortems.com/

[30] Papastavrou, S. Samaras, G. and Pitoura, E. (1999). Mobile

Agents for WWW Distributed Database Access. Proc. 15th

International Data Engineering Conference, Sydney,

Australia.

[31] Rabelo, R. J. Camarinha-Matos, L. M. (1994). Negotiation in

Multiagent Based Dynamic Scheduling. International Journal

on Robotics and CIM, Vol. 11, No. 4, pp.303-310, Pergamon.

[32] Rabelo, R. J. Spinosa, L.M. (1997). Mobile-agent-based

Supervision in Supply Chain Management in the Food

Industry.AGROSOFT 97 - Feira e Congresso de

InformáticaAplicada à Agropecuária e Agroindústria -

BeloHorizonte – BRAZIL.

[33] Spinosa L. M., (1997). For a Decision Support System to

Distributed Manufacturing Systems: a multiagent and

CIMOSA based approach’, to appear in Proceedings

IFAC/IFIP Conference MCPL'97 Management and Control of

Production and Logistics, Brazil.

[34] UGS PLM Solutions,

http://www.eds.com/products/plm/index.shtml

[35] Victor R. Lesser and Edmund H. Durfee 1989. “Negotiationg

task decomposition and allocation using partical global

planning” Chapter 10 Distributed Artificial Intelligence

[36] Wong, C.Y.; McFarlane, D.; Ahmad Zaharudin, A.;

Agarwal, V. (2004). The intelligent product driven supply

chain.IEEE International Conference on Systems, Man and

Cybernetics. Hague, The Netherlands.

[37] Xu, X. (2012). From cloud computing to cloud

manufacturing. International Journal of Robotics and
Computer-Integrated Manufacturing. Volume 28, Issue 1,

Pages 75–86

[38] Zweben M., (1996). Intelligent Agents.Computer Integrated

Manufacturing and Engineering, Vol. 1 N 2, pp.14-15.

Khaled BAHLOUL is currently a researcher of IFSTTAR

institute in France. He obtained his PhD in Computer Science

from the National Institute of Technology (INSA) of Lyon in

France.

Nesrine Darragi is currently a PhD student of IFSTTAR institute

in France. She obtained his Master degree in Computer Science

from Graduate School of Science and Technology of Tunis in

2008.

Yacine Ouzrout is currently Assist Professor at the University of

Lyon (France) where he leads a research team of the DISP

laboratory.He obtained his PhD in Computer Science from the

National Institute of Technology of Lyon in France.He is also a

member of the CERRAL Innovation Center of the Lumière IUT

Technology Institute, a unique public center in France.

Abdelaziz Bouras is currently Professor at the University of Lyon

(France) where he leads a research team of the DISP laboratory.

He has been recently conferred the HONORIS-CAUSA honorary

Doctoral Degree in Science of the Chiang Mai University

(Thailand) from Her Royal Highness Princess Maha Chakri

Sirindhorn of Thailand. He is also leading the CERRAL

Innovation Center of theLumière IUT Technology Institute, a

unique public center in France.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 15

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

