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High dimensional models
1. Introduction

Models encountered in computational physics and engineering at
the nanometric and micrometric scales usually involve too many
coordinates that include the physical ones x, time t and different
conformation coordinates whose nature depends on the problem
under consideration. The interested reader can refer to [8] for a survey
on such models.

We proposed in some of our former works [2,3] a separated
representation strategy able to circumvent the curse of dimension-
ality that those models involve. Its simpler version was analyzed from
a numerical analysis point of view in [13]. Thus, given a model
involving the unknown field Ψ(x1,x2,⋯,xD), with (x1,x2,⋯,xD)∈
Ω1×Ω2×⋯×ΩD, where Ωi⊂Rdi, ∀i, 1≤ i≤D, the solution is searched
as

Ψ x1;x2; ⋯;xDð Þ≈ ∑
i=N

i=1
Fi1 x1ð Þ⋯FiD xDð Þ ð1Þ

where the dimension of the model is DIM=∑j=1
j=D dj.

Obviously, if a mesh is defined in each domain Ωi consisting of
Nn
i nodes, the whole mesh of Ω=Ω1×⋯×ΩD involves∏i=1

i=D Nn
i nodes.

We can notice that the number of degrees of freedom increases
exponentially with the dimension of the space. On the contrary, by
assuming the separated representation (1) the number of degrees of
freedom reduces to: N×(∑i=1

i=D Nn
i ) proving that the complexity

scales linearly with the dimension of the space.
In the next section we are revisiting the algorithm proposed in [2]

for building-up the separated representation. For the sake of
simplicity we restrict our description to a 2D model. In Section 3 the
algorithm will be generalized to higher dimensions. The algorithm
proceeds iteratively and at each iteration a term of the sum (1) is
computed. This kind of representation involves two levels of
adaptivity. The first level consists of the number of sums that must
be computed to attain a certain precision; however it is clear that
considering the more and more terms in Eq. (1) the solution
converges to the one associated to the fully tensorial product of the
bases defined on each mesh of each domain Ωi. The second level of
adaptivity lies in the refinement that must be applied to each mesh of
each domain Ωi to enhance the solution accuracy.

In this paper we are analyzing the first level of adaptivity, the
second one being a work in progress. The error estimator here
considered is based on the solution of the so-called dual problem,
deeply analyzed in numerous works referenced in Section 5.

We illustrate in the next section the separated representation
procedure for solving multidimensional models. In Section 3 we
introduce a tensorial notation as a general framework to define
separated representations of generic multidimensional models. In
Section 4 we address some considerations on the solution error. The
coupling between the error estimator based on the use of the so-called
dual problem and the separated representation is then described in
Section 5 and different numerical examples are analyzed in Section 6.



2. Illustrating the separated representation solver

For the sake of simplicity we are considering a simple 2D model in
which the unknown field depends on the coordinates x and y each one
defined on its associated domain Ωx and Ωy respectively. Now, the
solution is searched in the form:

Ψðx; yÞ≈ ∑
i=N

i=1
FiðxÞ⋅GiðyÞ ð2Þ

where the different functions Fi(x) and Gi(y) are a priori unknown
being computed during the solution process.

In order to build-up this separated representation, an iterative
algorithm is proposed. If we assume that the first n functions in the
sum have been already computed, the next iteration consists in
finding the best functions R(x) and S(y) such that the updated
representation given by

Ψðx; yÞ≈ ∑
i=n

i=1
FiðxÞ⋅GiðyÞ + RðxÞ⋅SðyÞ ð3Þ

satisfies the weak formulation.
We are assuming a generic equation

K Ψðx; yÞð Þ + L Ψðx; yÞð Þ = 0 ð4Þ

where K and L are two differential linear operators (the non-linear
case was addressed in [4]). For the sake of simplicity we are assuming
that the first one only involves derivatives with respect to the x-
coordinate, the second one involving the derivatives with respect to
the other coordinate. More general scenarios will be addressed in the
next section.

The weak form related to Eq. (4) can be written as:

∫
Ωx×Ωy

Ψ4⋅ K Ψð Þ + L Ψð Þð Þdx dy = 0: ð5Þ

Thus, the solution process requires at each iteration in the
construction of the approximation Eq. (2) the computation of
functions R(x) and S(y) involved in Eq. (3). As this problem is non-
linear, the use of a linearization strategy is compulsory. The simplest
choice consists of an alternating directions fixed point strategy that
iterates, until reaching convergence, by computing R(x) (with S(y)
given at the previous iteration of the non-linear solver) and then S(y)
(from the just computed R(x)). We summarize both steps:

• When S(y) is assumed to be known, the trial function Ψ⁎ appearing
in Eq. (5) writes R⁎(x) ⋅S(y), and then the weak form Eq. (5) reads:

∫Ωx×Ωy
R�⋅S⋅ K Rð Þ⋅S + R⋅L Sð Þð Þdx dy

= −∫Ωx×Ωy
R4⋅S⋅ ∑

i=n

i=1
K Fi
� �

⋅Gi + Fi⋅L Gi
� �� �!

dx dy:
ð6Þ

Now, as all the functions depending on y are known, we can
integrate Eq. (6) with respect to that coordinate. Thus, defining the
following coefficients:

αy = ∫Ωy
S2dy

αy
i = ∫Ωy

S⋅Gidy

βy = ∫Ωy
S⋅LðSÞdy

βy
i = ∫Ωy

S⋅L Gi
� �

dy

:

8>>>>>>>><
>>>>>>>>:

ð7Þ
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Eq. (6) reduces to:

∫
Ωx
R4 ⋅ αyK Rð Þ + βyR

� �
dx

= −∫
Ωx
R4⋅ ∑

i=n

i=1
αy

i K Fi
� �

+ βy
i F

i
� �!

dx

ð8Þ

• When R(x) is assumed to be known, the trial function Ψ⁎ appearing
in Eq. (5) writes R(x)⋅S⁎(y), and then the weak form Eq. (5) reads:

∫
Ωx×Ωy

R⋅S4 ⋅ K Rð Þ⋅S + R⋅L Sð Þð Þdxdy

= −∫
Ωx×Ωy

R⋅S4⋅ ∑
i=n

i=1
K F i
� �

⋅Gi + F i⋅L Gi
� �� �!

dx dy:

ð9Þ

Now, as all the functions depending on x are known, we can
integrate Eq. (9) with respect to that coordinate. Thus, defining the
following coefficients:

αx = ∫Ωx
R2dx

αx
i = ∫Ωx

R⋅Fidx

βx = ∫Ωx
R⋅KðRÞdx

βx
i = ∫Ωx

R⋅KðFiÞdx

:

8>>>>>>><
>>>>>>>:

ð10Þ

Eq. (9) reduces to:

∫Ωy
S*⋅ βxS + αxLðSÞ� �

dy

= −∫Ωy
S*⋅ ∑

i=n

i=1
βx
i G

i + αx
i L Gi
� �� �!

dy:
ð11Þ

Eqs. (8) and (11) are solved iteratively until reaching convergence. If
we denote by Rk and Rk−1 two consecutive solutions of Eq. (8), and
similarly for the solutions of Eq. (11), Sk and Sk−1, the convergence is
reachedwhen the condition ∥Rk ⋅ Sk−Rk−1 ⋅ Sk−1∥b � is verified (� being
a small enough parameter). In our numerical experiments the number
of iterations involved in this non-linear solution rarely exceeds some
few iterations.

The computer implementation of these steps needs for a discrete
representation of all the functions: F i(x), Gi(y), R(x) and S(y) using a
finite element interpolation in their associated domainsΩx andΩy. For
this purpose we introduce the vectors M and N containing the shape
functions associated with the meshes of Ωx and Ωy respectively.
Finally Fi, Gi, R and S represent the nodal description of the associated
functions.

From Eqs. (8) and (11) we can notice that the following matrices
should be computed to define their associated discrete forms:

M = ∫Ωx
MM

TdΩx

N = ∫Ωy
NN

TdΩy

K = ∫Ωx
MKM

TdΩx

L = ∫Ωy
NLNTdΩy

:

8>>>>><
>>>>>:

ð12Þ

Remark. These integrals take into account the specific character of
each operator. For example integration by parts is used in second
order operators, upwinding for stabilizing advective terms, etc.



Using this notation the discrete form related to Eqs. (8) and (11)
results:

• For a given S (that implies Ψ*(x, y)=R*(x) ⋅ S(y))

KS
TNS + MS

TLS
� �

R

= −∑
n

i=1
KF

i
S
TℕG

i + MF
i
S
TLGi

� � ð13Þ

• For a given R (that implies Ψ*(x, y)=R(x) ⋅ S*(y))

R
TKRℕ + R

TMRL
� �

S

= −∑
n

i=1
R

TKF
iℕG

i + R
TMF

iLGi
� �

:
ð14Þ

It must be noticed that the number of the degrees of freedom
involved in such a non-linear solution is the sum of the degrees of
freedom involved in each discretization (instead of the product that
results in mesh based discretization strategies).

Finally, after convergence, the new approximation functions Fn+1

and Gn+1 are obtained directly from the converged R and S:

F
n + 1 = R

G
n + 1 = S

:

�
ð15Þ

In our previous works we used as a stopping criterion of the
enrichment process the norm of the residual. In those works we
analyzed the convergence rate as a function of the number of terms in
the finite sums decomposition [4]. In this work we are using other
criteria based in a quantity of interest.

3. General framework

In this section we are introducing a tensor notation that allows
generalizing the procedure described in the previous section to more
general models.

Let Ω be a multidimensional domain involving the coordinates x1,
x2, ⋯, xD (each one not necessarily one dimensional). The solution of
the weak form

a Ψ x1; x2; ⋯; xDð Þ;Ψ4 x1; x2; ⋯; xDð Þð Þ = b Ψ4 x1; x2; ⋯; xDð Þð Þ ð16Þ

can be approximated by

Ψ x1; x2; ⋯; xDð Þ≈ ∑
nF

i=1
Fi1 x1ð Þ⋅Fi2 x2ð Þ⋯FiD xDð Þ ð17Þ

whose tensor form writes:

Ψ = ∑
nF

j=1
F

j
1⊗F

j
2⊗⋯⊗F

j
D: ð18Þ

Thus, the discrete form of Eq. (16) reads

Ψ4TAΨ = Ψ4TB ð19Þ

where

A = ∑
nA

j=1
Aj

1⊗Aj
2⊗⋯⊗Aj

D ð20Þ
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and

B = ∑
nB

j=1
B

j
1⊗B

j
2⊗⋯⊗B

j
D: ð21Þ

Remark 1. The model solved in the previous section could be written
as:

B = 0

A = A1
1⊗A1

2 + A2
1⊗A2

2

(
ð22Þ

where

A1
1 = K

A1
2 = ℕ

A2
1 = M

A2
2 = L

: □

8>>>>><
>>>>>:

ð23Þ

The enrichment step looks for the new candidates (R1, ⋯, RD) for
enriching the reduced separated approximation basis:

Ψ = ∑
nF

j=1
F

j
1⊗F

j
2⊗⋯⊗F

j
D|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΨF

+ R1⊗R2⊗⋯⊗RD|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΨR :

ð24Þ

Within afixedpoint alternatingdirections algorithm,we lookat each
iteration for the computation of a single function Rj assuming all the
others known. Thus, when one is looking for Rj the test function writes

Ψ4 = R1⊗⋯⊗Rj−1⊗R
�
j⊗Rj + 1⊗⋯⊗RD ð25Þ

where the different terms of the discrete weak form read:

Ψ4AΨR = ∑
nA

k=1
R

4T
j Ak

j Rj ∏
h=1
h≠j

D
R

T
hA

k
hRh

0
B@

1
CA= R

4T
j KRj ð26Þ

Ψ4AΨF = ∑
nF

i=1
∑
nA

k=1
R

� T
j Ak

j F
i
j ∏
h=1
h≠j

D
R

T
hA

k
hF

i
h

0
B@

1
CA= R

4T
j V ð27Þ

Ψ4B = ∑
nB

k=1
R

� T
j B

k
j ∏
h=1
h≠j

D
R

T
hB

k
h

0
B@

1
CA= R

4T
j V′: ð28Þ

Finally, Rj comes from the solution of the linear system:

KRj + V = V: ð29Þ

We assume that the convergence is attained when the number of
sums in the separated approximation of Ψ reaches the value N, i.e.
when nF=N.

4. Reduced versus fully separated representations

It is easy to imagine that using a fully tensorial product of the basis
related to each coordinate x1, ⋯, xD one could solve the discrete system
associated with a generic PDE:

AΨ−B = 0: ð30Þ



The error of such a computed solution Ψ with respect to the exact
one Ψex depends on the mesh considered. If we assume nd nodes
distributed on each domain Ωd, d=1, 2, ⋯, D, withΩ=Ω1×⋯×ΩD, the
number of approximation functions will be n1×⋯×nD.

When we are using the strategy just described, in the limit case
when N=n1×⋯×nD, the computed solution is the same that the
hypothetical one that could have been computed by using a fully
tensor product approximation basis.

Thus, a first possibility to quantify the reduced separated
approximation consists in computing

ε = ‖AΨ−B‖2 ð31Þ

that writes:

ε =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΨTATAΨ + BTB−2BTAΨ

p
ð32Þ

where each term can be computed from:

ΨTATAΨ = ∑
nF

i=1
∑
nF

j=1
∑
nA

k=1
∑
nA

h=1
∏
D

d=1
F

iT
d A

kT
d Ah

dF
j
d ð33Þ

BTB = ∑
nB

i=1
∑
nB

j=1
∏
D

d=1
B

iT
d B

j
d ð34Þ

BTAΨ = ∑
nB

i=1
∑
nF

j=1
∑
nA

k=1
∏
D

d=1
B

iT
d A

k
dF

j
d: ð35Þ

5. Error estimator based on a dual formulation

This section aims at introducing an objective error assessment as a
convergence criterion for the iterative scheme successively enriching
the separated representation. Themain goal is to compute the number
of terms in the finite sums decomposition such that the error related
to a certain quantity of interest is lower than a certain threshold value.
The error assessment is performed on the basis of an arbitrary linear
quantity of interest represented by a linear functional o(⋅). Thus, the
enrichment scheme loops while the error in this quantity is larger
than the prescribed tolerance and stops once the prescribed accuracy
is reached.

Following the ideas introduced in [5,6,15] the error in the quantity
of interest is represented using an auxiliary problem (denoted as dual
or adjoint problem). This strategy has been widely used by many
authors in the field of error estimation and adaptivity, using different
error estimation techniques [1,10–12,14,16–18]. Here, in order to
obtain a proper error assessment, the exact solution of the auxiliary
problem (also denoted as extractor) is simply replaced by a more
accurate solution. In the context of PGD, this option is very effective
and costless because it only requires performing some extra
enrichment iterations for the adjoint problem.

In this section we are assuming a generic multidimensional model
whose weak form writes

a Ψ;Ψ4ð Þ = b Ψ4ð Þ ð36Þ

defined in Ω=Ω1×⋯ΩD, where each Ωd (d=1,2, ⋯, D) involves the
coordinate xd (not necessarily one-dimensional). From now on, the
form (36) will be referred as primal form.

The discrete counterpart of Eq. (36) reads

AΨ = B ð37Þ
4

where

A = ∑
nA

j=1
Aj

1⊗Aj
2⊗⋯⊗Aj

D ð38Þ

and

B = ∑
nB

j=1
B

j
1⊗B

j
2⊗⋯⊗B

j
D: ð39Þ

The separated representation of Ψ at iteration nF writes:

Ψap≈ ∑
nF

j=1
F

j
1⊗F

j
2⊗⋯⊗F

j
D ð40Þ

where Fi
j
is the discrete (nodal) form of F j(xi).

Now, we are interested in a certain function ofΨ, o(Ψ), of physical
interest (the model output). In what follows we assume that the
operator defining the output is linear. Thus, we could write

o Ψap� �
= O ∑

nF

j=1
F

j
1⊗F

j
2⊗⋯⊗F

j
D

!
: ð41Þ

If this operator accepts a separated representation, that is:

O = ∑
nO

j=1
O

j
1⊗O

j
2⊗⋯⊗O

j
D ð42Þ

then, the output can be evaluated from:

o Ψap� �
= ∑

nF

j=1
∑
nO

i=1
F

jT
1 O

i
1

� �
⋅ F

jT
2 O

i
2

� �
⋯ F

jT
D O

i
D

� �
ð43Þ

Now, the error on the output can be evaluated by solving the so-
called dual problem:

a Ψ4;Φð Þ = o Ψ4ð Þ ð44Þ

whose discrete form writes:

ATΦ = O ð45Þ

where O was already defined and where AT is given by

AT = ∑
nA

j=1
A jT

1 ⊗A jT
2 ⊗⋯⊗A jT

D : ð46Þ

A good error estimation needs for an accurate solution of the dual
problem. Within the separated representation framework the
solution of the dual problem (45) (assumed accurate enough) can
be written as:

Φ≈ ∑
nG

j=1
G

j
1⊗G

j
2⊗⋯⊗G

j
D: ð47Þ

Now, the error in the output can be evaluated:

oðeÞ = bðΦÞ−a Ψap
;Φ

� � ð48Þ

whose discrete counterpart writes:

oðeÞ = ΦTB−ΦTAΨap ð49Þ



Fig. 1. Error evolution.

Fig. 2. Evolution of the residual L2-norm.
that is easily computed from:

oðeÞ = ∑
nB

i=1
∑
nG

j=1
G

jT
1 B

i
1

� �
⋅ G

jT
2 B

i
2

� �
⋯ G

jT
D B

i
D

� �

−∑
nA

k=1
∑
nF

i=1
∑
nG

j=1
G

jT
1 Ak

1F
i
1

� �
⋅ G

jT
2 Ak

2F
i
2

� �
⋯ G

jT
DA

k
DF

i
D

� �
:

ð50Þ

6. Numerical results

In this section we are addressing some simple numerical examples
in order to illustrate the capabilities of the error estimator previously
proposed. In these examples neither the model parameters not the
particular form of the outputs have physical sense.

6.1. Poisson equation with exact solution of the dual problem

We consider the 2D harmonic problem defined in Ω=Ωx×Ωy=
(0,1)×(0,1) with homogeneous boundary conditions:

−ΔΨ = ∑
20

i=1
sinðiπxÞ⋅sinðiπyÞ ð51Þ

whose exact solution writes:

Ψexðx; yÞ = ∑
20

i=1

1
2i2π2 sinðiπxÞ⋅sinðiπyÞ: ð52Þ

In what follows we consider the following output:

oðΨÞ = ∫ −2 x2−x
� �

−2 y2−y
� �� �

ΨdΩ ð53Þ

that corresponds to the dual problem:

−ΔΦ = −2 x2−x
� �

−2 y2−y
� �

ð54Þ

whose exact solution is also known:

Φðx; yÞ = x2−x
� �

⋅ y2−y
� �

: ð55Þ

To avoid the effect of the eventual numerical error related to a
numerical solution of the dual problem, in what follows we consider
the exact solution of the dual problem (55).

We are computing two errors:

• Error estimator based on the solution of the dual problem

εd = bðΦÞ−a Ψap
;Φ

� �
= ΦT B−AΨap� � ð56Þ

where in the first simulations we consider Φ=Φex given by
Eq. (55).
• Exact error

εa = o Ψex� �
−o Ψap� � ð57Þ

where

o Ψex� �
= ∫ −2 x2−x

� �
−2 y2−y
� �� �

ΨexdΩj			
and

o Ψap� �
= ∫ −2 x2−x

� �
−2 y2−y
� �� �

ΨapdΩ :j			 ð58Þ

We can notice in Fig. 1 that the error decays as expected very fast.
It can be also noticed in that figure that due to the particular form of
5

the error, the introduction of new terms in the finite sums
decomposition does not affect in the same way the evolution of the
error. Thus, the introduction of the second term in the decomposition
does not affect the errors defined in Eqs. (56) and (57). However, the
introduction of the third term in the decomposition reduces in more
than one order of magnitude both errors. Fig. 1 also compares the
evolution of both errors given by Eqs. (56) and (57). Theoretically
both expressions must give the same results, but slight differences are
noticed from the 7th iteration.Wemust recall that the error at the 7th
iteration is lower than 10−7 and then the differences noticed have not
an impact on the overall technique. On the other hand, these slight
differences can be explained from the fact that both errors are
subjected to the approximation, discretization and integration errors
that affect differently both error expressions.

Fig. 2 shows the evolution of the residual using the L2-norm. We
can notice that the residual decreases monotonically during the first
20 iterations. This behavior was expected, because the exact solution
(52) consists of a sum of 20 terms. Thus, the main part of the residual
is captured in 20 iterations and further enrichments improve very
slightly the residual because they try to capture the different
approximation and discretization errors. In any case, when the sum
reaches the 20 terms, the residual norm is of order 10−10.



Fig. 3. Error evolution associated with Problem 1.

Fig. 4. Error evolution associated with Problem 2.
Until now, the analyzed problem had a known solution of the dual
problem. In the next section we consider a slightly different model.

6.2. Poisson equation involving a numerical solution of the dual problem

In this section we consider three different primal problems:

• Problem 1:

−ΔΨ = ∑
20

i=1
sinðiπxÞ⋅sinðiπyÞ ð59Þ

• Problem 2:

−ΔΨ = 1 ð60Þ

• Problem 3:

−ΔΨ = x⋅y: ð61Þ

all of them defined in Ω=Ωx×Ωy=(0,1)×(0,1) with homogeneous
Dirichlet boundary conditions.

In the three cases the output was done by:

oðΨÞ = ∫x⋅yΨdΩ ð62Þ

whose associated dual problem writes:

−ΔΦ = x⋅y ð63Þ

whose exact solution is not given “a priori”.

Remark 2. Problem 3 involves the same primal and dual problems.

Remark 3. Problems 2 and 3 imply non-separable solutions, i.e. their
solutions cannot be expressed exactly from a finite sum of functional
products.

Remark 4. When models involve non-separated right hand mem-
bers, before performing the solution, the right hand members should
be separated up to a given precision, by invoking the singular value
decomposition or our separated representation algorithm itself. This
practice does not involve major difficulties as noticed in [8] and [19].

It is well known [10] that the use of the error estimator described
in the previous section (Section 5) needs a more accurate solution of
the dual problem than of the primal one. In order to check this
requirement in the separated representation framework we are
considering different ways of solving the dual problem:

• The dual problem is solved until convergence. Its solution
represents the finest one and it will be the reference one.

• The dual problem is solved with two times more terms in the finite
sums decomposition than the primal one. Its solution will be noted
as dual×2.

• The finite sums decomposition of the dual problem involves two
more terms than the solution of the primal one. This solution will be
noted as dual+2.

• The finite sums decomposition of the dual problem involves one
more term than the solution of the primal one. This solution will be
noted as dual+1.

• Both primal and dual solutions consist of the same number of terms
in their separated representations. This solution is noted as dual×1.

Figs. 3–5 show the convergence analysis of Problem 1, Problem 2
and Problem 3 respectively. The results depicted in Fig. 4 prove that
the computed error is quite insensible to the way in which the dual
problem is solved. Moreover, we can notice that the error decreases
6

monotonically with the number of terms involved in the finite sums
decomposition.

In the other two problems the reference solution of the dual
problem defined the upper bound of the estimated error as noticed in
Figs. 5 and 6. We can also remark that the evolution of the error is no
more decreasing monotonically. Finally, it is important to note that in
both cases, as expected, the worst error estimation lies in the use of
the same number of terms in the decomposition for both the dual and
the primal problem.

In the context of finite elements discretizations when the solutions
of the primal and dual problems are computed using the same mesh
the Galerkin orthogonality implies a null residual, fact that implies the
necessity of solving the dual problem using a finer mesh. When the
three just referred problems were solved by using a standard finite
element discretization instead of the separated representation, a zero
error estimation was obtained when using the same meshes for
solving both the primal and the dual problems. In the separated
representation framework this situation is slightly different, less
severe in general, because the orthogonality is only attained when the
separated representation involves all the sums of the fully tensor
product of the one-dimensional bases. If we consider only a reduced
number of terms in the decomposition the orthogonality is not
activated, except if both dual and primal problems are the same, as
was the case in Problem 3 in which we can notice that the solutions



Fig. 5. Error evolution associated with Problem 3.
consisting of the same sums give a null error estimation as shown in
Fig. 6.

6.3. Solving a 3D model

Homogenization is a usual procedure in solid mechanics. The
simplest one concerns the linear behavior of microstructured
materials. For this purpose a 3D problem must be solved within a
representative volume with quite simple boundary conditions. For
accounting for all themicrostructural details very finemeshesmust be
preferably used, however, fine meshes imply important computation
time and computer resources. In this case the use of separated
representations could be an appealing choice [9]. However, in some
applications, the primal field is not the field of interest, and then one
must define amore appropriate error estimator as a stopping criterion
for the enrichment of a separated representation. This section focuses
in this issue.

We are again solving the Laplace equation (as the one that usually
appears in thermal homogenization) in Ω=Ωx×Ωy×Ωz=(0,1)3

using a regular mesh consisting of 2001×2001×2001 nodes. Thus,
the primal problem writes:

∇⋅ −kðxÞ⋅∇ΨðxÞð Þ = 0 ð64Þ
Fig. 6. Material conductivity.
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whose solution is subjected to an affine field on the domain boundary,
as for example:

Ψðx∈∂ΩÞ = x ð65Þ

The output chosen in this numerical test was given by:

oðΨÞ = ∫xΨdΩ ð66Þ

that corresponds to the dual problem

∇⋅ −kðxÞ⋅∇ΦðxÞð Þ = x ð67Þ

that is associated to null Dirichlet boundary conditions.
The conductivity tensor k(x) thatwas assumed isotropic, i.e. k(x)=

k(x)I (I being the unit tensor), was built-up from a sum of 10 terms
consisting of sinus functions with different frequencies and phase
angles. Thus, we can define a conductivity varying in the interval [0,1],
where the highest values were depicted in red in Fig. 6 and the regions
with lowest conductivity were represented in blue.

Fig. 7 represents the evolution of the estimated error with the
number of terms involved in the separated representation. We can
notice that despite the fact that the residual decreases monotonically,
the estimated error follows a different tendency. Thus, numerous
enrichments that contribute to decrease the residual do not
contribute to decrease the error associated to the output under
consideration. Table 1 depicts the second and the 17th functions of the
decomposition. We can notice that the first functions are smoother
that the last ones that exhibit higher “frequencies”. We don't
represent all the decomposition modes to avoid too cloudy images.

Remark 5. When the heat model is not isotropic there are terms
involving crossed derivatives. The treatment of this kind of models
does not introduce major difficulties. In fact this situation was found
in the models treated in some of our former works [2,3].

6.4. Solving a highly multidimensional model

The numerical tests performed in the previous sections only
involved 2D or 3D problems, which can also be solved without major
difficulties by using a standard finite element discretization. However,
when the dimension of the space increases, standard discretizations
fail, and in our knowledge only sparse grids [7] or separated
representations can be applied. The former technique can be
successfully applied in spaces of moderate dimensions, whereas the
last one has proved its ability for solving models defined in spaces
Fig. 7. Evolution of the estimated error.



Table 1
Functions Fij, with j=2 and j=17, involved in the separated representation of Ψ(x).
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Fig. 8. Evolution of the estimated error for the 10D problem.
involving an extremely high number of dimensions (hundreds in
some cases) [2,3,8].

In this section we are applying the error estimator previously
presented to a simple model defined in a space consisting of 10
dimensions.

The primal problem involves the field Ψ(x1,⋯,x10) verifying

−ΔΨ = ∑
i=20

i=1
∏

j=10

j=1
sinðiπxjÞ ð68Þ

that is defined in Ω=Ω1×⋯×Ω10=(0,1)10 with homogeneous
Dirichlet boundary conditions.

The output was again given by:

oðΨÞ = ∫ ∏
i=10

i=1
xi

 !
ΨdΩ ð69Þ

whose associated dual problem writes:

−ΔΦ = ∏
i=10

i=1
xi: ð70Þ

Fig. 8 depicts the evolution of the estimated error. We can observe
that the error only evolves significantly during the first 20 enrich-
ments, because the problem admits a solution that can be represented
separately by means of 20 sums. We can also notice that the error
exhibits some plateaus in which the error does not evolve despite the
solution enrichment. Even if the equation residual is decreasing
monotonically, the error in the output quantity exhibits a different
behavior, and as Figs. 7 and 8 proves, many modes contributing to the
reduction of the residual do not contribute to reduce the error.

7. Conclusions

This paper presents a first attempt to define a useful error
estimator for solvers operating in highly multidimensional models.
Until now, this kind of models was untractable because the curse of
dimensionality. Recently, we proposed a new technique based on a
reduced separated representation in which the solution is approxi-
mated by a finite sums decomposition. We verified in some of our
former works that for some differential operators (elliptic and
symmetric) the computed decomposition is very close to the one
resulting from the application of the singular value decomposition to
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the exact solution, proving the computed decomposition optimality.
This technique was extended to non-linear and non-elliptic models in
[4]. However, an important issue remains unsolved, the stopping
criterion in the enrichment process. We verified numerically that the
residual is not the best criterion when we are interested in some
output of physical interest other than the residual itself.

Here we proposed the use of an error estimator based on the
solution of the so-called dual problem as stopping criterion of the
enrichment process. The proposed strategy allows accurate solutions
of general models and the first numerical tests included in this paper
proved its ability. However different questions remain open, needing
further developments: (i) the extension of the error estimator to
transient multidimensional models; (ii) the inclusion of more
complex outputs (eventually non-linear); and (iii) the definition of
some pertinent criteria able to adapt the mesh in each coordinate for
reaching further improvements of the solution (until now the
accuracy limit is dictated by the meshes considered in each direction
and that remain unchanged during the whole solution process).
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