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This paper presents an extension of the energy momentum conserving algorithm, usually developed for hyperelastic constitutive models, to the hypoelastic constitutive models. For such a material no potential can be deÿned, and thus the conservation of the energy is ensured only if the elastic work of the deformation can be restored by the scheme. We propose a new expression of internal forces at the element level which is shown to verify this property. We also demonstrate that the work of plastic deformation is positive and consistent with the material model. Finally several numerical applications are presented.

INTRODUCTION

One can resort to two families of algorithms to integrate the equations of evolution of dynamical systems: the implicit family and the explicit family. In this paper, we focus on the implicit family. The most widely used implicit algorithm is the Newmark algorithm [START_REF] Newmark | A method of computation for structural dynamics[END_REF] (see also for examples References [START_REF] Belytschko | Computational Methods for Transient Analysis[END_REF][START_REF] Hughes | The Finite Element Method[END_REF][START_REF] Belytschko | Nonlinear Finite Elements for Continua and Structures[END_REF]). Nevertheless, the total energy of a dynamical system, whose evolution equations are integrated by this algorithm, generally exhibits oscillations in time, even if the amplitude of these oscillations is limited for linear systems [START_REF] Kane | Variational integrators and the Newmark algorithm for conservative and dissipative mechanical system[END_REF]. For non-linear models, Belytschko and Schoeberle in Reference [START_REF] Belytschko | On the unconditional stability of an implicit algorithm for non-linear structural dynamics[END_REF] and Hughes in Reference [START_REF] Hughes | A note on the stability of Newmark's algorithm in nonlinear structural dynamics[END_REF] proved that the discrete energy is bounded if it remains positive. Nevertheless larger instabilities can arise, leading to divergence of the numerical simulation. Moreover, for a step between times t n and t n+1 , the angular momentum is conserved between the times t n-(1=2) and t n+(1=2) but not between the times of computation t n and t n+1 [START_REF] Simo | Exact energy-momentum conserving algorithms and sympletic schemes for nonlinear dynamics[END_REF]. To avoid divergence due to the numerical instabilities, numerical damping was introduced, leading to the generalized-methods [2-4, 9, 10]. Another method is to set the Newmark parameters so as to dissipate energy [START_REF] Ponthot | Traˆ tement uniÿà e de la mà ecanique des milieux continus solides en grandes transformations par la mà ethode des à elà ements ÿnis[END_REF]. But these techniques have the disadvantage to also damp the physical modes, leading to a lack of accuracy. Therefore a new kind of dynamics integration algorithm has appeared that veriÿes the mechanical laws of conservation (i.e. conservation of linear momentum, angular momentum and total energy) and that remains stable in the non-linear range.

The ÿrst algorithm verifying these properties was described by Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF][START_REF] Simo | Recent results on the numerical integration of inÿnite-dimensional hamiltonian system[END_REF]. They called this algorithm energy momentum conserving algorithms or EMCA. It consists in a mid-point scheme with an adequate evaluation of the internal forces. This adequate evaluation was given for a Saint Venant-Kirchho hyperelastic material. This scheme was further extended to shells [START_REF] Simo | A new energy and momentum conserving algorithms for the nonlinear dynamics of shells[END_REF][START_REF] Zhong | An energy-conserving co-rotational procedure for the dynamics of shell structures[END_REF][START_REF] Kuhl | Energy-conserving and decaying algorithms in non-linear structural dynamics[END_REF][START_REF] Sansour | An energy-momentum integration scheme and enhanced strain ÿnite elements for non-linear dynamics of shells[END_REF], to composite laminates [START_REF] Brank | An energy conserving non-linear dynamic ÿnite formulation for exible composite laminates[END_REF] and to multi-body dynamics [START_REF] Gã Eradin | Flexible Multibody Dynamics: A Finite Element Approach[END_REF][START_REF] Briseghella | Conservation of angular momentum and energy in the integration of non-linear dynamics equations[END_REF]. A generalization to other hyperelastic models was given by Laursen [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF], who iteratively solves a new equation for each Gauss point to determine the adequate second Piola-Kirchho stress tensor. Another solution that avoids this iterative procedure leads to a general formulation of the second Piola-Kirchho stress tensor, as given by Gonzalez and Simo [START_REF] Gonzalez | On the stability of sympletic and energy-momentum algorithms for non-linear hamiltonian systems with symmetry[END_REF][START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF]. This formulation is valid for general hyperelastic materials. The EMCA was recently extended to dynamic ÿnite deformation plasticity by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic ÿnite deformation plasticity[END_REF]. In such a formulation, the algorithm remains energy conserving when no plastic deformation occurs, and dissipates energy in a manner consistent with the physical model in use (sic.) when plastic deformation occurs. The same method was applied to simulate non-frictional and frictional contact interactions by Armero and Petocz [START_REF] Armero | Formulation and analysis of conserving algorithms for frictionless dynamic contact=impact problems[END_REF][START_REF] Armero | A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis[END_REF] and by Laursen and Chawla [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF][START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF][START_REF] Laursen | Computational Contact and Impact Mechanics[END_REF]. Numerical dissipation was also introduced in these conserving algorithms by Armero and Romero [START_REF] Armero | Dissipative integration algorithms for nonlinear elastodynamics[END_REF][START_REF] Romero | High-frequency dissipative time-stepping algorithms for the dynamics of nonlinear shells[END_REF][START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. part I: low-order methods for two model problems and nonlinear elastodynamics[END_REF][START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. part II: second-order methods[END_REF]. This algorithm preserves the angular momentum, contrarily to the generalized-algorithms and is called energy dissipative Momentum Conserving algorithm or EDMC. This EDMC method was extended to beams by Ibrahimbegovic and Mamouri [START_REF] Ibrahimbegovic | Energy conserving=decaying implicit time-stepping scheme for non-linear dynamics of three-dimensional beams undergoing ÿnite rotations[END_REF]. Another solution to verify all conservation equations is to use the generalized-method or the EDMC algorithm, but to augment these algorithms with energy and momentum constraints [START_REF] Kuhl | Energy-conserving and decaying algorithms in non-linear structural dynamics[END_REF][START_REF] Hughes | Finite-element method for non-linear elastodynamics which conserve energy[END_REF][START_REF] Kuhl | Constraint energy momentum algorithm and its application to non-linear dynamics of shells[END_REF][START_REF] Kuhl | Generalized energy-momentum method for non-linear adaptive shell dynamics[END_REF]. This solution is called either constraint energy momentum algorithm (CEMA) in the ÿrst case or modiÿed energy-momentum method (MEMM) in the second case. In such an augmented method, the dissipated energy of the high frequency modes is added to the energy of the low frequency mode. Finally the conservative properties can be ensured by using Petrov-Galerkin ÿnite element method applied in the Hamiltonian way as developed by Betsch and Steinmann [START_REF] Betsch | Inherent energy conserving time ÿnite elements for classical mechanics[END_REF][START_REF] Betsch | Conservation properties of a time FE method. Part I: Time-stepping schemes for n-body problems[END_REF][START_REF] Betsch | Conservation properties of a time FE method. Part II: Time-stepping schemes for non-linear elastodynamics[END_REF], or by using a Runge-Kutta method as developed by Bottasso et al. [START_REF] Borri | Integration of elastic multibody system by invariant conserving=dissipating algorithms. i. formulation[END_REF][START_REF] Bottasso | Integration of elastic multibody system by invariant conserving=dissipating algorithms. ii. numerical schemes and applications[END_REF].

All the conserving methods described above were established for hyperelastic materials. To our knowledge, they were never extended to hypoelastic materials. This paper proposes a new expression of the internal forces, ensuring the conservation laws of the mechanics for a hypoelastic constitutive model. In Section 2 the methodology for evaluation of the stress tensor in hypoelastic materials and its spatial integration is recalled. In Section 3 the midpoint scheme is explained. The relations that have to be veriÿed by the internal forces to remain consistent with the conservation laws are also exposed. In Section 4, we show how to compute the internal forces to verify these relations for a hypoelastic material using the ÿnal rotation scheme. Moreover, we prove that this adaptation remains consistent when plastic deformation occurs. Finally numerical examples illustrate the advantages and the disadvantages of the conserving algorithm (Section 5).

THE HYPOELASTIC MATERIAL MODEL

First, the notations used in this paper are detailed. Next, the method used for computation of the stress tensor in hypoelastic materials is explained. The plastic deformations are taken into account. Finally, the spatial integration of this stress tensor to obtain the internal forces is established in a ÿnite element framework.

Preliminaries

Let the conÿguration n be the conÿguration computed after n time steps (i.e. at time t n ). Let x n be the deformation mapping (co-ordinates) in the conÿguration n, and let x n be the co-ordinates of the position for the node ( [1; N ] with N the number of nodes of the element) in the conÿguration n. With ' the shape function evaluated at node , it comes (Einstein's notations are used)

x = ' x ẋ = ' ẋ (1) x = ' x
The gradient of deformation (two point tensor) F between conÿgurations m and n is indicated by F n m . This tensor is deÿned by

F n m = @x n @x m (2) 
The tensor f represents F -1 . When m refers to the initial conÿguration, the gradient of deformation is written

F n 0 = @x n @x 0 (3) 
with

F n 0 = F n m F m 0 (4)
According to the theorem of polar decomposition, this gradient tensor can be decomposed into a rotation tensor R and a symmetric positive deÿnite deformation tensor U (I is the identity tensor)

The Cauchy stress tensor is evaluated in the conÿguration n and is referred to as n . If the internal forces are pushed backward into the initial conÿguration, the stress tensor used is the second Piola-Kirchho tensor (S), that is evaluated with respect to conÿguration n, as

S n = J n 0 f n 0 n f n 0 T (10)

Stress tensor computation

By deÿnition, for a hyperelastic material, there exists a potential (GL) from which the second Piola-Kirchho stress tensor is computed

S n = 0 @ (GL n 0 ) @GL n 0 (11)
For the hypoelastic constitutive laws, the Cauchy stress tensor is computed from a stress increment n+1 n between two successive conÿgurations. The ÿnal rotation scheme [START_REF] Ponthot | Traˆ tement uniÿà e de la mà ecanique des milieux continus solides en grandes transformations par la mà ethode des à elà ements ÿnis[END_REF][START_REF] Nagtegaal | On the implementation of inelastic constitutive equations with special reference to large deformation problems[END_REF][START_REF] Nagtegaal | Analysis of metal forming problems with an improved ÿnite strain plasticity formulation[END_REF][START_REF] Nagtegaal | On the implementation of ÿnite strain plasticity equations in a numerical model[END_REF][START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF] is deÿned by the following relation:

n+1 = R n+1 n [ n + n+1 n ]R n+1 n T ( 12 
)
This scheme presents some important properties [START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF]:

(i) it is incrementally objective (i.e. the stress tensor is exactly updated for a rigid body motion); (ii) no parasitic volume variation is generated (i.e. the scheme does not lead to a variation of the volume for a rigid motion).

If the material behaviour is elastic, the stress increment is deduced from the natural strain tensor

n+1 n = H : E n+1 n ( 13 
)
with H the Hooke fourth order tensor (k is the bulk modulus and g the shear modulus)

H ijkl = k ij kl + g ik jl + il jk -2 3 ij kl (14) 
and the operation H : E deÿned by H ijkl E kl . For an elastoplastic or elastoviscoplastic material, relation [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF] and relation [START_REF] Simo | Recent results on the numerical integration of inÿnite-dimensional hamiltonian system[END_REF] can only be directly used when the material remains elastic.

If J 2 plastic deformations occur, relation [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF] becomes

n+1 = R n+1 n [ n + n+1 n -s c ]R n+1 n T ( 15 
)
where s c is the purely deviatoric correction tensor resulting from the radial return mapping [START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF][START_REF] Wilkins | Calculation of elastoplastic ows[END_REF][START_REF] Maenchen | The tensor code[END_REF][START_REF] Simo | Computational Inelasticity[END_REF]. It is evaluated by the following method: the elastic predictor s e is deÿned by the deviatoric part of n + n+1 n where n+1 n is given by [START_REF] Simo | Recent results on the numerical integration of inÿnite-dimensional hamiltonian system[END_REF]. If Q is the heredity back stress tensor, the normal tensor N is deÿned by

N = s e -Q [s e -Q] : [s e -Q] (16) 
where the operation a : b is deÿned as a ij b ij . If the scalar p is the equivalent plastic strain, if the scalar v , function of p , is the subsequent von Mises yield stress, and if , function of p , is the equivalent heredity, then the scalar can be deÿned such as to have [START_REF] Ponthot | Traˆ tement uniÿà e de la mà ecanique des milieux continus solides en grandes transformations par la mà ethode des à elà ements ÿnis[END_REF][START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF] pn+1 = pn + 2 3 n+1 v ( pn+1 ) = v n+1 ( )

Q n+1 = Q n + 2 3 [ ( pn+1 ) -( pn )]N s c = 2g N (17)
where the scalar value of is solved from the von Mises criterion [START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF] 

evaluated at time t n+1 [s e -2g N -Q n+1 ( )] : [s e -2g N -Q n+1 ( )] = 2 3 [ n+1 v ( )] 2 (18) 
Now we will establish the expression of the internal forces from the Cauchy stress tensor.

Internal forces formulation

Let u be an admissible virtual displacement, let W n ext , W n int and K n , respectively, be the virtual work of the external forces, the virtual work of the internal forces and the virtual work of inertia forces in the conÿguration n, let b n be the volumic forces, let t n be the surfacic tractions, let V n be the volume of the element and let S n be the boundary of the element. Then, the principle of the virtual work can be rewritten as [START_REF] Ponthot | Traˆ tement uniÿà e de la mà ecanique des milieux continus solides en grandes transformations par la mà ethode des à elà ements ÿnis[END_REF] 

K n + W n int = W n ext ( 19 
)
with

K n = Vn { n x n * u} dV n W n ext = Vn { n b n * u} dV n + Sn {t n * u} dS n (20) 
W n int =

Vn nT : @ u @x n dV n where the operation a * b is deÿned by a i b i . Using (1), ( 6), the mass conservation law (i.e. n dV n = 0 dV 0 ) and the spatial discretization of the virtual displacement (i.e. u = ' u ), the virtual work of the inertia forces can be rewritten as

K n = V0 { 0 ' ' } dV 0 [ x n ] * u = M [ x n ] * u (21)
where M is the mass matrix component relative at the nodes and . The virtual work of external forces is expressed as

W n ext = [F n ext ] * u (22) 
Finally, the internal forces variation can be rewritten as

W n int = V0 nT @' @x n T J n 0 dV 0 * u = V0 { nT f n 0 T D J n 0 }dV 0 * u ( 23 
)
where D is the derivative of the shape function (in the reference conÿguration, i.e. D = @' =@x 0 ). Using relation ( 21)-( 23), the balanced equation at node for the conÿguration n leads to

M [ x n ] = [F n ext -F n int ] (24) 
with the expression of internal forces given by

[F n int ] = V0 { nT f n 0 T D J n 0 } dV 0 ( 25 
)
These expressions are valid for any time t n .

THE ENERGY-MOMENTUM CONSERVING SCHEME

Equation [START_REF] Armero | Formulation and analysis of conserving algorithms for frictionless dynamic contact=impact problems[END_REF] has to be resolved for successive time steps, but this integration should verify the conservation laws. First the mid-point scheme presented in Reference [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF] is brie y recalled. Next the relations that the internal forces should verify to be consistent with the conservation laws are detailed.

The mid-point scheme

For an integration from time t n to time t n + t = t n+1 , the relations between positions, velocities and accelerations are given by

x n+(1=2) = x n+1 + x n 2 ẋn+(1=2) = x n+1 -x n t = ẋn+1 + ẋn 2 x n+(1=2) = ẋn+1 -ẋn t = x n+1 + x n 2 (26) 
The balance law [START_REF] Armero | Formulation and analysis of conserving algorithms for frictionless dynamic contact=impact problems[END_REF] for node is rewritten as

M [ x n+(1=2) ] = [F n+(1=2) ext -F n+(1=2) int ] (27) 
Let F n+(1=2) (x n ; x n+1 ) be the expression of the forces in conÿguration n + 1 2 . This expression depends both on the positions in conÿgurations n (i.e. x n ) and n + 1 (i.e. x n+1 ). The goal of the following section is to evaluate it for hypoelastic models. Systems ( 26) and ( 27) can be resolved by a predictor-corrector algorithms. The predicted values are

x n+1 = x n + t ẋn + t 2 4 x n ẋn+1 = ẋn + t 2
x n (28)

x n+1 = 0
Residual for conÿguration n + 1 is expressed as

F = 1 2 M [ x n+1 + x n ] + [F n+(1=2) int -F n+(1=2) ext ] (29) 
Then, the corrections for the values at conÿguration n + 1 are iteratively evaluated as

K + 2 t 2 M I x = -F [x n+1 ] ← [x n+1 + x] [ ẋn+1 ] ← ẋn+1 + 2 t x [ x n+1 ] ← x n+1 + 4 t 2 x ( 30 
)
where K is tangent sti ness matrix

K = @[F n+(1=2) int ] @[x n+1 ] - @[F n+(1=2) ext ] @[x n+1 ] (31) 
Equations ( 30) are solved iteratively until convergence of the iterations occurs, i.e. until

F * F [F n+(1=2) int (x n+1 )] * [F n+(1=2) int (x n+1 )] + [F n+(1=2) ext (x n+1 )] * [F n+(1=2) ext (x n+1 )] ¡Tol (32) 
where Tol is a user deÿned tolerance (generally taken as 10 -10 -see numerical applications).

In Equation ( 27) the explicit form of F n+(1=2) int was not given. In the subsequent section the ÿnal expression for F n+(1=2) int will be tailored so that it veriÿes the conservation conditions.

The conservation conditions

Equation ( 27) has to verify the linear and angular momentum conservation, and the energy balance. The ÿrst two conditions result from the physical laws assuming that the internal forces cannot change the rigid motion of a body. The last condition assumes that the total energy of the system is preserved for a reversible transformation and that the total energy is decreasing for an irreversible transformation.

3.2.1.

The linear momentum conservation. Let L be the vector (ÿrst order tensor) discrete linear momentum

L ≡ M ẋ ( 33 
)
where we have adopted the convention of summing on repeated indices. The conservation of L over a time step is discretized to

L n+1 -L n = t F n+(1=2) ext ( 34 
)
By performing a sum on in Equation ( 27), and using [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF], it leads to

1 t M [ ẋn+1 -ẋn ] = [F n+(1=2) ext -F n+(1=2) int ] 1 t [L n+1 -L n ] = [F n+(1=2) ext -F n+(1=2) int ] (35) 
If ( 34) is compared to [START_REF] Kuhl | Constraint energy momentum algorithm and its application to non-linear dynamics of shells[END_REF], the internal forces have to verify the following relation:

[F n+(1=2) int ] = 0 (36)
3.2.2. The angular momentum conservation. Let J be the ÿrst order tensor discrete angular momentum

J ≡ M [x ∧ ẋ ] (37) 
The conservation of J over a time step is discretized in

J n+1 -J n = t[x n+(1=2) ] ∧ [F n+(1=2) ext ] (38) 
The vector product of x n+(1=2) and of relation [START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF] gives

M [x n+(1=2) ] ∧ [ x n+(1=2) ] = [x n+(1=2) ] ∧ [F n+(1=2) ext -F n+(1=2) int ] (39) 
Using relations [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF], this last expression leads to

1 t M {[x n+1 ] ∧ [ ẋn+1 ] -[x n ] ∧ [ ẋn ] } = [x n+(1=2) ] ∧ [F n+(1=2) ext -F n+(1=2) int ] 1 t [J n+1 -J n ] = [x n+(1=2 ] ∧ [F n+(1=2) ext ] -[x n+(1=2) ] ∧ [F n+(1=2) int ] (40) 
If we compare [START_REF] Betsch | Conservation properties of a time FE method. Part I: Time-stepping schemes for n-body problems[END_REF] and ( 40), the internal forces must thus verify

[x n+(1=2) ∧ F n+(1=2) int ] = 0 (41)
3.2.3. The energy balance. Let E, W int , W ext and K, respectively, be the total energy, the internal energy, the external energy and the kinetic energy. Usually (spring, hyperelastic model) the internal energy could be deÿned by a potential. Nevertheless, for a hypoelastic model, no potential could be deÿned but we will sidestep this di culty in the next section by using the work of the internal forces. It comes

E = K + W int -W ext ( 42 
)
The energy balance over one time step is discretized in

E n+1 -E n = -int 6 0 (43) 
with int the dissipation during the time step from conÿguration n to n+1. The scalar product of ẋn+(1=2) and of relation ( 27) leads to (using relation [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF])

M [ x n+(1=2) ] * [ ẋn+(1=2) ] = [F n+(1=2) ext -F n+(1=2) int ] * [ ẋn+(1=2) ] M 2 t {[ ẋn+1 ] * [ ẋn+1 ] -[ ẋn ] * [ ẋn ] } = 1 t [F n+(1=2) ext -F n+(1=2) int ] * [x n+1 -x n ] K n+1 -K n + [F n+(1=2) int ] * [x n+1 -x n ] = W n+1 ext -W n ext (44)
If ( 43) is compared to [START_REF] Nagtegaal | On the implementation of ÿnite strain plasticity equations in a numerical model[END_REF], then the relation that the internal forces have to verify is

[F n+(1=2) int ] * [x n+1 -x n ] = W n+1 int -W n int + int ( 45 
)
The next section of this paper will propose a formulation of the internal forces (F n+(1=2) depending on x n and x n+1 ) for hypoelastic materials. We will prove that this expression veriÿes relations ( 36), ( 41) and ( 45).

INTERNAL FORCES EXPRESSION FOR HYPOELASTIC MATERIALS

The expression of the internal forces in the conÿguration n is given by relation [START_REF] Armero | A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis[END_REF]. Nevertheless, if this expression is evaluated for x n+(1=2) , relation ( 45) is generally not veriÿed. Moreover, the volume will then be evaluated in an intermediate conÿguration that will introduce a parasitic volume change (for example, in a rigid body motion, det[F n+(1=2)

0 ] = 1 2 det[F n+1 0 +F n 0 ]). Therefore, the following expression for [F n+(1=2) int ] is proposed [F n+(1=2) int ] = 1 4 V0 {[I + F n+1 n ] nT f n 0 T D J n 0 + [I + f n+1 n ] n+1 T f n+1 0 T D J n+1 0 } dV 0 = 1 2 [F * int + F * * int ] [F * int ] = 1 2 V0 {[I + F n+1 n ] nT f n 0 T D J n 0 } dV 0 [F * * int ] = 1 2 V0 {[I + f n+1 n ] n+1 T f n+1 0 T D J n+1 0 } dV 0 (46) 
The stress tensors are evaluated by the ÿnal rotation scheme combined with the radial return mapping (see Section 2.2). The stress tensor in conÿguration n + 1 is evaluated from the stress tensor in conÿguration n. Therefore, the scheme remains incrementally objective. Moreover, in relation [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF], the stress tensors are always integrated over their relative volume (through J ). Therefore, no parasitic volume variation are induced. The tangent sti ness matrix corresponding to this expression of the internal forces is given in Appendix A.

In the next section, we will demonstrate that relation [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF] veriÿes the conservation laws. Next, this expression of the internal forces is compared with the expression given by Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF].

Veriÿcation of conservation laws

The conservation of the linear and angular momentum is ensured by verifying respectively relations [START_REF] Kuhl | Generalized energy-momentum method for non-linear adaptive shell dynamics[END_REF] and [START_REF] Bottasso | Integration of elastic multibody system by invariant conserving=dissipating algorithms. ii. numerical schemes and applications[END_REF]. The conservation of energy is ensured by verifying (45).

4.1.1. Linear momentum conservation. Relation ( 36) is directly veriÿed by performing an addition over in Equation [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF] and by using the following properties of the shape functions (∀K ∈ [1; 3]):

D K = @' @x 0 K = 0 (47)
4.1.2. Angular momentum conservation. We will verify that (F * int ) i and (F * * int ) i from relation [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF] both verify relation [START_REF] Bottasso | Integration of elastic multibody system by invariant conserving=dissipating algorithms. ii. numerical schemes and applications[END_REF]. Let be the third order permutation tensor such that, for each vector a and b, it comes (a

∧ b) = : [a ⊗ b], with the operation [a ⊗ b] ij = a i b j . Therefore, it leads to 2x n+(1=2) ∧ F * int = : {[x n+1 + x n ] ⊗ F * int } = 1 2 : {[x n+1 + x n ] ⊗ V0 {[I + F n+1 n ] nT f n+1 0 T D J n 0 } dV 0 } (48)
Using ( 2) and (4) yields

[x n ] ⊗ [f n 0 T D ] = I [x n+1 ] ⊗ [f n 0 T D ] = F n+1 n T ( 49 
)
Thanks to relations [START_REF] Lubliner | Plasticity Theory[END_REF] and the fact that is symmetric, relation [START_REF] Simo | Computational Inelasticity[END_REF] becomes

4[x n+(1=2) ] ∧ [F * int ] = : V0 {[I + F n+1 n ] n [I + F n+1 n ] T J n 0 } dV 0 = V0 { : J n 0 } dV 0 = 0 ( 50 
)
This can be easily veriÿed since

= [I + F n+1 n ] n [I + F n+1 n ]
T is a symmetric tensor and is an anti-symmetric tensor. Therefore : is equal to zero. The same process with F * * int also leads to

(51) [x n+(1=2) ] ∧ [F int * * ] = 0
and Equation ( 41) is thus veriÿed.

Energy conservation.

The energy balance is veriÿed through relation [START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF]. First F * int [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF] is included in [START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF]. Using ( 2) and ( 4), it comes

[x n+1 -x n ] * [F * int ] = 1 2 [x n+1 -x n ] * V0 {[I + F n+1 n ] n f n 0 T D J n 0 } dV 0 = 1 2 V0 {[F n+1 n T F n+1 n + F n+1 n -F n+1 n T -I] : n J n 0 } dV 0 ( 52 
)
Since is symmetric, it leads to

F n+1 n T : n -F n+1 n : n = 0 (53) 
Using ( 7) and (53), relation (52) becomes

[x n+1 -x n ] * [F * int ] = V0 {GL n+1 n : n J n 0 } dV 0 ( 54 
)
For F * * int the same process leads to

[x n+1 -x n ] * [F * * int ] = V0 {A n+1 n : n+1 J n+1 0 } dV 0 ( 55 
)
and ÿnally one gets

[F n+(1=2) int ] * [x n+1 -x n ] = 1 2 V0 {GL n+1 n : n J n 0 + A n+1 n : n+1 J n+1 0 } dV 0 (56) 
which should be equal to W n+1 int -W n int + int if the energy is conserved [START_REF] Ponthot | Uniÿed stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF]. From this point, for a hyperelastic material, a potential could be written to evaluate the internal energy [START_REF] Meng | Energy consistent algorithms for dynamic ÿnite deformation plasticity[END_REF]. However, for a hypoelastic material, no potential can be deÿned. Thus we will proceed di erently in order to demonstrate (56). Let's imagine a loading-unloading cycle, that takes place in two steps, from conÿgurations 1 to 3 (Figure 1), such that the initial Cauchy stress tensor 1 corresponds to the ÿnal Cauchy stress tensor 3 up to any arbitrary rotation Q During the loading phase from conÿgurations 1 to 2, we assume that plastic deformations occur, while the transition from conÿgurations 2 to 3 corresponds to elastic unloading. Note that conÿguration 3 might be kinematically inadmissible for a whole body, but this is not of concern here since we are reasoning at the particle level. The expression of internal forces ( 46) is consistent with the Druckers Postulate (see e.g. Reference [START_REF] Lubliner | Plasticity Theory[END_REF]) if the reversible work of the loading phase is recovered during the second step (i.e. W 3 int -W 1 int = 0). Therefore, the energy balance between the conÿgurations 1 and 3 can be expressed as

(Q T Q = I and detQ = 1) 3 = Q 1 Q T (57)
[F (3=2) int ] * [x 2 -x 1 ] + [F (5=2) int ] * [x 3 -x 2 ] = int ( 58 
)
Using relation (56) and relation (57), expression (58

) becomes int = 1 2 V0 {GL 2 1 : 1 J 1 0 + A 2 1 : 2 J 2 0 + GL 3 2 : 2 J 2 0 + A 3 2 : [Q 1 Q T ]J 3 0 } dV 0 = 1 2 V 0 {J 1 0 GL 2 1 : 1 + J 3 0 [Q T A 3 2 Q] : 1 + J 0; 2 [A 2 1 + GL 3 2 ] : 2 } dV 0 ( 59 
)
Now we examine the implications of relation (57). Let E el 2 1 be the elastic natural strain tensor deÿned such that

H : E el 2 1 ≡ H : E 2 1 -s c 2 1 ( 60 
)
It yields from Equation ( 15)

2 = R 2 1 [ 1 + H : E 2 1 -s c 2 1 ]R 2 1 T = R 2 1 [ 1 + H : E el 2 1 ]R 2 1 T (61) 
Therefore we deÿne U el 2 1 the symmetric tensor such that

E el 2 1 ≡ 1 2 ln[U el 2 1 U el 2 1 ] (62) 
The existence of U el 2 1 result from the symmetry of tensor E el 2 1 . The elastic Green-Lagrange strain tensor GL el 2 1 , and the elastic Almansi strain tensor A el 2 1 are deÿned from

U el 2 1 GL el 2 1 ≡ 1 2 [U el 2 1 U el 2 1 -I] A el 2 1 ≡ 1 2 R 2 1 [I -U el 2 -1 1 U el 2 -1 1 ]R 2 1 T (63)
Finally, the corresponding plastic tensors can be deÿned as

GL pl 2 1 ≡ GL 2 1 -GL el 2 1 A pl 2 1 ≡ A 2 1 -A el 2 1 ( 64 
)
Now we must compute the variables in conÿguration 3 from these deÿned values. Using relations (57) yields

Q 1 Q T = 3 = R 3 2 [R 2 1 1 R 2 1 T + R 2 1 H : E el 2 1 R 2 1 T + H : E 3 2 ]R 3 2 T = R 3 2 R 2 1 1 R 2 1 T R 3 2 T + R 3 2 R 2 1 H : E el 2 1 R 2 1 T R 3 2 T + R 3 2 H : E 3 2 R 3 2 T ( 65 
)
From this relation, assuming that H is constant between conÿgurations 1 and 3, we can see that the transformation from conÿgurations 2 to 3 must have the following properties:

R 3 2 = QR 2 1 T (66) 
and

H : E 3 2 = -R 2 1 H : E el 2 1 R 2 1 T ( 67 
)
in order to be consistent with our deÿnition of conÿguration 3. Using relations ( 5), ( 9), ( 14), ( 63) and (67), yields

GL 3 2 = -A el 2 1 A 3 2 = -QGL el 2 1 Q T (68)
From relation (67), we have

[H : E 3 2 ] ii = [-R 2 1 H : E el 2 1 R 2 1 T ] ii [H : E 3 2 ] ii = [-H : E el 2 1 ] ii 3k[E 3 2 ] ii = 3k[-E el 2 1 ] ii (69) 
and, since the trace of a logarithm mapping corresponds to the logarithm of the determinant of the matrix, we have the determinant of U el 2 1 equal to the inverse of the determinant of U 3 2 . Using the same technique from relation (60), and since the tensor s c is trace less, the determinant of U el 2 1 is equal to the determinant of U 2 1 , and it leads to

J 3 0 = J 1 0 (70)
Therefore, using relations (68) and (70), relation (59

) becomes int = 1 2 V 0 {[GL 2 1 -GL el 2 1 ] : 1 J 0; 1 + [A 2 1 -A el 2 1 ] : 2 J 0; 2 } dV 0 = 1 2 V 0 {GL pl 2 1 : 1 J 0; 1 + A pl 2 1 : 2 J 0; 2 } dV 0 ( 71 
)
If there is no plastic strain increment between conÿguration 1 and 2, GL el 2 1 and A el 2 1 are respectively equal to GL 2 1 and A 1 2 . Therefore, int is also equal to zero. This veriÿes the laws of thermodynamics. On the other hand, if there is plastic strain increment, the relation (71) has to be related with a physical relation that is positive. The internal plastic dissipation can be expressed from a volumic dissipation D int as

phy int = V0 {D int } dV 0 ¿ 0 (72)
Nevertheless, the equivalence between int and phy int does not exist. So we introduce two corrections (c * and c * * ) in the evaluation of the internal forces [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF] [

F * int ] = 1 2 V0    [I + F n+1 n ] n + c * : n GL n+1 n : GL n+1 n GL n+1 n T f n 0 T D J n 0    dV 0 [F * * int ] = 1 2 V0    [I + f n+1 n ] n+1 + c * * : n+1 A n+1 n : A n+1 n A n+1 n T f n+1 0 T D J n+1 0    dV 0 ( 73 
)
where c * and c * * are tensors to be determined. The conservation of the linear momentum is not a ected by these corrections (relation 47), and since the corrections are symmetrical tensors, the conservation of the angular momentum remains veriÿed (relations 50 and 51).

On the other hand, the expression (71) of the internal dissipation is modiÿed. Assuming that the correcting tensors are to be equal to zero when no plastic deformation occurs (i.e. during the transformation from conÿgurations 2 to 3) yields to int =

1 2 V 0 {[GL pl n+1 n + c * ] : n J 0; n + [A pl n+1 n + c * * ] : n+1 J 0; n+1 } dV 0 ( 74 
)
With the tensors

c * = D int n J n 0 : n+1 J n+1 0 n+1 J n+1 0 -GL n+1 n + GL n el n+1 c * * = D int n J n 0 : n+1 J n+1 0 n J n 0 -A n+1 n + A el n+1 n (75) 
relation ( 74) becomes (using relation (72) and the fact that the physical dissipation is positive

) int = phy int ¿ 0 (76)
The order of these correction tensors is now determined. Relation (60) can be transformed, using relations ( 9) and ( 17) as

H : E el n+1 n = H : E n+1 n -s c n+1 n H : GL el n+1 n = H : GL n+1 n + O(GL pl n+1 2 n ) -2g N (77) 
or as (with

N r = R n+1 n NR n+1 n T ) H : A el n+1 n = H : A n+1 n + O(A pl n+1 2 n ) -2g N r (78) 
Using the fact that for J 2 plasticity the trace of N is equal to zero, the inversion of the Hooke law (relation 14) yields

GL n+1 n -GL el n+1 n + O(GL n pl n+1 2 ) = N A n+1 n -A el n+1 n + O(A pl n+1 2 n ) = N r (79) 
Therefore, the order of relations (75) is

c * : n J n 0 = D int -N : n J n 0 + O( n : GL n pl n+1 2 ) c * * : n+1 J n+1 0 = D int -N r : n+1 J n+1 0 + O( n+1 : A pl n+1 2 n ) ( 80 
)
The internal dissipation can be expressed as

D int = 1 2 pn+1 n {[ v n+1 + n+1 ] J n+1 0 + [ v n + n ] J n 0 } ¿ 0 (81)
With the deÿnition of ( 17), [START_REF] Sansour | An energy-momentum integration scheme and enhanced strain ÿnite elements for non-linear dynamics of shells[END_REF], N (16) and s n deÿning the deviatoric part of n , the relation [START_REF] Brank | An energy conserving non-linear dynamic ÿnite formulation for exible composite laminates[END_REF], at the ÿrst order leads

N : n J n 0 = N : s n J n 0 pn+1 n [ v n + n ] J n 0 N : n+1 J n+1 0 = N r : s n+1 J n+1 0 pn+1 n [ v n+1 + n+1 ] J n+1 0 (82)
And ÿnally, the sum of the two term of expression (80) leads to second order terms. Therefore, for small increments of transformation, the correction tensors are of the second order. In this paper, the time steps sizes are taken small enough so that the correcting tensors can be neglected. In a further work, we will prove that if the time step is increased (and therefore the plastic strain increment) these correcting tensors must be taken into account unless the relation ( 76) is not longer veriÿed and the dissipation could even be positive.

Remark

For one hypoelastic model, the stress could exhibit oscillations for a load-unload cycle over some time steps. Nevertheless, this results from the model and not from the proposed method since the demonstration is based on the hypothesis that the loading-unloading is computed altogether during one single time step. Now, the proposed method is compared with other existing models.

4.1.4. Small transformation hypothesis. If the total strain and the rotation are assumed to be small, we deÿne the small strain (second order tensor) U = 1 2 (@u i =@x j + @u j =@x i ) where u is the small displacement vector and the Cauchy stress (second order tensor) A. Therefore, it follows

J n+1 0 J n 0 GL el n+1 n U el n+1 n A el n+1 n U el n+1 n E el n+1 n U el n+1 n E el n+1 0 E el n 0 + E el n+1 n R n 0 I A n H : E el n 0 GL pl n+1 n U pl n+1 n A pl n+1 n U pl n+1 n GL n+1 n U el n+1 n + U pl n+1 n A n+1 n U el n+1 n + U pl n+1 n ( 83 
)
The internal potential is deÿned by

W n int = 1 2 V0 {U el n 0 : H : U el n 0 } dV 0 ( 84 
)
With the hypothesis expressed in (83), expression (56) becomes

[F n+(1=2) int ] * [x n+1 -x n ] = 1 2 V0 {[U el n+1 0 -U el n 0 + U pl n+1 n ] : H : E el n 0 } dV 0 + 1 2 V0 {[U el n+1 0 -U el n 0 + U pl n+1 n ) : H : E el n+1 0 } dV 0 = W n+1 int -W n int + 1 2 V0 {U pl n+1 n : A n + U pl n+1 n : A n+1 } dV 0 ( 85 
)
This last expression corresponds to the usual deÿnition of the internal reversible and irreversible work for models deÿned by an internal potential.

4.1.5.

Comparison with the hyperelastic model. The conserving scheme for a hyperelastic material uses a ow deÿnition to compute the plastic deformation [START_REF] Meng | Energy consistent algorithms for dynamic ÿnite deformation plasticity[END_REF]. The present paper uses a ÿnal rotation scheme combined with the radial return mapping to compute the plastic deformation. Since the plastic formulation for an hyperelastic material di ers from the plastic formulation for a hypoelastic material, we consider the case where no plastic deformation occurs. The Cauchy stress tensor is transformed into the Piola-Kirchho stress tensor, using relation [START_REF] Gã Eradin | Flexible Multibody Dynamics: A Finite Element Approach[END_REF]. Expression ( 46) is therefore rewritten as

[F n+(1=2) int ] = 1 4 V0 {[I + F n+1 n ]F n 0 S n F n 0 T f n 0 T D J n 0 } dV 0 + 1 4 V0 {[I + f n+1 n ]F n+1 0 S n+1 F n+1 0 T f n+1 0 T D J n+1 0 } dV 0 = 1 4 V0 {[F n 0 + F n+1 0 ][S n + S n+1 ]D } dV 0 ( 86 
)
This last expression corresponds to the expression established by Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF] for the Saint Venant-Kirchho material. This similitude is consistent with the fact that the elastic part of the hypoelastic formulation has the same behavior as the Saint Venant-Kirchho formulation. Moreover, using relations ( 4), ( 8), ( 9) and [START_REF] Gã Eradin | Flexible Multibody Dynamics: A Finite Element Approach[END_REF], expression (56) can be rewritten as

W n+1 int -W n int + int = 1 2 V0 {GL n+1 n : n J n 0 + A n+1 n : n+1 J n+1 0 } = 1 2 V0 {[F n 0 T GL n+1 n F n 0 ] : S n + [F n+1 0 T A n+1 n F n+1 0 ] : S n+1 } dV 0 = 1 2 V0 {[GL n+1 0 -GL n 0 ] : S n+(1=2) } dV 0 (87) 
For a Saint Venant-Kirchho material, without plastic deformation, this latter expression is reduced to int = 0 [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF].

NUMERICAL EXAMPLES

In this section the results obtained with the proposed conservative scheme (EMCA) are compared with the results obtained with:

(i) the Newmark algorithm [START_REF] Newmark | A method of computation for structural dynamics[END_REF] (NMK) with the ÿrst Newmark parameter (ÿ) equal to 0:25 and the second Newmark parameter ( ) equal to 0:5; (ii) the Chung-Hulbert algorithm [START_REF] Chung | A time integration algorithms for structural dynamics with improved numerical dissipations: the generalized-method[END_REF] (CH) with ÿ equal to 0:9801, equal to 1:48, the inertial forces parameter ( M ) equal to -0:97 and the internal forces parameter ( F ) equal to 0:01; (iii) the Hilbert-Hughes-Taylor algorithm [START_REF] Hilbert | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF] (HHT) with ÿ equal to 0.255025, equal to 0:51 and equal to 0:05. For the hypoelastic material, the internal energy is not directly accessible. Therefore, the total energy is computed from the work of internal forces. For the conservative algorithm, the total energy at time t n+1 is deÿned as

E n+1 = E n + K n+1 -K n + [F n+(1=2) int ][x n+1 -x n ] (88) 
with F n+(1=2) int computed from relation [START_REF] Wilkins | Calculation of elastoplastic ows[END_REF]. For the other algorithms, it is deÿned by

E n+1 = E n + K n+1 -K n + 1 2 [F n int + F n+1 int ][x n+1 -x n ] (89) 
with F n int deÿned from relation [START_REF] Armero | A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis[END_REF]. This total energy evaluation includes the internal dissipation and must thus remain constant for each problem. Therefore, the variation of the energy comes only from the numerical modes. The internal dissipation is evaluated from relation (71) for each algorithm. This relation was established for the conservative scheme but remains physically correct for the other algorithms.

The ÿnite elements used for each example are eight-noded trilinear bricks with eight deviatoric Gauss points and one volumic Gauss point. For each problem, the time step size is constant to avoid any instabilities resulting from a time step size variation, and is chosen small enough to avoid the obligation of taking into account the terms of the second order in the increment of the plastic deformation. Let us note that the total plastic deformation is not limited by this restriction. Moreover the tolerance on the residual (32) is set to 10 -10 for each problem and for each algorithm.

Example 1: The uniform rotation of a beam

This problem consists of a beam with a constant square section. Its properties are given in Table I. This beam has an initial angular velocity (Table I). The material of the beam is assumed elastic. The mesh consists of 48 elements. The median nodes of one of the extremities belong to the rotation axis and are ÿxed (no displacement, but rotation is allowed). The initial balanced conÿguration is computed with a Newton-Raphson algorithm where the inertial (centrifugal) forces are computed analytically. This balanced conÿguration is illustrated in Figure 2. The time step size is equal to 0:5 ms.

Figures 3 and4 represent the evolution of the angular momentum. Only the conservative scheme leads to a constant value. The evolution of the total energy is reported in Figures 5 and6. The conservative scheme preserves the total energy. For the Chung-Hulbert and the Hilbert-Hughes-Taylor schemes, numerical dissipation occurs (4% of the total energy is lost in a round for the Chung-Hulbert scheme and 0:03% of the total energy is lost in a round for the Hilbert-Hughes-Taylor scheme). Since energy is computed from the forces work, for the Newmark scheme, the oscillations mentioned in the introduction do not appear. Figures 7 and8 illustrate the von Mises stress evolution for an element at the base of the beam. Results from the conservative scheme and the Newmark scheme are conform to the theory (i.e. constant von Mises stress). The accumulated number of iterations for one hundred time steps are reported in Table II. The conservative scheme and the Newmark scheme converge in the same number of iterations. On the other hand, the Chung-Hulbert and the Hilbert-Hughes-Taylor require more iterations since the numerical dissipation results in an angular acceleration of the beam. This classical example was ÿrst simulated with a conservative algorithm for a hyperelastic Saint-Venant-Kirchho material by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic ÿnite deformation plasticity[END_REF]. It consists in a cylindrical bar (Table III), discretized by 576 elements (Figure 9). It has an initial velocity ẋ0 . The time step size is equal to 0:1 s (small enough to avoid the obligation of taking into account the terms of the second order in the increment of the plastic deformation as previously mentioned.

Figures 10 and11 represent the evolution of the total energy (internal dissipation included). Figures 12 and13 represent the evolution of the internal dissipation. Let us note that the internal dissipation does not decrease during the time evolution. The second law of thermodynamics is therefore veriÿed. It appears that the Chung-Hulbert and the Hilbert-Hughes-Taylor algorithms underestimate the internal dissipation. The ÿnal plastic strains are illustrated in Figure 14. The solution obtained by the Chung-Hulbert algorithm is 2% di erent of the other solutions. The di erences between the schemes are rather small, resulting from the fact that the internal physical dissipation is much more important (275 times at the end of the computation for the Chung-Hulbert algorithm) than the numerical dissipation. Therefore the di erences in the solutions obtained are not very important (less than 2%). The number of iterations are reported in Table IV. The Newmark scheme is the most expensive one (2:5% more than the conservative scheme, 5% more than the Chung-Hulbert and 9% more than the Hilbert-Hughes-Taylor scheme). The Chung-Hulbert algorithm is more expensive than the Hilbert-Hughes-Taylor algorithm, even if the numerical dissipation if higher. It comes from the severity of the tolerance on the residue (10 -10 ) and the small time step size. Let us note that this di erence in the number of iterations does not include the cost of the evaluation of the internal forces and of the sti ness matrix. Once the stress tensor has been evaluated, these evaluations are twice more expensive for the conservative scheme that for the other schemes.

Results obtained are similar to the results obtained by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic ÿnite deformation plasticity[END_REF].

Example 3: The tumbling L-shaped block

The dynamics of an elastoplastic L-shaped block is studied. This L-shaped block was discretized into 99 uniform elements. Its geometry is described in Figure 15. The properties of the material are reported in Table V. On face A (see Figure 15), a force, depending on time t, is applied at each node. This time dependent force is given by 

    F x F y F z     =     4 
On face B, another force is applied at each node

    F x F y F z     =     -4 -8 -12     N=s × t; 06t62:5 s
(5t); 2:5¡t65 s (91) After 5 s, the forces are relaxed. The time step size is equal to 0:25 s. Figure 16 represents the evolution of the total energy (internal dissipation included). Figure 17 represents the evolution of the internal dissipation. The numerical dissipation occurring for the Chung-Hulbert and the Hilbert-Hughes-Taylor algorithms leads to an underestimation of the internal dissipation. The ÿnal geometric conÿguration and the ÿnal plastic strain distribution are illustrated in Figure 18. Owing to the lack of accuracy resulting from the numerical dissipation, the Hilbert-Hughes-Taylor and the Chung-Hulbert solutions are di erent in the plastic strain but also in the ÿnal geometric conÿguration. The numbers of iterations are reported in Table VI. Each scheme leads to approximately the same cost with a di erence of less than 0.05%.

CONCLUSIONS

A new expression of the internal forces at the element level for hypoelastic materials was presented. When used with the conservative mid-point scheme, this expression leads to an energy-momentum conservative scheme. Moreover, the internal dissipation, resulting from the plastic deformation, is consistent with the laws of thermodynamic. If the problem remains elastic, our formulation is shown to be similar with the formulation proposed by Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method conserving algorithms for nonlinear elastodynamics[END_REF] for a Saint Venant-Kirchho hyperelastic material, but our formulation is more general in the sense that it remains valid for general hypoelastic-based J 2 plasticity models. Elastic and elastoplastic problems were presented. Note that, since the hypoelastic formulation provides a straightforward mechanism to extend small-strain constitutive models to non-linear kinematics, the proposed approach provides the great advantage of being applicable to virtually any other constitutive model (sophisticated hardening laws, damage, etc.). The solutions obtained with this conservative scheme were compared with the results obtained with the Newmark and the dissipative generalized-algorithms. The conservative scheme ensured the conservation of the angular momentum, contrarily to the Newmark scheme that leads to numerical oscillations. When important plastic deformations (as in the Taylor bar problem) occur in a short time, the accuracy of the dissipative schemes are of the same order than the accuracy of the conservative scheme. For less-dissipative problems, the numerical dissipation leads to a loss of accuracy, principally due to the non-conservation of the Let us note that this sti ness matrix is not symmetric. Nevertheless, since relation (A9) (that is also used in the Newmark sti ness matrix [START_REF] Ponthot | Traˆ tement uniÿà e de la mà ecanique des milieux continus solides en grandes transformations par la mà ethode des à elà ements ÿnis[END_REF]) gives a non-symmetric fourth order tensor, the use of the Newmark scheme also gives a non-symmetric sti ness matrix.
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 1 Figure 1. Deÿnition of the loading-unloading cycle (1D analogy).
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 52 Figure 2. Initial conÿguration and von Mises stress (N=mm 2 ) for the beam in uniform rotation.
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 3 Figure 3. Angular momentum evolution for the beam in uniform rotation.
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 4 Figure 4. Angular momentum evolution for the beam in uniform rotation (zoom).
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 56 Figure 5. Total energy evolution for the beam in uniform rotation.
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 7 Figure 7. Evolution of the von Mises stress (N=mm 2 ) at the base of the beam in uniform rotation.
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 8 Figure 8. Evolution of the von Mises stress (N=mm 2 ) at the base of the beam in uniform rotation (zoom).
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 9 Figure 9. Discretization of the Taylor's bar.
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 10 Figure 10. Evolution of the total energy for the Taylor bar problem.
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 11 Figure 11. Evolution of the total energy for the Taylor bar problem (zoom).
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 1213 Figure 12. Evolution of the total internal dissipation for the Taylor bar problem.
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 14 Figure 14. Equivalent plastic strain for the Taylor bar after 80 s.
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 15 Figure 15. Geometry (m) of the tumbling L-shaped block.
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 16 Figure 16. Evolution of the total energy for the tumbling L-shaped block.
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 17 Figure 17. Evolution of the total internal dissipation for the tumbling L-shaped block.

Figure 18 .

 18 Figure 18. Equivalent plastic strain (magniÿed by 10 3 ) for the tumbling L-shaped block after 1005 s (notice the di erent ÿnal conÿguration for CH and HHT).

Table I .

 I Properties of the beam in uniform rotation.

	Property	Value
	Length	L = 1 m
	Width	l = 0:01 m
	Density	= 4000 kg=m 3
	Young's modulus	E = 10 11 N=m 2
	Poisson ratio	= 0:3
	Initial angular velocity	= 2909 rpm

Table II .

 II Iterations number for the beam in uniform rotation (100 time steps).

	Scheme	Iterations number
	Newmark	302
	Chung-Hulbert	400
	Hilbert-Hughes-Taylor	424
	Conservative scheme	300

Table III .

 III Properties of the Taylor bar problem.

	Property	Value
	External diameter	de = 6:4 mm
	Length	l = 32:4 mm
	Density	= 8930 kg=m 3
	Young's modulus	E = 117E9 N=m 2
	Poisson ratio	= 0:35
	Yield stress	0 = 400 N=mm 2
	Hardening parameter	h = 100 N=mm 2
	Initial velocity	ẋ0 = 227 m=s
	5.2. Example 2: The Taylor bar problem	

Table IV .

 IV Iterations number of the Taylor's bar.

	Scheme	Iterations number
	Newmark	1951
	Chung-Hulbert	1844
	Hilbert-Hughes-Taylor	1777
	Conservative	1904

Table V .

 V Properties of the tumbling L-shaped block.

	Property	Value
	Density	= 100 kg=m 3
	Young's modulus	E = 2812 N=m 2
	Poisson ratio	= 0:40625
	Yield stress	0 = 300 N=m 2
	Hardening parameter	h = 400 N=m 2

Table VI .

 VI Iterations number for the tumbling L-shaped block.

	Scheme	Iterations number
	Newmark	12 093
	Chung-Hulbert	12 062
	Hilbert-Hughes-Taylor	12 053
	Conservative	12 087
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angular momentum and could lead to an increase of the number of iterations. Moreover, this dissipative scheme can lead to instability in the non-linear range. Nevertheless, numerical dissipation can be useful when high frequency modes lead to failure of the conserving scheme. But this dissipation must be introduced in a controlled way (angular momentum conservation and positive numerical dissipation in the non-linear range).

If the iteration number of the conservative scheme is of the same order than for the other schemes (by about 10%), the cost of the evaluation of the internal forces and of the stiness matrix is higher (twice). But for large problems, this additional cost quickly becomes negligible when compared with the cost of matrix inversion.

In this paper, the second order terms in the expression of internal forces were not taken into account. In a further work, these terms will be integrated in the formulation. We will then be able to compare the di erence between the Newmark algorithm and the proposed one for larger time step size.

APPENDIX A: STIFFNESS MATRIX

The sti ness matrix deÿned in ( 31) is evaluated. We assumed that applied forces F ext are conservative. First the expression F * int is derived with respect to the positions at time t n+1

With relations (2) and (4), it leads to

with the ÿrst order tensor [B n ] deÿned by [B n ] = f n 0 T D , with the fourth order tensor N deÿned by N ijkl = I ik jl , and with the operation

Therefore, using relation (A2), expression (A1) becomes

Now the part F * * int of the internal forces ( 46) is derived

The ÿrst part of relation (A5) is evaluated. With the relation @F -1 = -F -1 @FF -1 , it leads to

Using (A6), the ÿrst part of (A5) is rewritten as

The second part (K 2 ) of relation (A5) is directly obtained from the sti ness matrix of the classical expression of the internal forces evaluated at conÿguration n + 1. It leads [START_REF] Ponthot | Traˆ tement uniÿà e de la mà ecanique des milieux continus solides en grandes transformations par la mà ethode des à elà ements ÿnis[END_REF] to

where M ijkl is the material tensor characteristic of the material. In the elastic conÿguration, it is similar to the Hooke tensor. Otherwise, with

with g * = ÿg and

Equation (A8) becomes

The combination of terms (A4), (A7) and (A13) leads to the ÿnal expression of the sti ness matrix