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INTRODUCTION

One can resort to two families of algorithms to integrate the equations of evolution of dynamical systems: the implicit family and the explicit family. In this paper, we focus on the implicit family. The most widely used implicit algorithm is the Newmark algorithm [START_REF] Newmark | A method of computation for structural dynamics[END_REF].F o r linear models, this algorithm is unconditionally stable. For non-linear models, Belytschko and Schoeberle [START_REF] Belytschko | On the unconditional stability of an implicit algorithm for non-linear structural dynamics[END_REF] proved that the discrete energy, computed from the work of internal forces and from the kinetic energy, is bounded if it remains positive. Nevertheless, since the work of internal forces is different from the internal energy variation when the Newmark algorithm is used in the non-linear range, Hughes et al. [START_REF] Hughes | A note on the stability of Newmark's algorithm in nonlinear structural dynamics[END_REF] have proved that Newmark algorithm remains physically consistent only for small time step sizes. To avoid divergence due to numerical instabilities, numerical damping was thus introduced, leading to the generalized-methods [START_REF] Chung | A time integration algorithms for structural dynamics with improved numerical dissipations: the generalized-method[END_REF].

Nevertheless, the unconditional stability of these methods is guaranteed only for linear systems or asymptotically for the high frequencies in the non-linear range [START_REF] Erlicher | The analysis of the -generalized method for non-linear dynamic problems[END_REF].

To overcome that drawback, a new class of algorithms, verifying the conservation laws in the non-linear range, appeared. To demonstrate stability, these new algorithms were not studied on a linear system as the previous ones, but were studied by taking into account non-linearities. The first algorithm verifying these properties was proposed by Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics[END_REF]. They called this algorithm 'energy momentum conserving algorithms' or EMCA. It consists in a mid-point scheme with an adequate evaluation of the internal forces. This adequate evaluation was given for a Saint Venant-Kirchhoff hyperelastic material. A generalization to other hyperelastic models was given by Laursen and Meng [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF], who iteratively solve a new equation for each Gauss point to determine the adequate second Piola-Kirchhoff stress tensor. Another solution that avoids this iterative procedure leads to a general formulation in term of the second Piola-Kirchhoff stress tensor, as proposed by Gonzalez [8]. This formulation is valid for general hyperelastic materials. The EMCA was then extended to dynamic finite deformation plasticity based on a hyperelastic model by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic finite deformation plasticity[END_REF][START_REF] Meng | On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators[END_REF], and to dynamic finite deformation plasticity based on a hypoelastic model by the present authors [START_REF] Noels | Energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF][START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF]. In such formulations, the algorithm remains energy conserving when no plastic deformation occurs, and 'dissipates energy in a manner consistent with the physical model in use' (sic [START_REF] Meng | Energy consistent algorithms for dynamic finite deformation plasticity[END_REF]) when plastic deformation occurs. Recently, contrarily to Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF] who proposed a particular expression of the second Piola-Kirchhoff stress tensor to reach the conserving properties, Sansour et al. [START_REF] Sansour | On the design of energy-momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells[END_REF] have proposed an expression (restrained to elasticity) by integrating the second Piola-Kirchhoff stress tensor in time. The expression thus obtained is therefore less arbitrary than that of Gonzalez. In the same context, for contact treatment, a penalty method was developed to simulate non-frictional and frictional contact interactions by Armero and Petöcz [START_REF] Armero | Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems[END_REF][START_REF] Armero | A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis[END_REF]. This method allows surface penetration but ensures conservation of the energy for frictionless problems and consistent dissipation for frictional ones. Laursen and Chawla [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF][START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF] developed Lagrangian and augmented Lagrangian methods to simulate non-frictional and frictional contact. Finally to avoid the lack of convergence due to the presence of high-frequency modes, numerical dissipation was introduced in the conserving algorithms by Armero and Romero [START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics[END_REF][START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part II: second-order methods[END_REF] for hyperelastic materials. In the same way, Noels et al. [START_REF] Noels | Simulation of complex impact problems with implicit time algorithm. Application to a blade-loss problem[END_REF] introduced dissipation for hypoelastic materials.

Let us note that the properties of conservation can be reached by using a Petrov-Galerkin time finite-element method as described by Betsch and Steinmann [START_REF] Betsch | Conservation properties of a time FE method. Part I: time-stepping schemes for n-body problems[END_REF][START_REF] Betsch | Conservation properties of a time FE method. Part II: time-stepping schemes for non-linear elastodynamics[END_REF]. They can also be satisfied by using an approximation of the time Galerkin method as proposed by Bauchau and Joo [START_REF] Bauchau | Computational schemes for non-linear elasto-dynamics[END_REF]. In the same way, an approximation of the time discontinuous Galerkin method leads to an Energy Decaying scheme [START_REF] Bauchau | Computational schemes for non-linear elasto-dynamics[END_REF] that presents some numerical dissipation. Another energy preserving/decaying algorithm can also be obtained using a Runge-Kutta method (e.g. Reference [START_REF] Bottasso | Integrating finite rotation[END_REF]).

Let us now focus on the plasticity treatments leading to an energy momentum conserving scheme. The hyperelastic-based formulation, proposed by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic finite deformation plasticity[END_REF][START_REF] Meng | On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators[END_REF] is based on the elastic formulation proposed by Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF] and is restrained to isotropic hardening. The hypoelastic-based formulation, as proposed by Noels et al. [START_REF] Noels | Energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF][START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF], can additionally account for kinematic hardening but suffers from other restrictions (Hooke's parameter needs to be constant and no internal potential can be defined). In this paper, we propose a more general hyperelastic-based formulation, using the variational visco-plastic constitutive updates proposed by Ortiz and Stainier [START_REF] Ortiz | The variational formulation of viscoplastic updates[END_REF]. The mathematical structure of this formulation provides many interesting features, e.g. for error estimation [START_REF] Radovitzky | Error estimation and adaptative meshing in strongly nonlinear dynamics problems[END_REF]. The main feature of this formulation is that the stress tensor always derives from an incremental potential, even if plastic deformations occur. Therefore, in such a framework we can use the formulation based on the second Piola-Kirchhoff stress tensor as proposed by Gonzalez [8] without any modification. Moreover, the use of the variational formulation does not lead to any a priori restrictions on the material laws or parameters, even if in this paper we focus on elasto-plasticity with isotropic hardening. Finally, we think that the use of the variational updates can be compatible with the method proposed by Sansour et al. [START_REF] Sansour | On the design of energy-momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells[END_REF], even if in this paper we focus on the method proposed by Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF].

The plan of the paper is the following. Section 2 will expose preliminaries such as the dynamic conservation laws and the finite-element discretization. We will also explain the split of the internal potential leading to a locking-free element. In Section 3, we will recall the variational formulation of elasto-plasic updates. In Section 4, we will use this formulation in combination with the Gonzalez method to design an energy momentum conserving scheme. In Section 5 we will show the accuracy and consistency of the proposed algorithm on numerical examples. Finally, we will draw some conclusions.

PRELIMINARIES

In this section we will define the notations in use in this work. Therefore, we will be able to recall the continuum laws. Then we will introduce the finite-element discretization. In this work we will use a quasi-incompressible formulation.

Notations

Let V ⊂ R 3 be the manifold of points defining the body and S ⊂ R 3 be the manifold of its boundary. Since we will work with regular bodies in Euclidean space, we will identify the body with the space it occupies and will freely pass between the material and spatial descriptions of a field whenever it is convenient to do so. We define two configurations: the initial configuration referred to by subscript 0 and the current configuration at time t. Let 0 : V 0 → R + be the initial density. Boundary S is decomposed into two parts: the first one S x is the part where the displacements are known and the second one S T is the part where the surface tractions are known. It yields S x ∪ S T = S and S x ∩ S T = 0. Let us note that in case of interaction between different bodies this theory has to be rewritten to take into account the contact forces between different bodies, but it does not modify results we use to describe body deformations. Let x be the current positions and x 0 be the initial positions. Therefore, the two-point gradient of deformation tensor is defined by

F ≡ * x * x 0 with f ≡ F -1 and J ≡ det F (1) 
The right Cauchy-Green strain tensor is defined by

C ≡ F T F (2) 
Conservation of the mass leads to dV = 0 dV 0 and

J = J 0 (3)
To use the quasi-incompressible technique as proposed by Simo and Taylor [START_REF] Simo | Quasi-incompressible finite elasticity in principal stretches continuum basis and numerical algorithms[END_REF] we need more definitions. Let e (physical meaning of e will be deduced later) be a constant scalar on the volume part V e 0 , with e V e 0 = V 0 and e V e 0 = 0. Exponent e will refer to values for the volume part V e 0 (for a finite-element decomposition, e will be the index of an element). Let the two modified gradients of deformation F and F, the first one having unitary determinant, defined by

F ≡ J -1/3 F and F ≡ e1/3 F = e J 1/3 F (4) 
In the same way, the two modified right Cauchy-Green strain tensors are defined by

Ĉ ≡ FT F = 1 J 2/3 C and C ≡ FT F = e J 2/3 C (5)
Let X be the manifold of admissible positions

X ≡{ x : V 0 → R 3 |[J>0 and x| S x = ¯ x]∀ x 0 ∈ V 0 } (6) 
with ¯

x the known (imposed) positions. Let t be the current time and let T =[0,t f ] be the time integration interval. Therefore, the motion of the body is defined by t ∈ T → x(t) ∈ X. During this motion, the body is subject to specific loads b(t) : V 0 × T → R 3 . Let be the Cauchy stress tensor. Boundary pressures T S (t) : S T 0 × T → R 3 verify the condition T S (t) = (t) n(t) with n the outward unit normal to S.

When the body is decomposed into finite elements thanks to shape functions : V 0 → R with ∈[1,N] (N the total number of nodes), and with

( x 0 ) = ( is the Kronecker symbol), it leads for each node ∈[1,N] x( x 0 ) = ( x 0 ) x , ˙ x( x 0 ) = ( x 0 ) ˙ x and ¨ x( x 0 ) = ( x 0 ) ¨ x (7) 
where Einstein's notations have been used. Let v be an admissible virtual displacement defined by the manifold

D ≡{ v : V 0 → R 3 |[ v| S x = 0e t v( x 0 , 0) = 0, v( x 0 ,t f ) = 0 ∀ x 0 ∈ V 0 ]} (8) 
Let D v ⊂ D be the manifold of admissible virtual displacements x that can be decomposed such as [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF]. In this manifold of test functions, we have introduced boundary conditions for the initial time and for the final time. These conditions are needed when using the principle of virtual work.

The continuous problem

The following quasi-variational principle (principle of virtual power of forces) must hold

∀ x ∈ D v [28, p. 412] t f 0 V ¨ x • x + T : * x * x -b • x dV - S T T S • x dS dt = 0 (9)
where a • b = a i b i and where A :

B = A ij B ij .
Let PK be the second Piola-Kirchhoff stress tensor defined by

PK = J F -1 F -T (10) 
Using relation ( 3) and [START_REF] Meng | On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators[END_REF], integrating [START_REF] Meng | Energy consistent algorithms for dynamic finite deformation plasticity[END_REF] by parts leads to

V 0 { 0 ¨ x • x} dV 0 ≡ K = V 0 { 0 b • x} dV 0 + S T { T S • x} dS ≡ W ext - V FPK T : * x * x 0 dV 0 ≡ W int ∀t ∈ T (11) 
where W int , W ext and K are, respectively, the virtual work of internal forces, the virtual work of external forces and the virtual work of inertia forces. This principle leads to the dynamics conservation laws.

Conservation of linear momentum.

Let L be the linear momentum defined by

L ≡ V 0 { 0 ˙ x} dV 0 ( 12 
)
where relation (3) has been used. Assuming pure Neumann boundary conditions (i.e. S x =∅), if x ∈ D v is taken constant, relation [START_REF] Noels | Energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF] leads to the conservation of the linear momentum

˙ L = V 0 { 0 b} dV + S T { T S } dS ≡ F ext ∀t ∈ T (13)

Conservation of angular momentum.

Let J be the angular momentum defined by

J ≡ V 0 { 0 x ∧ ˙ x} dV 0 ( 14 
)
Assuming pure Neumann boundary conditions (i.e. S x =∅), taking x = ∧ x with constant, since PK is symmetric, and is an arbitrary constant, relation [START_REF] Noels | Energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF] leads to the conservation of the angular momentum

˙ J = V 0 { 0 x ∧ b} dV 0 + S T { x ∧ T S } dS ∀t ∈ T (15)
2.2.3. Conservation of the energy. Let K, W int and W ext , respectively, be the kinetic energy, the internal forces power and the external forces power, with

K ≡ V 0 1 2 0 ˙ x 2 dV 0 Ẇint ≡ V 0 {PK T : [F T Ḟ]} dV 0 Ẇext ≡ V 0 { 0 b • ˙ x} dV 0 + S T { T S • ˙ x} dS ( 16 
)
where relation [START_REF] Hughes | A note on the stability of Newmark's algorithm in nonlinear structural dynamics[END_REF] 

Ė = Ẇext - Ẇ pl int ∀t ∈ T (18) 
Let us assume that, even when internal dissipation occurs, we can write

PK = 2 *D eff *C (19) 
with C defined by relation [START_REF] Belytschko | On the unconditional stability of an implicit algorithm for non-linear structural dynamics[END_REF], and with D eff the effective stress potential. Therefore, using the symmetry of the stress tensor PK, Ẇint defined in relation ( 16) can be rewritten as

Ẇint = V 0 { Ḋeff } dV 0 ( 20 
)
and relations [START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF] and [START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics[END_REF] are rewritten as

K + V 0 { Ḋeff } dV 0 = Ẇext ∀t ∈ T (21) 
Nevertheless, a direct application of the finite element method to expression (20) can lead to pressure-locking problems in the case of (quasi-)incompressible behaviours such as those encountered in viscoplasticity. To overcome this, we use the modification proposed by Simo and Taylor [START_REF] Simo | Quasi-incompressible finite elasticity in principal stretches continuum basis and numerical algorithms[END_REF]. It is important to note that for materials without incompressibility constraints, one could directly proceed with a standard finite element discretization of the problem, without loosing any of the consistency properties. Our formalism can easily be simplified for this approach.

Quasi-incompressible technique.

Using relations (4) and [START_REF] Erlicher | The analysis of the -generalized method for non-linear dynamic problems[END_REF], with e a constant value on the volume part V e 0 , the internal energy on the volume part V e 0 can be rewritten as a modified internal energy W e int ( x 0 , C( x, e )) depending on e and depending on the positions x. Let p e be constant for each volume part V e 0 (physical meaning of p e will be deduced later). Then Simo and Taylor [START_REF] Simo | Quasi-incompressible finite elasticity in principal stretches continuum basis and numerical algorithms[END_REF] proposed, for each volume part V e 0 , the following expression: ¶ W e int ( x, e ,p e ) ≡

V e 0 {D eff ( x 0 , C( x, e )) + p e [J -e ]} dV e 0 [START_REF] Betsch | Conservation properties of a time FE method. Part II: time-stepping schemes for non-linear elastodynamics[END_REF] where D eff ( x 0 , C( x, e )) is the new effective internal energy which is a particular choice of D eff ( x 0 , x). Since neither K, nor W ext depend on p e , the variational principle, applied to p e , leads to the definition of

e e = 1 V e 0 V e 0 {J } dV e 0 ( 23 
)
that represents the mean volumic deformation of V e 0 . In the same way, one has

T dV e 0 ( 27 
)
where dev A ij ≡ A ij -1 3 tr A ij defines the deviatoric part of a tensor. Thanks to this relation it appears that p e is the constant pressure associated to the volume V e 0

Finite-elements decomposition

Thanks to relation [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF], the discrete variation of kinetic energy and of external energy from relation [START_REF] Noels | Energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF] can be rewritten as

K = V 0 { 0 } dV 0 [ ¨ x] • x = M [ ¨ x] • x W ext = V 0 { 0 b } dV 0 • x + S T { T S } dS • x =[ F ext ] • x (28) 
¶ This expression is similar to the three-field Hu-Washizu-Fraeijs de Veubeke (HWF) variational principle [29-31] (regarding denomination, see also Reference [START_REF] Felipa | On the original publication of the general canonical functional of linear elasticity[END_REF]).

where M is the mass related to nodes and . Using the quasi-incompressible method, the variation of the internal energy is defined from relation [START_REF] Simo | Quasi-incompressible finite elasticity in principal stretches continuum basis and numerical algorithms[END_REF], where V e 0 represents a single finite-element. Therefore, using the following definition of the internal forces at node :

F int = e V e 0 2dev F *D eff * C FT + p e J I f T D dV e 0 ( 29 
)
where D ≡ * /* x 0 is the derivative, in the initial configuration, of the shape functions.

Using relations [START_REF] Antman | Nonlinear Problems of Elasticity[END_REF] and since x ∈ D v is an arbitrary vector, relations ( 11) and ( 27) lead to the balance equation

M ¨ x =[ F ext -F int ] ∀t ∈ T (30) 
Let us note that internal forces ( 29) can be rewritten as

F int = V e 0 F 2 e J 2/3 DEV *D eff * C + p e J C -1 D dV e 0 ( 31 
)
with DEV A ≡ A -1 3 A : CC -1 the deviatoric operation in the reference configuration. Since

* C *C = e J 2/3 I - 1 3 C ⊗ C -1 (32) 
with [START_REF] Washizu | On the variational principles of elasticity and plasticity[END_REF] can be rewritten as

I ij kl = 1 2 ik jl + 1 2 il jk and [A ⊗ B] ij kl = A ij B kl , relation
F int = V e 0 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ F 2 *D eff *C + p e J C -1 PK D ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ dV e 0 ( 33 
)
To be able to integrate the balance equation [START_REF] Hu | On some variational methods on the theory of elasticity and theory of plasticity[END_REF] in time, T is decomposed into some intervals [t n ,t n+1 ] such that T = n=n f n=0 [t n ,t n+1 ]. Let t = t n+1t n be the time step size. Superscripts n and n + 1 will refer to configurations at time t n and t n+1 . To be consistent, the integration scheme must verify relations ( 13), ( 15) and ( 21). Now we will explain how *D eff /* C and p e can be computed.

Split of the internal potential.

To simplify the above relations, let D eff be split into a volumic part vol ( e ) (depending only on det F = e assumed constant for each element), and into a deviatoric part Deff , with

D eff ( x 0 , C( x, e )) = vol ( e ) + Deff ( Ĉ) (34) 
Then relation [START_REF] Bottasso | Integrating finite rotation[END_REF] can directly be evaluated by

p e = * vol ( e ) * e (35) 
Since

* Ĉ *C = 1 J 2/3 I - 1 3 C ⊗ C -1 (36) 
and since C ⊗ C -1 = Ĉ ⊗ Ĉ-1 , the deviatoric stress can be simplified into

2 *D eff *C = 1 J 2/3 2 * Deff * Ĉ - 1 3 * Deff * Ĉ : Ĉ Ĉ-1 = 2 1 J 2/3 DEV * Deff * Ĉ (37)

Example of the bi-logarithmic potential.

In this paper we will focus on bi-logarithmic potentials that are well suited to simulate metal models. These models also have interesting properties allowing for simpler expressions in the forthcoming developments, as was illustrated in Reference [START_REF] Ortiz | The variational formulation of viscoplastic updates[END_REF]. In elasticity, volumic and deviatoric internal energy are obtained from

vol ( e ) ≡ K 0 2 ln( e ) 2 and Deff ( Ĉ) ≡ G 0 4 ln( Ĉ) :l n ( Ĉ) (38) 
with K 0 the initial bulk modulus and with G 0 the initial shear modulus. Pressure ( 35) is directly computed by

p e = * vol ( e ) * e = K 0 ln( e ) e (39) 
The deviatoric stresses are obtained from a spectral decomposition of Ĉ into eigenvalues ( ) and eigenvectors e ( )

Ĉ = 3 =1 { ( ) e ( ) ⊗ e ( ) } (40) 
leading to

* Deff ( x 0 , Ĉ) * Ĉ = G 0 2 3 =1 ln ( ) ( ) e ( ) ⊗ e ( ) (41) 
Now, we will expose how to adapt these potentials (and resulting stress) for an elasto-plastic formulation.

THE VARIATIONAL FORMULATION OF ELASTO-PLASTICITY UPDATES

In this section we recall the main lines of the variational formulation of visco-plastic updates proposed by Ortiz and Stainier [START_REF] Ortiz | The variational formulation of viscoplastic updates[END_REF]. Next we will particularize these expressions to an elastoplastic model based on a bi-logarithmic potential with isotropic hardening.

Hypothesis and definitions

The strain tensor (1) is multiplicatively decomposed into a plastic part F pl and into an elastic part F el as

F = F el F pl (42) 
Let el (F el ) be the elastic potential and let pl (F pl (Q), Q) be the plastic potential, depending on plastic deformations but also on n internal variables Q ( ) ∈ R n . A flow rule couples the plastic deformation to the internal variable by

Ḟpl = Q( ) N ( ) F pl (43)
where N ( ) is the flow direction corresponding to value Q ( ) . In the particular case of a von Mises flow rule with only one internal variable, one has [START_REF] Ortiz | The variational formulation of viscoplastic updates[END_REF] Q = pl and tr N = 0 and N :

N = 3 2 ( 44 
)
where pl corresponds to the equivalent plastic strain. In the following, we will assume this flow rule to hold. Helmholtz free energy function A is therefore rewritten as

A(F, F pl , pl ) ≡ el (FF pl -1 ) + pl (F pl ( pl ), pl ) (45) 
From this free energy, the first Piola-Kirchhoff stress tensor P is obtained by

P ≡ *A(F, F pl , pl ) *F = * el (FF pl -1 ) *F = A ,F (46) 
Let T be the force conjugated to F pl and let Y be the force conjugated to pl , with

T ≡- *A(F, F pl , pl ) *F pl =-A ,F pl and Y ≡- *A(F, F pl , pl ) * pl (47) 
Let be a dissipation pseudo-potential associated to ˙ pl such that

˙ pl = * (Y ) *Y = ,Y (48) 
A Legendre mapping leads to the dual potential

* with * (˙ pl ) = sup Y (Y ˙ pl -(Y )) and Y = * * (˙ pl ) *˙ pl = * ,˙ pl (49) 
If is convex, with (0) = 0, it leads to the property ˙ pl >0i fY remains positive. The hypothesis of a Perzyna model leads to

* = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ mY 0 ˙ pl 0 m + 1 ˙ pl ˙ pl 0 m+1/m if ˙ pl 0 ∞ if ˙ pl <0 (50) 
where Y 0 , ˙ 

* = Y 0 ˙ pl if ˙ pl 0 ∞ if ˙ pl <0 (51) 
that will ensure the elasto-plastic flow occurs with ˙ pl >0.

Let us now establish some basic relations. Using (42), ( 43) and (45), forces T and Y (47) can be rewritten as

T = F el T P - * pl (F pl , pl ) *F pl ≡T c Y =- *A(F, F pl , pl ) *F pl : *F pl * pl - *A( pl ) * pl ≡A , pl = T : [NF pl ]-A , pl (52) 
where T c is therefore the backstress tensor and where A , pl comes from the explicit dependence of A to pl .

Continuous dynamics

Using the free energy function A (45) with three new independent variables, Ortiz and Stainier [START_REF] Ortiz | The variational formulation of viscoplastic updates[END_REF] proposed the following expression of a functional: 

D( Ḟ, ˙ pl , N) ≡ *A *F : Ḟ -Y ˙ pl + * (˙ pl ) (53 
*D( Ḟ, ˙ pl , N) *N =- *˙ pl T : NF pl *N (55) 
Assuming the functional is minimum related to the flow direction N under constraints (44) leads to a flow direction oriented along the deviatoric stress, that is consistent with the usual models of plasticity. Indeed, using (44), and introducing Langrangian multipliers 1 and 2 , minimization of D becomes min

N, 1 , 2 -TF pl T : N + 1 tr N + 2 N : N -3 2 (56)
Differentiation with respect to N leads to

0 =-TF pl T + 1 I + 2 2 N ⇔ 1 = 1 3 tr(TF pl T ) ( 57 
)
Therefore N is oriented along dev(TF pl T ), and since N : N = 3 2 , it yields

N = 3 2 dev(TF pl T ) dev(TF pl T ) :dev(TF pl T ) (58) 
Therefore D, constrained by (44) must be minimum with respect to N.

Differentiation with respect to Ḟ.

If we identify the effective potential D eff to the minimum of D related to ˙ pl and N

D eff ( Ḟ) ≡ min ˙ pl ,N D( Ḟ, ˙ pl , N) (59) 
using ( 46) and (53) leads to

*D eff ( Ḟ) * Ḟ = *A *F = P (60) 
This relation demonstrates that the stress tensor (here the first Piola-Kirchhoff, but it remains also true for the second Piola-Kirchhoff one) derives from a rate potential even if plasticity occurs, as assumed in relation [START_REF] Armero | On the formulation of high-frequency dissipative time-stepping algorithms for non-linear dynamics. Part II: second-order methods[END_REF].

Incremental formulation: elasto-plastic updates

Let us assume a time increment t from configuration n to configuration n + 1. Integration of relation (43) using relation (44), leads to [25]

F pl n+1 = exp ([ pl n+1 -pl n ]N) ≡A( pl n+1 -pl n ) F pl n (61)
where tensor A has the following properties:

det A = exp tr( pl N) = 1 and pl = 2 3 ln A :l nA ( 62 
)
with pl = pl n+1 -pl n . Time integration of functional D (53) leads to

D(F n+1 , F n , pl n+1 , pl n , N) ≡ A(F n+1 , F pl n+1 ( pl n+1 ), pl n+1 ) -A(F n , F pl n ( pl n ), pl n ) + t * pl n+1 -pl n t ( 63 
)
with A defined by (45) and * defined by (49).

Assuming D must be minimum with respect to the flow direction N leads, under some assumptions, to a radial return mapping scheme as we will see in the next section.

3.3.3.

Differentiation with respect to F n+1 . Assuming sufficient convexity properties for the physical potentials A and * , the stationary point of D will correspond to a minimum. Therefore, the effective incremental potential D eff is identified to this minimum of D with respect to pl n+1 and N

D eff (F) ≡ min pl n+1 ,N D(F n+1 , F n , pl n+1 , pl n , N) (66) 
Using relations ( 46) and (63) leads to

* D eff (F n+1 ) *F n+1 = *A(F n+1 ) *F n+1 = P n+1 (67) 
This relation demonstrates that, even when plasticity occurs, the stress tensor derives from an incremental potential.

When adapting these relations to the particular case of bi-logarithmic potentials and isotropic hardening, one can find:

PK n+1 = p e J [C n+1 ] -1 + 2 1 J 2/3 DEV f pl n+1 * ˆ el ( Ĉel ) * Ĉel f pl n+1 T = * D eff *C (68) 
with ˆ el ( Ĉel ) the deviatoric part of the elastic potential. Details of this evaluation can be found in Appendix A. Now we will use this variational formalism to design an energy momentum conserving time integration algorithm.

THE ENERGY MOMENTUM CONSERVING ALGORITHM (EMCA)

Once the balance relation ( 30) is established for a given time t, this relation must be integrated in time. To achieve this goal, Simo and Tarnow [START_REF] Simo | The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics[END_REF] proposed the EMCA. In this section we will present the main features of the EMCA algorithm. Next we will deduce the conditions on the forces resulting from the conservations laws expressed by relations ( 13), ( 15) and (21).

Description of the EMCA

The relation between positions and velocities at node is

[ x n+1 ] =[ x n ] + t 2 [ ˙ x n+1 ] + t 2 [ ˙ x n ] ( 69 
)
This relation is a second-order approximation (in t). A second-order approximation of the relations between the velocities and the accelerations at node is

[ ˙ x n+1 ] =[ ˙ x n ] + t 2 [ ¨ x n+1 ] + t 2 [ ¨ x n ] (70) 
The balance relation [START_REF] Hu | On some variational methods on the theory of elasticity and theory of plasticity[END_REF] is discretized in time at node by

1 2 M [ ¨ x n+1 + ¨ x n ] =[ F n+1/2 ext -F n+1/2 int ] ( 71 
)
This relation is a second-order approximation of relation [START_REF] Hu | On some variational methods on the theory of elasticity and theory of plasticity[END_REF] if the internal forces F n+1/2 int are a second-order approximation of F int (t n+1/2 ). The set of relations (69)-( 71) is solved by a predictor-corrector algorithm enhanced with a line search resolution [33, p. 254].

Verification of conservation laws

In this section we will verify the conservation laws expressed by relations ( 13), ( 15) and (21).

Conservation of linear momentum. A sum on in relation (71) and the use of relation (70) leads to

M [ ˙ x n+1 ] L n+1 -M [ ˙ x n ] L n = t [ F n+1/2 ext -F n+1/2 int ] (72) 
where the continuous linear momentum L defined by relation ( 12) is discretized thanks to relation [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF] in

L = M ˙ x . Relation (72) is a time discretization of relation (13) if [ F n+1/2 int ] = 0 (73)

Conservation of angular momentum.

Thanks to relations (69) and (70), the vector product between x n+1/2 = ( x n + x n+1 )/2 and relation (71) leads to

1 t M [ x n+1 ] ∧[ ˙ x n+1 ] J n+1 - 1 t M [ x n ] ∧[ ˙ x n ] J n =[ x n+1/2 ] ∧[ F n+1/2 ext -F n+1/2 int ] ( 74 
)
where the continuous angular momentum J defined by relation ( 14) is discretized thanks to relation [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF] in J = M x ∧ ˙ x . Therefore, relation (74) is a discretization of ( 14) if

x n+1 + x n 2 ∧[ F n+1/2 int ] = 0 (75)
4.2.3. Conservation of energy. Thanks to relations (69) and (70), the dot product between ˙ x n+1/2 = ( ˙ x n + ˙ x n+1 )/2 and relation (71

) leads to M 2 [ ˙ x n+1 ] •[ ˙ x n+1 ] K n+1 - M 2 [ ˙ x n ] •[ ˙ x n ] K n +[ x n+1 -x n ] •[ F n+1/2 int ] =[ x n+1 -x n ] •[ F n+1/2 ext ] W n+1 ext -W n ext ( 76 
)
where the continuous kinetic energy K defined in relation ( 16) is discretized thanks to relation [START_REF] Laursen | A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics[END_REF] in

K = 1 2 M ˙ x • ˙
x and where the power of the external forces Ẇext defined in relation ( 16) is discretized and integrated in

W n+1 ext -W n ext =[ x n+1 -x n ] •[ F n+1/2 ext
] . Let E be the discretized energy, let W el be the discretized reversible energy, let W pl be the discretized irreversible energy and let D eff be the discretized effective potential. Let us define

W el = V 0 { el } dV 0 W pl = V 0 { pl + t * } dV 0 (77)
Therefore relation [START_REF] Betsch | Conservation properties of a time FE method. Part I: time-stepping schemes for n-body problems[END_REF] can be discretized into

K n+1 -K n +[W el + W pl ] n+1 -[W el + W pl ] n = V 0 {D n+1 eff -D n eff } dV 0 = W n+1 ext -W n ext (78)
If this last expression is compared with relation (76), the internal forces must lead to

[ F n+1/2 int ] •[ x n+1 -x n ] = V 0 {D n+1 eff -D n eff } dV 0 = V 0 { D eff } dV 0 ( 79 
)
The challenge of the EMCA algorithm is to find a consistent expression of the internal forces and of the dissipation terms that satisfies relations (73), (75) and (79). This will be the topic of the next section.

Internal formulation of the internal forces

Let us extend the general formulation of the second Piola-Kirchhoff stress tensor proposed by Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF] for hyper-elasticity to our elasto-plastic formulation. Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF] defined modified values to reach the conservation of the thermodynamics laws. Let PK n+1/2 be the modified deviatoric stresses and let p n+1/2 be the modified pressure. Let the internal forces be

[ F n+1/2 int ] = V 0 F n+1 + F n 2 [ PK n+1/2 + 2p n+1/2 dG] D dV 0 (80)
with dG the modified differentiation of J by C. Let us use the split of D eff defined by relations (A15) and (A16). Therefore the general expression proposed by Gonzalez [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF] can be rewritten by using the variational formulation of elasto-plastic updates. The modified differentiation of J becomes

dG = DG n+1/2 + J n+1 -J n -DG n+1/2 : C C 2 C DG n+1/2 = 1 2 det C n+1 + C n 2 C n+1 + C n 2 -1 C = C n+1 -C n (81) 
while the modified pressure becomes 

p n+1/2 = *U vol * e (n+1)/2 + ⎡ ⎢ ⎢ ⎢ ⎣ U vol ( en+1 ) -U vol ( en ) - *U vol * e ( 
Modified deviatoric stresses are obtained by

PK n+1/2 = 2D D n+1/2 eff + 2 D eff (C n+1 , C n ) -D D n+1/2 eff : C C 2 C D D n+1/2 eff = * D eff *C C n+1 + C n 2 C = C n+1 -C n (83) 
In this last expression, * D eff /*C((C n+1 + C n )/2) is obtained as the deviatoric part of relation (68), i.e.

* D eff *C = 2 1 J 2/3 DEV f pl * ˆ el ( Ĉel ) * Ĉel f pl T (84)
Let us draw some remarks:

(i) This method requires to compute the effective potential for (C n+1 + C n )/2 and also for C n+1 . (ii) These expressions lead to a second-order approximation of the internal forces computed in the mid-configuration (i.e. F int (( x n+1 + x n )/2)) [START_REF] Gonzalez | Exact energy and momentum conserving algorithms for general models in nonlinear elasticity[END_REF]. Let us note that using the internal forces computed in the mid-configuration introduces a coupling between rotation and stretches. This coupling introduces some instabilities [START_REF] Gonzalez | On the stability of sympletic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry[END_REF]. (iii) These expressions are valid for any formulation using the variational formulation. (iv) Expression of the consistent stiffness matrix K = * F n+1/2 int /* x n+1 associated to internal forces can be found in Appendix B. The resulting expression is

K ik = V 0 D j G ij kl D l dV 0 + V 0 D j H vol1 ij kl 1 V 0 V 0 {J f n+1 T lp D p } dV 0 dV 0 + V 0 { D j H vol2 ij kl D l }+ V 0 { D j H dev ij kl D l } dV 0 ( 85 
)
where G results from the geometric part, where H vol1 results form the differentiation of the pressure, where H vol2 results from the differentiation of the differentiation of J and where H dev results from the differentiation of the deviatoric stresses. These tensors are evaluated in Appendix B. Unfortunately H ij kl = H kj i l , leading to a non-symmetrical stiffness.

Now let us demonstrate that expression (80) of the internal forces satisfies the conservation laws (73), (75) and (79).

Conservation of linear momentum.

Using properties of the shape functions, a sum on in relation (80) leads to

[ F n+1/2 int ] = V 0 ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ F n+1 + F n 2 [ PK n+1/2 + 2p n+1/2 dG] D =0 ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ dV 0 = 0 (86)

Conservation of angular momentum.

Using the symmetry properties of PK and of dG, relation (80) leads to

x n+1 + x n 2 ∧[ F n+1/2 int ] = V 0 : F n+1 + F n 2 [ PK n+1/2 + 2p n+1/2 dG] F n+1 + F n T 2 dV 0 = 0 (87)
where is the third-order permutation tensor. This expression is equal to zero since [ : A] i = ij k :A jk is always equal to zero if A is symmetric.

Conservation of energy.

Using the symmetry properties of P K and of dG, relations (80), ( 81) and (83) lead to

[ F n+1/2 int ] •[ x n+1 -x n ] = V 0 C n+1 -C n 2 : [ PK n+1/2 + 2p n+1/2 dG] dV 0 = V 0 D eff + p n+1/2 [J n+1 -J n ] dV 0 ( 88 
)
Since p n+1/2 is constant over the element, using definition of e (23) and ( 82) yields

[ F n+1/2 int ] •[ x n+1 -x n ] = V 0 { D eff } dV 0 + p n+1/2 V 0 {[ en+1 -en ]} dV 0 = V 0 { D eff + U vol ( en+1 ) -U vol ( en )} dV 0 = V 0 {D n+1 eff -D n eff } dV 0 (89) 
that satisfies relation (79). These developments prove that the variational formulation allows us to use the general expression of Gonzalez without modification (except the use of the incremental potential).

NUMERICAL EXAMPLES

In this section we will verify that the proposed scheme leads to consistent time integration for numerical applications. Moreover, we will show that the scheme is effectively second-order accurate. In the first example we will demonstrate that the proposed scheme is consistent when plastic deformation occurs. Next, we will prove on the Taylor bar problem that an increase of the time step size does not lead to divergence or lack of accuracy, contrarily to the Newmark scheme. Next, we will study a problem exhibiting contact interactions that will confirm the previous observations. Finally, a more dramatic example of impact will illustrate the robustness of the code. The finite element discretization considers bilinear four-node quadrangles with four Gauss points for two-dimensional problems and trilinear eight-node bricks with eight Gauss points for three-dimensional problems.

Numerical example 1: tumbling beam

Let us study the tumbling beam proposed by Meng and Laursen [START_REF] Meng | Energy consistent algorithms for dynamic finite deformation plasticity[END_REF]. Figure 1 illustrates the geometry of the beam and its properties are reported in Table I. The beam is discretized into 64 quadrangles (4 along the height and 16 along the length). The applied nodal forces Fi (see Figure 1) are described by the equations

F i(t) = i * t 5 if 0 t 5s = i * 10-t 5 if 5 s<t 10 s (90)
and are released after 10 s. The material is assumed to be elastic perfectly plastic. The problem is solved with the EMCA algorithm and a constant time step t = 0.5s. Figure 2(a) illustrates the time evolution of the angular momentum (around z-axis). During the initial loading (t 10 s) this value decreases and remains constant during the following 

W n+1 int = n i=0 { F i+1/2 int •[ x i+1 -x i ]} (91) 
Relation (79) shows that this work must be equal to the sum of the internal energy with the energy plastically dissipated. Figure 3 When the external forces are maximum (Figure 4(a)) there is no plastic deformation, when the loading is released (Figure 4(b)) localized plastic strains appear where loads were applied, and after a long time (Figure 4(c)) it appears that there are also plastic strains on the opposite side.

Numerical example 2: Taylor's bar impact

The initial geometry of Taylors's bar is illustrated at Figure 5 and geometrical and material properties are reported in Table II. The bar has an initial velocity ˙ x 0 and its lower face is constrained to stay in the plane z = 0. The material behaviour assumed to be elasto-plastic with linear isotropic hardening. A quarter of the bar is modelled with 576 elements (48 on the base, and 12 along the length). This example was largely studied in the literature (see e.g. Reference [START_REF] Simo | Algorithms for static dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory[END_REF]). It was also studied in the framework of consistent time algorithms for hyper-elastic based elasto-plastic models by Meng and Laursen [START_REF] Meng | On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators[END_REF], and in the framework of consistent time algorithms for hypo-elastic based elasto-plastic models by Noels et al. [START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF] .

In this paper we compare previous results with (i) The EMCA scheme developed in this paper with the variational formulation of elastoplastic updates. (ii) The Newmark [START_REF] Newmark | A method of computation for structural dynamics[END_REF] scheme combined with the variational formulation of elasto-plastic updates.

We will compare results obtained with the following constant time step sizes: 0.4, 0.2, 0.1, 0.05 and 0.025 s. Equivalent plastic strains obtained with the consistent algorithm are illustrated in Figure 6. Let us point out that the model used is a three-dimension one, but for clarity purpose we represent a slice. For the different time step sizes, results are similar. But with the Newmark scheme it appears that when time step size is larger than 0.05 s the equivalent strains are overestimated (Figure 7). When time step size is multiplied by 8, strains are overestimated by about 10%. When analysing the final results obtained (Table III), it appears that with the EMCA scheme they are similar whatever time step and that they correspond to previous results obtained by Meng and Laursen [9]. But for the Newmark scheme (both present results and those presented by Simo [START_REF] Simo | Algorithms for static dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory[END_REF]) when the time step increases, the final radius and the maximal equivalent strain are overestimated, while the final length is slightly underestimated. Figure 8(a) illustrates the plastically dissipated energy (initial kinetic energy is equal to 59.57 J). This value is underestimated when the time size increases, mostly for the Newmark scheme. Figure 8(b) illustrates the error on this value. The EMCA scheme is second order accurate with

In Reference [START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF], nodes belonging to the face z = 0 have no initial velocity to be able to verify the balance of the energy. In fact, if these nodes have an initial velocity, the constraints correspond to a modification of the boundary conditions, and therefore the sum of the kinetic energy and the work of internal forces does not remain constant. In the present paper these nodes have an initial velocity, leading to a slightly different result than in Reference [START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF]. respect to the time step size. Figure 9(a) illustrates the number of Newton-Raphson iterations. This number is similar for the Newmark scheme and for the consistent algorithm. Cost of evaluation of the internal forces and stiffness matrix for the consistent scheme is twice higher than for the Newmark scheme. The stiffness matrix resulting from the proposed formulation is non-symmetric. But, due to the quasi-incompressible formulation, the volumic part of the stiffness matrix of the traditional Newmark scheme is not symmetric either, and thus this lack of symmetry does not play against the consistent scheme. Overall, the consistent scheme is not more expensive since time step size can be larger to integrate with the same accuracy. Figure 9(b) illustrates the number of line-search iterations. For the consistent scheme, if time step size increases, this number increases too. For the Newmark scheme this number is almost always lower than for the consistent scheme. 

Numerical example 3: impact of two cylinders

Let us now study the impact of two cylinders. Geometry is illustrated in Figure 10 and properties are reported in Table IV. Each cylinder is discretized into 192 quadrangles. The left cylinder has an initial velocity ˙ x 0 and impacts the right one initially at rest. Both cylinders are identical and are made of a perfectly plastic material. Frictionless contact is treated with the consistent method proposed by Armero and Petöcz [START_REF] Armero | Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems[END_REF]. This example was first proposed by Meng and Laursen [START_REF] Meng | On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators[END_REF] in the framework of consistent time algorithm for hyper-elastic based elasto-plastic models, and was also studied by Noels et al. [START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF] in the framework of consistent time algorithm for hypo-elastic based elasto-plastic models. In this paper, we compare previous results with (i) The EMCA scheme developed in this paper with the variational formulation of elastoplastic updates. (ii) The Newmark [START_REF] Newmark | A method of computation for structural dynamics[END_REF] scheme combined with the variational formulation of elasto-plastic updates. We will compare results obtained with the following constant time step sizes: 20, 10, 5 and 2.5 ms.

When studying the effect of the time step size we have to notice that for the Newmark algorithm both simulations with t = 20 ms and t = 10 ms need a reduction of the step * * during the contact phase. Figure 11 illustrates the equivalent von Mises stress obtained by the two algorithms with t = 2.5 ms. It appears that results are quite similar. But when using a larger time step t = 20 ms, if the solution obtained with the EMCA algorithm (Figure 12(a)) remains similar that the one with t = 2.5 ms, the solution obtained with Newmark algorithm is quite different Figure (12(b)). If we analyse the time evolution of the energy that is plastically dissipated (Figure 13(a)) with a time step equal to t = 20 ms, it appears that the EMCA algorithm gives the same solution than those obtained by Meng and Laursen [START_REF] Meng | On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators[END_REF] and with an hypo-elastic model [START_REF] Noels | On the use of large time steps with an energy-momentum conserving algorithm for non-linear hypoelastic constitutive models[END_REF]. The Newmark solution diverges after a few ms to reach a 100% error. If we analyse the effect of the time step size (Figure 13(b)) on this plastically dissipated energy, it appears that for the Newmark scheme only the solution obtained with t = 2.5 ms corresponds to the EMCA solutions. The fact that the Newmark algorithm is not designed to integrate right cylinder has no initial velocity, while the left one has an initial velocity (Table V). Each cylinder has 330 trilinear bricks (1 through the thickness, 22 along the circumference, 15 along the length). The interaction between the cylinders occurs with a Coulomb frictional law. The contact interaction is treated in the consistent way we proposed in Reference [START_REF] Noels | Simulation of crashworthiness problems with improved contact algorithms for implicit time integration[END_REF], based on the method of Armero and Petzöcz [START_REF] Armero | A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis[END_REF]. With this formalism, the work of the contact forces is equal to the friction dissipation once the contact is released. The time step used is t = 1 s. along z for each cylinder. Since the impact occurs above the centre of gravity of the right cylinder, this generates a rotation of the two cylinders. But after a while the rotation velocity decreases, because of the friction between cylinders. The angular momentum for the two cylinders is constant. Figure 17(a) illustrates the work of the contact forces. Once the contact is released, this work corresponds to the frictional dissipation (see Reference [START_REF] Noels | Simulation of crashworthiness problems with improved contact algorithms for implicit time integration[END_REF] for details).

When comparing to the initial kinetic energy (Figure 17(b)), this work is small. Half of the initial kinetic energy is plastically dissipated (Figure 17(b)) and a small part is transformed into elastic energy. This example illustrates the robustness of the scheme when treating 3D-impact problems.

CONCLUSIONS

In this paper we have presented a new formulation of the internal forces for an elasto-plastic material using a variational formulation of visco-plastic updates. This formulation is similar to the one Gonzalez has developed for elasticity, leading to an energy momentum conserving scheme, but the new formulation presented is able to take into account the plastic behaviour. When plasticity occurs, the work of the internal forces corresponds to the sum of the internal energy variation with the energy plastically dissipated energy, leading to a consistent time integration scheme. This property is not verified with a traditional Newmark algorithm. Since the energy is preserved in the non-linear range no numerical energy is introduced in the system during the time integration. This result is very important because it demonstrates that the scheme is numerically stable in the non-linear range. This is a necessary condition for accuracy of the results. Nevertheless, it can be useful to introduce in this scheme numerical dissipation to decrease the oscillations in the answer due to the high frequency numerical modes. The proposed scheme is second-order accurate with the time step size and has shown a good accuracy on the numerical examples. The advantage of our formulation is that there is no restriction on the hardening laws, even if in this paper we have used only isotropic hardening.

APPENDIX B: CONSISTENT TANGENT STIFFNESS MATRIX

Let the consistent tangent stiffness matrix K be defined by

K ik = *[ F n+1/2 int ] i *[ x n+1 ] k = V 0 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ * F n+1 ir + F n ir 2 *[ x n+1 ] k [ PK n+1/2 rj + 2p n+1/2 dG rj ] D j ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ dV 0 K geo ik + V 0 ⎧ ⎨ ⎩ F n+1 ir + F n ir 2 * PK n+1/2 rj *[ x n+1 ] k D j ⎫ ⎬ ⎭ dV 0 K dev ik + V 0 F n+1 ir + F n ir 2 *2p n+1/2 dG rj *[ x n+1 ] k D j dV 0 K vol ik (B1)
Let us use the following results:

*F n+1 ij *[ x n+1 ] k = D j ik and *C n+1 ij * x k =[ li F n+1 kj + F n+1 ki lj ] D l (B2)
and

* C n+1 -C n 2 *C n+1 = 2C n+1 -2C n and * √ detC n+1 *C n+1 = 1 2 √ det C n+1 C n+1 -T (B3)

B.1. Geometrical part

Using relations (B2), the geometrical part from relation (B1) can be computed as

K geo ik = V 0 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ * F n+1 ir + F n ir 2 *[ x n+1 ] k [ PK n+1/2 rj + 2p n+1/2 dG rj ] D j ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ dV 0 = V 0 D j G ij kl D l dV 0 (B4)
with the four order tensor G defined by

G ij kl = 1 2 ik [ P K n+1/2 lj + 2p n+1/2 dG lj ] (B5)

B.2. Volumic part

The volumic part is decomposed into two terms. The first one results from the differentiation of the constant pressure (over the element), while the second one results from the differentiation of dG. Using [START_REF] Bauchau | Computational schemes for non-linear elasto-dynamics[END_REF], the first term becomes

K vol1 ik = V 0 F n+1 ir + F n ir 2 dG rj D j *2p n+1/2 * en+1 * en+1 * x k dV 0 = V 0 D j H vol1 ij kl 1 V 0 V 0 {J f n+1 T lp D p } dV 0 dV 0 (B6)
with (using ( 82))

H vol1 ij kl = F n+1 ir + F n ir 2 dG rj kl * 2 vol * e2 en+1 + en 2 if e n+1 = en = F n+1 ir + F n ir 2 dG rj kl 2 * vol * e ( e n+1
)-( vol ( e n+1 )-vol ( e n ))/ e e if e n+1 = e n (B7)

The second term becomes

K vol2 ik = V 0 F n+1 ir + F n ir 2 2p n+1/2 *dG rj *[ x n+1 ] k D j dV 0 = V 0 { D j H vol2 ij kl D l } (B8)
where (using (B2), and the symmetry properties of C)

H vol2 ij kl = 2p n+1/2 F n+1 ir + F n ir 2 *dG rj *C n+1 mn [ ml F n+1 T nk + F n+1 T mk nl ] = 4p n+1/2 F n+1 ir + F n ir 2 F n+1 km *dG rj *C n+1 ml (B9)
Using relations (81) and (B3), one has 

*dG *C n+1 = 1 2 I - C ⊗ C C 2 : *DG n+1/2 *C n+1/2 - C ⊗ DG n+1/2 C 2 + 1 2 J n+1 C ⊗ C n+1 -1 C 2 + J n+1 -J n -DG n+1

B.4. Particular case of bi-logarithmic potential and isotropic hardening

In this section, expressions are valid in configuration n + 1 and in configuration n + 1 2 . For the volumic part (B7), one has easily 

  pl 0 and m are constants. Particular choice of m →∞ yields
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 12 Figure 1. Geometry and loading of the tumbling beam.
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 3 Figure 3. Energy balance for the tumbling beam: (a) internal energy; and (b) total energy.

  (a) illustrates the balance of the internal energy. It appears that the sum of the internal energy and the plastically dissipated energy is exactly equal to the work done by the internal forces (since the two curves are the same, only a few points of the work of internal forces are represented by a triangle for clarity purpose). Moreover, summing the kinetic energy and the work done by the internal forces (Figure3(b)) leads to a value exactly equal to the work of the external forces. These observations demonstrate the consistency of the time integration. Finally Figure4illustrates the distribution of the equivalent plastic strain.
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 45 Figure 4. Equivalent plastic strain: (a) t = 5 s; (b) t = 10 s; and (c) t = 150 s.
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 6 Figure 6. Equivalent plastic strain for the Taylor's bar with the EMCA scheme: (a) t = 0.025 s; (b) t = 0.1 s; and (c) t = 0.4 s.
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 7 Figure 7. Equivalent plastic strain for the Taylor's bar with the Newmark scheme: (a) t = 0.025 s; (b) t = 0.1 s; and (c) t = 0.4 s.
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 89 Figure 8. Plastically dissipated energy for the Taylor's bar (logarithmic scales): (a) final energy; (b) error on final energy.
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 10 Figure 10. Geometry and initial velocity of the two cylinders.
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 11 Figure 11. Equivalent plastic strain for the two cylinders with t = 2.5 ms: (a) EMCA; and (b) Newmark.
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 1213 Figure 12. Equivalent plastic strain for the two cylinders with t = 20 ms: (a) EMCA; and (b) Newmark.
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 15 Figure 15. Geometry and equivalent plastic strain for the two hollow cylinders: (a) t = 0 ms; and (b) t = 10 ms.
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 16 Figure 16. Time evolution of the momenta for the hollow cylinders: (a) linear momentum; and (b) angular momentum.
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 15 b) illustrates the configuration once the contact is released.

Figure 16 (

 16 a) illustrates the time evolution of the linear momentum along x for each cylinder. During the contact the left cylinder gives a part of its momentum to the right one. The sum is constant over the time. Figure 16(b) illustrates the time evolution of the angular momentum

Figure 17 .

 17 Figure 17. Time evolution of the energies of the two hollow cylinders: (a) work of contact forces; and (b) energy.
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 211431 C n+1/2 -1 -I C n+1/2 -1 (B11)In this expression we use the notationsC n+1/2 =(C n+1 + C n )/2 and [I A ] ij kl = 1 2 A ik A jl + A il A jk .B.3. Deviatoric partUsing relations (B2), the deviatoric term becomes eff (C n+1 -C n )this expression, we use differentiation with symbol d and not * because the minimum value of D depends only on C. Moreover, we use exponent n + 1 2 to refer to values computed for(C n+1 + C n )/2. Let M = 4(dD D n+1/2 eff/dC n+1/2 ) be the material tensor. Proceeding as Simo and Taylor [27] yieldsM = det(C n+1/2 ) -2/2D D eff + 2D D eff ⊗ Ĉ-1 ] n+1/2 to compute d D eff /dC n+1 and dD D eff /d Ĉ.First term is obtained by d D eff dC n+1 = kl TT = H klij . In this last expression, we have ensured that dD D eff /d Ĉij kl = dD D eff /d Ĉklij (to be consistent with the fact that a double differentiation with respect to C must lead to a symmetric tensor).

* 2 ˆ[ln 3 2

 23 vol * e * e = K 0 1ln( parts (B18) and (B19), we have more relations to evaluate. Since only ˆ el depends explicitly on Ĉ, one has with * ˆ el /* Ĉel computed thanks to spectral decomposition. Since D is minimum with respect to pl , one has where D exp = * exp ( pl N)/*N and where F pl n is the plastic deformation tensor at previous step. Let us define the following operation [AHB] ij kl = A im H mnkl B jn , [HB] ij kl = H inkl B jn and [AH] ij kl = A im H mj k l . Let us define H T ij kl = H jilk , therefore, using (B23) leads to* D *N =f pl * ˆ el * Ĉel f pl T : [ Ĉf pl D exp F pl n T ]f pl * ˆ el * Ĉel f pl T : [ Ĉf pl D exp F pl n T ] T (B24)that is different from zero since minimum of D is reached under constraints.From relation (A3), one gets* Ĉpr * Ĉ = I [f pl n ] T(B25) Therefore, thanks to relation (A14), one has 3G 0 + h] ln Ĉpr :l n Ĉpr ln Ĉpr : D ln Ĉpr : I [f pl n ] T (B26) with D ln Ĉpr = * ln Ĉpr * Ĉ . Moreover, using relation (A13) leads to Ĉpr :l n Ĉpr D ln Ĉpr : I [f pl n ] T ln Ĉpr [ln Ĉpr :l n Ĉpr ] 3/2 ⊗ ln Ĉpr : D ln Ĉpr : I [f pl n ] T (B27) Finally, let us study the missing terms in (B19). Let us define the following operation [ABHCD] ij kl = A im B jn H mnpq C kp D lq , then we have directly *D D Ĉ = f pl f pl * 2 ˆ el * Ĉel * Ĉel f pl f pl (B28) * Using previous definitions and results leads to *D D* pl =-[ f pl NF pl ] f pl * ˆ el ( Ĉel ) * Ĉel f pl Tf pl * ˆ el ( Ĉel ) * Ĉel f pl T [f pl NF pl ] f pl D exp F pl n T ] f pl * ˆ el ( Ĉel ) * Ĉel f pl T f pl * ˆ el(Ĉel ) * Ĉel f pl T f pl D exp F pl n T T -*D D * Ĉ : [ Ĉf pl D exp F pl n T ]-*D D * Ĉ : [ Ĉf pl D exp F pl n T ] T (B30)

Table III .

 III Final results for the Taylor's bar.

	Scheme	Radius	Length	pl
	EMCA, t = 0.05 s0 .006774 m EMCA, t = 0.025 s0 .006775 m EMCA, t = 0.1 s0 .006777 m EMCA, t = 0.2 s0 .006783 m EMCA, t = 0.4 s0 .006813 m Newmark, t = 0.025 s0 .006774 m Newmark, t = 0.05 s0 .006778 m Newmark, t = 0.1 s0 .006798 m Newmark, t = 0.2 s0 .006842 m Newmark, t = 0.4 s0 .006874 m Simo [35], t = 0.5 s0 .00697 m Meng and Laursen [9], t = 1 s0 .006775 Hypo-elastic [12], t = 0.5 s0 .006553 m	0.02140 m 0.02140 m 0.02140 m 0.02140 m 0.02141 m 0.02140 m 0.02140 m 0.02142 m 0.02145 m 0.02146 m -0.02164 m 0.02158 m	2.61 2.62 2.60 2.61 2.61 2.61 2.62 2.65 2.74 2.81 -2.62 2.37

Table IV .

 IV Properties of the two cylinders.

	Properties	Values
	Radius Distance between the two gravity centres Initial velocity of left cylinder Initial density Bulk modulus Shear modulus Initial yield stress Normal penalty of contact	R = 1m d = (2.18 m; 0m) x 0 = (1ms -1 ;-0.1ms -1 ) ˙ 0 = 8.93 kgm -3 K 0 = 130 Nm -2 G 0 = 43.3Nm -2 0 = 10 Nm -2 k N = 10 4

‡ Research Fellow at the Belgian National Fund for Scientific Research (FNRS). § Research Associate at the Belgian National Fund for Scientific Research (FNRS).
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a non-linear model (the work of internal forces is different from the sum of the internal energy and the plastically dissipated energy [START_REF] Hughes | Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics[END_REF]) leads to this error, but there is another problem. If we analyse the time evolution of the work of contact forces (Figure 14(a)) it appears that the Newmark algorithm with t = 20 ms introduces some energy into the system. If we analyse the final results (Figure 14(b)) it appears that for the Newmark scheme the larger the time step size the larger the energy numerically introduced. With the EMCA scheme this energy is always strictly equal to zero.

Numerical example 4: impact of two hollow cylinders

The problem under consideration is the interaction of two hollow perpendicular cylinders (Figure 15(a)). Both cylinders have the same geometry and are both in steel (Table V). The

APPENDIX A: FORMULATION OF ELASTO-PLASTIC UPDATES FOR BI-LOGARITHMIC POTENTIALS USING THE QUASI-INCOMPRESSIBLE METHOD

Relations (62) implies that F pl has a determinant equal to the unity. Using relations (42) then leads to

Then, using (62), relation ( 5) becomes

This relation allow us to define the elastic predictor

Using the split of the potential considered in Section 2.3.1, leads to a new expression of the elastic potential

Assuming pure isotropic hardening is equivalent to choosing the plastic potential

with the hardening parameter h and the yield stress v defined by

In the particular case of linear hardening, pl n+1 = v0 pl n+1 + h/2[ pl n+1 ] 2 with v0 the initial yield stress. The dissipation dual pseudo potential (50) is then rewritten as

with Y 0 = 0 a particular case. With these definitions, functional (63) can be rewritten as

A.1. Minimization with respect to pl n+1

Functional (A8) is derived with respect to pl n+1 . First let us study the differentiation of ˆ el , that is rewritten in a similar form to that in the elastic case [START_REF] Noels | Simulation of crashworthiness problems with improved contact algorithms for implicit time integration[END_REF]. Assuming Ĉpr and A -1 commute (this will be demonstrated a posteriori), and using relations (61) and ( 62), it leads to

Deriving this expression with respect to pl n+1 yields

Finally, the derivative of (A8) is obtained by using relations (A6), (A7) and (A10), and leading to

A.2. Minimization with respect to N

The functional (A8) must be minimum with respect to N under the constraints (44). Since only ˆ el depends on N, one must have Let us note that this last expression ensures that both A and Ĉpr have the same spectral basis, and therefore commute.

Combining relations (A11) and (A13) leads to the equation giving pl n+1 . Indeed, one has

Finally, (A13) and (A14) allow us to compute F pl thanks to (61).

A.3. Stress derivation

At this point, functional (A8) depends only on F n+1 , and is rewritten

We can also define

Proceeding as in Section 2.3.1, second Piola-Kirchhoff stress tensor PK is obtained by differentiation of (A15) with respect to C n+1 , and becomes