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Elastoplastic Model for Clay
with Microstructural Consideration

C. S. Chang1; P.-Y. Hicher2; Z. Y. Yin3; and L. R. Kong4

Abstract: Clay material can be considered as a collection of clusters, which interact with each other mainly through mechanical forces.
From this point of view, clay is modeled by analogy to granular material in this paper. An elastoplastic stress-strain relationship for clay
is derived by using the granular mechanics approach developed in previous studies for sand. However, unlike sand, clay deformation is
generated not only by the mobilizing but also by compressing clusters. Thus, in addition to the Mohr-Coulomb’s plastic shear sliding and
a dilatancy type flow rule, a plastic normal deformation has been modeled for two clusters in compression. The overall stress-strain
relationship can then be obtained from the mobilization and compressing of clusters through a static hypothesis of the macro-micro
relations. The predictions are compared with the experimental results for clay under both drained and undrained triaxial loading condi-
tions. Three different types of clay, including remolded and natural clay, have been selected to evaluate the model’s performance. The
comparisons verify that this model is capable of accurately reproducing the overall behavior of clay, which accounts for the influence of
key parameters such as void ratio and mean stress. A section of this paper is devoted to show the model’s capability of considering the
influence of inherent anisotropy on the stress-strain response under undrained triaxial loading conditions.

keywords: Clays; Microstructures; Stress strain relations; Anisotropy; Elastoplasticity.
Introduction

Under a microstructural approach for stress-strain modeling, a set
of microsystems �e.g., interparticle contacts� is used to represent
the material. Material properties are defined for each microsystem
and the overall stress-strain relationship for the material is ob-
tained from averaging the behaviors of this set of microsystems.

If the microsystems are considered as a set of mobilized planes
in the material, the approach used to estimate the overall behavior
from this set of planes can be linked to G. I. Taylor’s concept,
developed long ago, as the slip theory of plasticity for polycrys-
talline materials by Batdorf and Budianski �1949�. These ideas
were applied by Pande and Sharma �1982� to rocks and soils
in what they called the overlay model, and to concrete by Bazant
et al. �1996� in the so-called microplane model.

For granular material, a set of particle pairs in contact are
considered as the microsystems, and material constants are de-
fined for the interparticle contacts. The approach used to estimate
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the overall stress-strain behavior of granular material can be
found in the work done over the last two decades. For elastic
behavior, work has been done by Jenkins �1988�, Walton �1987�,
Rothenburg and Selvadurai �1981�, Chang �1988�, Emeriault and
Cambou �1996�, Liao et al. �2000�, and Kruyt and Rothenburg
�2002�, among others. For inelastic stress-strain behavior, models
can be found in Jenkins and Strack �1993�, Matsuoka and Takeda
�1980�, Chang et al. �1989a,b�, etc. Chang et al. �1992a,b�, and
Suiker and Chang �2004�. These inelastic models have encoun-
tered some difficulties in predicting the correct shear strength in
so far as the predicted strength is often overestimated for the
models with a kinematic hypothesis �Chang and Misra 1990�.
These models also have difficulties in predicting correctly the
behavior under different stress paths. To overcome these difficul-
ties, we have adopted a static hypothesis proposed by Liao et al.
�1997� and incorporated the critical state concept to formulate a
microstructural model suitable for sand �Chang and Hicher 2005�.

In this paper, we treat clay as a collection of clusters formed
by groups of platy clay particles. At the scale of cluster sizes, long
range forces are negligible, and the clusters interact with each
other mainly through mechanical forces. Thus, clay material can
be modeled by analogy to granular material. Some studies on clay
fabric supporting this notion are discussed in the “Simple Model
for Clay Fabric” section. A stress-strain model is then presented in
the “Stress-Strain Model” section, in which we consider a clay
cluster as a deformable grain. We then extend the granular me-
chanics approach �i.e., Chang and Liao 1990; Chang and Gao
1995; Chang and Hicher 2005� to derive the elastoplastic stress-
strain relationship for clay.

The model’s performance is then evaluated by comparing the
predicted with the measured triaxial loading results for clay speci-
mens of various overconsolidation ratios �OCRs�, under various
confining stresses, and in both drained and undrained conditions.

The experimental results are obtained from two types of remolded



clay with very different compressibilities. A natural clay with in-
herent anisotropy has also been studied to evaluate the model’s
ability to model the effects of inherent anisotropy on the stress-
strain response under undrained triaxial loading condition.

Simple Model for Clay Fabric

The constituents of clay can be generally viewed across three
scales
1. Clay particle: a clay particle is usually platy in shape. Its

thickness and size can vary 100 times according to specific
clay types, such as montmorillonite, illite, or kaolinite. The
size for a platy particle generally ranges from 0.01–1 �m.

2. Clay cluster as an aggregate of clay particles: clay particles
attract each other due to surface forces among particles such
as chemical, electrostatic, van der Waals forces, etc. These
forces pull together the particles to form particle clusters,
which have either a flocculate or dispersed type structure, as
shown in Fig. 1. The size of the clusters continues to grow
until the clusters are large enough so that the cluster weight,
due to gravitation, becomes significantly larger than the in-
terparticle surface forces. At this stage, the cluster loses its
potential to attract further clay particles, and the size of clus-
ters stops to grow. The ultimate cluster-size depends on the
clay particle type, the liquid inside the pores, and its sedi-
mentation history.

3. Clay material as an assembly of clusters.
Since the clay-particles are strongly attracted to each other by

surface forces, a cluster of particles does not deform very much
under usual external stresses and can, therefore, be considered as
an intact unit. On the other hand, clusters interact mainly through
mechanical forces. Thus, as schematically shown on the left side
of Fig. 2, clay can be regarded as an assembly of “grains,” in
which each grain is also a cluster. The main difference between
sand grains and clay clusters is that the clay clusters, compared to
sand grains, are more deformable. This deformability depends on
the way the clay particles are assembled, which is a function of
the mineralogy, adsorbed ions, etc.

Flocculate Disperse

Fig. 1. Flocculate and disperse structure of clay particles

Fig. 2. Schematic illustration of clay clusters as grains
2

A study undertaken by Hicher et al. �2000�, by means of scan-
ning and transmission electron microscopes, related the mechani-
cal behavior of two saturated remolded clays, a kaolinite and a
bentonite, to the evolution of their microstructural parameters
such as particle shape, particle size, and particle orientation. The
results of this study show that the main role played by the clay
clusters is similar to the role played by the grains in the mechani-
cal behavior of granular materials. This explains why sand and
clay have similar qualitative behavior even though each material
consists of different constituents �Biarez and Hicher 1994�. The
difference in nature between sand grains and clay clusters can
nevertheless explain quantitative differences in their stress-strain
relationship. In particular, the deformability of the clusters can
have a significant effect on volume change behavior in drained
condition and on the shape of stress path in undrained condition.
The influence of the cluster’s deformability on the elastic proper-
ties of clayey materials is particularly pronounced. Since the elas-
tic domain is restricted to very small strains ��10−5�, for which
the relative displacements of the clusters are negligible, the de-
formation of the material must be mainly due to the deformation
of individual clusters. Thus, the elastic moduli measured in sands
and gravels are much higher than those in clays �Biarez and
Hicher 2008�.

At higher strain level, the major deformation mechanism of
the continuous medium is due to the relative displacements of the
clay clusters. Under theses conditions, the main factor affecting
the overall behavior is the friction between clusters, determined
by the nature and the shape of these clusters. The photographs in
Fig. 3�a� show how kaolinite microstructure is made up of rigid
small particles and aggregated in compact clusters. Fig. 3�b�
shows the clusters of both natural and remolded Saint Herblain
clay.

An analysis of the pore size distribution in the kaolinite, by
means of mercury intrusion porosimetry, confirmed the existence

(b)

(a)

Fig. 3. �a� Microstructure of a kaolinite clay: left photo: isotropic
consolidation=10 kPa and right photo: isotropic consolidation
=300 kPa; �b� microstructure of Saint Herblain clay: left photo: natu-
ral clay �5 �m� and right photo: remolded clay �10 �m�
of two major groups of pore sizes: one centered around 1 �m



and the other around 10 nm. The first group corresponds to the
intercluster pores, whereas the second one is related to the inter-
particle pores. The number and the size of large pores progres-
sively decreased wit increasing consolidation stresses, while the
small pore size remained relatively unchanged under moderate
loading stresses. This result confirmed that the volume change
during loading is mainly due to the rearrangement of the clay-
clusters �Hicher et al. 2000�.

Stress-Strain Model

In this model, clay is regarded as an aggregate of clusters. The
deformation of a representative volume of the material is gener-
ated by mobilizing and compressing the clusters. Thus, the stress-
strain relationship can be derived as an average of the
deformation behavior of local contact planes in all orientations.
For contact planes in the �th orientation, the local forces f j

�

and the local movements �i
� are denoted by f j

�= �fn
� , fs

� , f t
�� and

�i
�= ��n

� , �s
� , �t

��, where the subscripts n, s, and t represent the
components in the three directions of the local coordinate system,
as shown in Fig. 4. The direction outward normal to the plane is
denoted as n; the other two orthogonal directions, s and t, are
tangential to the plane.

Density State of a Cluster Assembly

One of the important elements to consider in soil modeling is the
critical state concept. At critical state, the clay material remains at
a constant volume while it is subjected to a continuous distortion.
The void ratio corresponding to this state is ec.

The critical void ratio ec is a function of the mean stress
p= ��x+�y +�z� /3. The relationship has traditionally been written
as follows:

ec = ecr0 − � ln� p

pcr0
� �1�

The two parameters �ecr0 , pcr0� represent a reference point on
the critical state line. For convenience, the value of pcr0 is taken to
be 0.01 MPa. The critical state line can be defined by two param-
eters ecr0 and �. Using the critical state concept, the density state
of an assembly is defined as the ratio e /ec, where e is the void

Fig. 4. Local coordinate at interparticle contact
ratio of the assembly.
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Intercluster Behavior

In order to have a more apparent link between the micro and
macro variables, we define a local stress �i

� and a local strain �i
�,

which are directly related to the local forces f j
� and the local

movements �i
� at each contact by

�i
� =

Nl�

3V
fi

�; �i
� = �i

�/l� �2�

where l�=length of the branch vector, which joins the centroids of
two contact clusters, and V=volume of the representative ele-
ment. It is to be noted that the local stress �i

� is not the stress on
the physical contact area between two clusters. It should be
viewed rather as the average stress on the intercluster plane when
the cluster and voids in the representative volume are homog-
enized into a continuum. For an isotropic medium, the local stress
is identical to the tractions resolved on the plane due to global
stress �i.e., �i

�=� jinj
��. The proof will be given later in Eq. �19�.

In the local coordinate system, the local stress and local strain
are respectively denoted as ��n

� �s
� �t

�� and ��n
� �s

� �t
��. For

convenience, we use the notation ��=�n
� for local normal stress

and the notation 	�=�n
� for local normal strain in the following

sections.

Elastic Part

The intercluster behavior can be characterized as the relationship
between contact force and contact displacement, given by

f i
� = kij

�� j
� �3�

in which the stiffness tensor can be related to the contact normal
stiffness, kn

�, and shear stiffness, kr
�

kij
� = kn

�ni
�nj

� + kr
��si

�sj
� + ti

�tj
�� �4�

In terms of local stress and local strain, an alternative intercluster
stiffness is defined as

�i
� = k̄ij

�� j
� �5�

where

k̄ij
� = kij

� N�l��2

3V
�6�

The intercluster stiffness can be expressed as the form adopted for
sand grains by Chang et al. �1989a,b�, given by

k̄n
� = k̄n0

� � ��

pref
�n

; k̄r
� = krRk̄n

� = krRk̄n0
� � ��

pref
�n

�7�

where ��=local stress in a normal direction; pref =standard refer-
ence pressure taken as 1 MPa.; and krR=ratio of shear to normal

stiffness. k̄n0
� ,krR and n are material constants. The value of n is

found to be 0.33 for two elastic spheres according to Hertz-
Mindlin’s formulation �Mindlin 1969�. Based on experimental
measurements of the elastic modulus under different confining
stress, the value of n has been found to be 0.5 for sand and

0.5–1.0 for clay.



Plastic Part

Shear Sliding

The elastic part of the tangential movement between two clusters
does not have a coupling effect �i.e., there is no shear induced
normal movements�. However, plastic sliding often occurs along
the tangential direction of the contact plane with an upward or
downward movement �i.e., dilation or contraction�. Stress dila-
tancy is a well-known phenomenon in sand �see discussions in the
work by Taylor �1948�, Rowe �1962�, Goddard �1990�, etc.�, and
should be correctly modeled. The dilatancy equation used here is
modified from the equation adopted for sand by Chang and
Hicher �2005�, given by

d	p

d�p = �sgn�b� �

�
− tan 
��� �

�
�a�1 −

e

ec
� �8�

The modified equation allows more flexibility in modeling per-
formance for different behaviors. In this equation, a, b, and 
�

are intercluster property constants, ec is the critical void ratio for
the clay, and �sgn� is the sign of �� /�−tan 
��. When the void
ratio e is equal to the critical void ratio, zero dilation holds. It is
to be noted that the state variables e and ec of the clay are referred
to the cluster assembly, which is used to regulate the dilation of
individual intercluster contacts. It is rational to consider the micro
variable as a function of the macrostate because the intercluster
behavior is indeed influenced by the density state of the specimen.

In Eq. �7�, 
� is the intercluster friction angle, which, in value,
is very close to the internal friction angle, measured at critical
state. The values of a and b can be calibrated from experimental
measurements of triaxial tests, which will be shown in the later
section on numerical simulation.

Note that the shear stress � and the rate of the plastic shear
strain d�p in Eq. �7� are defined as

� = ��s
2 + �t

2 and d�p = ��d�s
p�2 + �d�t

p�2 �9�

The yield function is assumed to be of Mohr-Coulomb type,
given by

F1��,�,�1� = � − ��1��p� = 0 �10�

where �1��P�=isotropic hardening/softening parameter. Plastic
loading corresponds to dF1�0. The hardening parameter is
defined by a hyperbolic function in the �1-�p plane, which in-

volves two material constants: 
p and k̄p through the following
relationship:

�1 =
k̄p tan 
p�p

� tan 
p + k̄p�p
�11�

When plastic deformation increases, �1 asymptotically ap-
proaches tan 
p. For a given value of �, the initial slope of the

hyperbolic curve is k̄p /�. The flow rule is nonassociated. Under a
loading condition, the shear plastic flow in the direction tangential
to the contact plane is determined by a normality rule applied to
the yield function. However, the plastic flow in the direction nor-
mal to the contact plane is governed by the stress-dilatancy equa-
tion in Eq. �7�.

The value of k̄p is found to be linearly proportional to k̄n such

that

4

k̄p
� = kpRk̄n

� = kpRk̄n0
� � ��

pref
�n

�12�

The ratio kpR is a material parameter.
The internal friction angle 
� is a constant for a given mate-

rial. However, the apparent friction angle, 
p, on a contact plane
is dependent on the density state of neighboring clusters, which
can be related to the void ratio e by

tan 
p = � ec

e
�m

tan 
� �13�

where m=material constant �Biarez and Hicher 1994�.
In a loose structure, clusters can rotate more freely, preventing

the intercluster shear force from fully mobilizing the sliding re-
sistance. The apparent frictional angle 
p is smaller than 
�. On
the other hand, a dense structure has a higher degree of interlock-
ing, which requires more effort to mobilize the contacts between
clusters. In such a case, the apparent frictional angle 
p is greater
than 
�. When the loading stress reaches the apparent frictional
angle 
p, the dense structure dilates and the degree of interlock-
ing becomes relaxed. As a consequence, the apparent frictional
angle �i.e., the peak angle in this case� is reduced, which results in
a strain-softening phenomenon.

Normal Compression

To describe the compressible behavior between two clay clusters,
a second yield surface is necessary. The second yield function is
assumed to be as follows:

F2��,�2� = � − �2�	p� for � � pp �14�

where the local normal stress � and local normal strain 	p are
defined in Eq. �3�. The hardening function �2�	p� is defined as

�2 = �p10	p/cp or 	p = cp log
�2

�p
�15�

where cp=compression index for the compression curve plotted
on the 	p−log � plane. When � is less than �p, the plastic strain
produced by the second yield function is null. Thus, �p in
Eq. �12� corresponds to the preconsolidation stress in soil
mechanics.

Elastoplastic Relationship

With the basic elements of intercluster behavior �elastic and plas-
tic� discussed above, the final incremental local stress-strain rela-
tion of the intercluster contact can be derived

�̇i
� = k̄ij

�p�̇ j
� �16�

Since it is a standard procedure to derive a detailed expression for

the elastoplastic stiffness tensor k̄ij
�p by using the plastic yield

functions given above, the derivation is not presented here.

Stress-Strain Relationship

The stress-strain equations at cluster scale represent the relation-
ships between two vectors—intercluster stress �i and intercluster
strain � j—whereas the stress-strain equations at the assembly
scale represent the relationships between two tensors—stress �ij

and strain 	kl. Due to the two different levels of complexity, it is

much easier to establish, from a phenomenological approach, the



stress-strain equations at cluster scale than those at assembly
scale. Thus, in the present model, the stress-strain equations at
cluster scale are first established in a phenomenological manner,
as shown in the last section. In this section, these equations are
used to derive the stress-strain equations at assembly scale. This
way is more rational and takes less effort than a straight phenom-
enological approach of establishing the stress-strain relationship
at assembly scale.

Macro-Micro Relationship

The stress-strain relationship for an assembly of clay clusters can
be determined from integrating the intercluster behavior at all
contacts. During the integration process, a relationship is required
to link the macro and micro variables. Using the static hypothesis
proposed by Liao et al. �1997�, we obtain the relation between the
strain of assembly and intercluster strain

u̇j,i = �
�=1

N

�̇ j
�nk

�Bik
� �17�

where �̇ j =local strain between two contact clusters; nk=unit vec-
tor of the branch joining the centers of two contact clusters; and
N=total number of contacts, over which the summation is carried
out. The tensor Bik

� in Eq. �16� is defined as

Bik
� = Aik

−1�l��2 where the fabric tensor Aik = �
�=1

N

li
�lk

� �18�

Using the principle of energy balance, which states that the
work done in a representative volume element is equal to the
work done on all intercluster planes within the element, we have

�iju̇j,i =
1

V�
�=1

N

f j
��̇ j

� =
3

N�
�=1

N

� j
��̇ j

� �19�

and using Eq. �16�, the local stress on the �th contact plane is
derived as follows:

�̇ j
� =

N

3
�̇ijBik

�nk
� �20�

For the case of isotropic fabric, it can be derived that Bik

=3�ik /N, where �ik is the Kronecker delta. Thus Eq. �19� is re-
duced to the usual form �̇ j

�= �̇ijnj
�.

The stress increment �̇ij can be obtained by adding the dyadic
product of the contact force and the branch vectors for all contacts
�Christofferson et al. 1981; Rothenburg and Selvadurai 1981�. In
terms of local stress, it is

�̇ij =
1

V�
�=1

N

f j
�li

� =
3

N�
�=1

N

� j
�ni

� �21�

Applying the defined local stress in Eq. �19�, Eq. �20� is uncon-
ditionally satisfied.

By using Eqs. �15�, �16�, and �19�, the following relationship
between stress and strain can be obtained:

u̇i,j = Cijmp�̇mp �22�
where

5

Cijmp =
N

3 �
�=1

N

�k̄jp
ep�−1nk

�nn
�Bik

�Bmn
� �23�

The summation in Eq. �22� can be expressed by a closed-form
solution for some limited conditions such as the elastic modulus
of randomly packed equal-size particles �Chang et al. 1995�.
However, for elastic-plastic behavior, due to the nonlinear nature
of the local constitutive equation, a numerical calculation with an
iterative process is needed to carry out the summation in Eq. �22�.

Computation Scheme

Initially, we know the global variables ��ij and 	ij� for the assem-
bly and the local variables �f j

� and � j
�� for each contact. For a

given loading increment, which can be of a stress control, a strain
control or a mixed mode, 6 out of the 12 variables ��ij and 	ij�
are unknown. The objective is to determine all global ��ij and 	ij�
and local variables �f j

� and � j
�� at the end of the load increment.

For a system with N intercluster contacts, the number of un-
knowns is 3N for f j

� and 3N for � j
�. The total number of un-

knowns is therefore 3N+3N+6.
The following constraints must be satisfied:

1. The local constitutive equation, i.e., Eq. �15�. Since there are
three equations for each contact, the total number of equa-
tions is 3N; N being the total number of intercluster contacts.

2. The static hypothesis between global stress and local forces,
i.e., Eq. �19�: the number of equations is 3N.

3. The strain definition between global strain and local dis-
placement, i.e., Eq. �16�. The number of equations is 6 �strain
tensor is symmetric�.

The total number of unknowns is the same as the total number
of equations. Therefore, a solution can be determined. To facili-
tate the numerical calculation, the summation process in the
above equations can be replaced by an integral process in a
spherical coordinate system with an orientation distribution func-
tion E�� ,�� for the intercluster contacts, provided that the num-
ber of contact N is sufficiently large �Chang and Misra 1990�. An
example is the fabric tensor in Eq. �17�

Aik = �
�=1

N

li
�lk

� =
N

2�
	

0

�/2 	
0

2�

E��,��li��,��lk��,��sin �d�d�

The surface integration on a sphere can be carried out numeri-
cally through Gaussian integration points with weight factors.
Thus the integration process requires less effort than the summa-
tion process because it can be integrated over a small number of
Gaussian integration points �i.e., selected number of contact ori-
entations�. Lebedev �1976, 1977� has pioneered an integration
scheme using a set of integration points with octahedral symme-
try. Bazant and Oh �1986� has devised an integration method
similar to the ones proposed by Lebedev. Along this line, a more
refined method has been proposed by Delley �1996� for applica-
tions in weather forecasting, quantum chemistry, wave scattering,
and radiation studies.

For all simulations presented in this paper, we have performed
using three numbers of integration points N=56, N=74, and
N=122. The predicted stress-strain curves show about 5–7% dif-
ference between the results obtained from integration numbers
N=56 and 74, whereas the curves show less than 1% difference
between the results obtained from integration numbers N=74 and

122. Thus N=74 was found to be adequate. However, it is antici-



pated that in the case of strong anisotropy, the number of orien-
tations may require higher values to reach convergence.

For a strain-controlled test, Eq. �21� presents numerical diffi-
culties at the after-peak range with strain softening. In this case, a
method of “elastic predictor-plastic corrector” was adopted to ob-
tain the solution. The most widely used method for the solution of
nonlinear constitutive equations is in the category of elastic
predictor-plastic corrector method �Ortiz et al. 1983�, where a
purely elastic trial state is followed by a plastic corrector stage
�return mapping algorithm�. The purpose of the return mapping is
to enforce consistency, at the end of the load step, of the pre-
scribed yield surface and flow rule. For simple classical plasticity
models, the return path can be determined in closed form. How-
ever, for the present model that accounts for pressure sensitive
nonlinear work hardening/softening, nonlinear elasticity, and two
yield surfaces, it becomes necessary to compute the return path in
an iterative fashion. An implicit integration scheme is more stable
to obtain the solution of the system of nonlinear equations
through iterative processes. The specific method adopted for com-
putation is the single step backward Euler return method �see
Simo and Hughes �1998��.

It is to be noted that the implicit integration scheme with the
single step backward Euler return method is applicable only for a
strain controlled test. For a mix-mode loading condition �i.e., for
some components, stresses are specified rather than strains such
as that in triaxial compression test conditions�, an additional it-
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Fig. 5. Comparison of predicted results and experimental results for
stress paths; �c� void ratio versus axial strain curves; and �d� void ra
eration process is also needed to satisfy the condition of specified
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stresses. Since the procedure is straightforward, thus it is not in-
cluded here.

Summary of Parameters

The material parameters are summarized as follows:
1. Microstructural descriptions �two parameters�.

a. Contact number per unit volume, N /V and mean cluster
size, d.

2. Intercluster properties �nine parameters�.

a. Intercluster elastic constants: k̄n0, krR, and n.
b. Intercluster friction angle: 
� and m.
c. Intercluster plastic normal compression index and plas-

tic shear stiffness ratio: cp and kpR.
d. Dilation constants: a and b.

3. Density state of the assembly �three parameters�.
a. Critical state for the soil: � and ecr0.
b. Reference void ratio, e0, on the isotropic compression

line at p=0.01 MPa.
The size of a clay cluster d can be estimated from looking at a

photograph provided by a scanning electron microscope. The
value of N /V is not easy to obtain directly from experiments on
clay. According to the experimental data by Oda �1977� for three
mixtures of spheres, the contact number per unit volume can be
approximately related to the void ratio by

N
=

12
3 �24�
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Here we use this equation as a first-order approximation to
estimate N /V for clay by treating d as the mean size of the clay
clusters. It is to be noted that the value of contact number per unit
volume changes with void ratio. The evolution during the defor-
mation process is taken into account.

The intercluster parameters are not feasible to be determined
from direct measurements on interclusters due to experimental
difficulties. A possible way of parameter determination might re-
sort to the numerically simulated cluster behavior by the discrete
element method. However, this approach can only be applied
after the discrete element simulation is fully verified by experi-
ments. Thus, for convenience, the interclusters parameters in the
present model are to be phenomenologically calibrated from the
behavior of soil sample measured in conventional laboratory tests.

Among the interclusters parameters, the exponent n is gener-
ally between 0.5 and 1.0 for clay, and the typical value of expo-
nent m is 1. The typical value is between 0.25 and 1 for the ratio
kpR, and is about 0.5 for the ratio krR. The other parameters can be
easily obtained from standard laboratory experiments.

From an isotropic compression test, four parameters can be

determined, namely, e0, �, k̄n0
� , and cp. The void ratio e0 and � can

be measured directly from the compression line. The contact stiff-

ness k̄n0
� can be calculated by using the rebound index � measured

from the rebound curve

k̄n0
� =

4Ncr
2

kn0
� = 3�1 + e0�

�
�25�
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where the factor � is calculated given the pressure range p1 to p2,
from which the rebound index � is estimated.

� = � p2
1−n − p1

1−n

1 − n
� 2.3

log� p2

p1
� �26�

Using the compression index � and the rebound index � of an
assembly of clay clusters, we can also determine the plastic inter-
cluster compression index cp from the following equation:

cp =
2.3

3
� � − �

1 + e0
� �27�

The other parameters 
�, kpR, krR, a ,b, and ecr0 can be ob-
tained from two drained triaxial tests. An example will be given
in the following section treating parameter calibration for white
kaolinite clay.

Results of Numerical Simulations on Clays

In order to evaluate the model’s performance, the predicted
results are compared with experimental measurements from tri-
axial compression tests under both drained and undrained condi-
tions for white kaolinite clay and black kaolinite clay. The
predicted intercluster behavior are illustrated to show the link
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has also been made for San Francisco Bay Mud to illustrate the
ability of this model to predict the behavior of soils with inherent
anisotropy.

White Kaolinite Clay

White kaolinite clay is a remolded clay prepared in the laboratory
from a mixture of dry clay powder and water. The slurry is then
progressively consolidated. The white clay has a plastic limit of
about 30% and liquid limit of about 60%. According to scanning
electron microscope photos, we assume that the mean cluster size
d is 0.004 mm and the value of N /V is calculated from Eq. �23�.

Calibration of Model Parameters

Calibration of the parameters for white kaolinite clay is illustrated
in this section. The calibration requires one isotropic compression

Table 1. Model Parameters for Clay

Materials n ecr0 e0 ��

White kaolinite clay 0.75 0.866 0.88 23°

Black kaolinite clay 0.55 1.87 1.84 21°

San Francisco bay mud 0.95 2.283 2.35 31.2°
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test and two drained triaxial compression tests under different
confining pressures. The experimental results used for calibration
are shown in Fig. 5.

1. Intercluster elastic constants: k̄n0, krR and n—the exponent n
can be determined from stress-strain curves considering very
small strains. As reported by Hicher �2001�, the value is 0.75

for white kaolinite clay. The value of k̄n0 can be determined
from Eq. �24�, and its calibration is shown in Fig. 6�a�. krR

can be determined from the e-	1 curve of a drained compres-
sion test at a small strain condition, as shown in Fig. 6�b�, in
which the experimental data are taken from Fig. 5�c�.

2. Intercluster friction angle: 
� and m—the intercluster fric-
tion angle 
� is the slope of the critical state line on the p-q
plane, as shown in Fig. 5�b�. A typical value of 1 is used for
m.

3. Intercluster normal hardening rule: cp and kpR—the value of
cp can be determined from Eq. �26� based on the slopes of

� cp k̄n0 krR kpR a b
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the isotropic compression and rebound lines. The value of
kpR can be determined from the q-	1 curve of a drained com-
pression test at a small strain condition as shown in Fig. 6�c�,
in which the experimental data are taken from Fig. 5�a�.

4. Dilation constants a and b—constants a and b can be deter-
mined from the e-	1 curve of a drained compression test, as
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shown in Fig. 6�d�. Parameter a controls the magnitude of
volume change and parameter b controls the initial slope of
the curve.

5. Critical state for the packing: � and ecr0.
The value of e0, ecr0 and � can be determined from the isotro-

pic compression line and the critical state line on the e-ln p plane.
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The model parameters determined for white kaolinite clay are
listed in Table 1.

Drained Tests on Normally Consolidated Clay

Drained triaxial tests on normally consolidated white kaolinite
clay have been reported and analyzed by Biarez and Hicher
�1994�. Two specimens isotropically consolidated up to respec-
tively 0.4 and 0.8 MPa, were loaded to failure in drained condi-
tion. Using the parameters in Table 1, the predicted test results are
plotted in Fig. 5. The stress-strain curves in Fig. 5�a� and the void
ratio change in Figs. 5�c and d� show good agreement between
experimental and computed curves. The paths in the e-log p�
plane �Fig. 5�d�� show that the void ratio approaches the critical
state line when the stress state approaches the failure line in the
p-q plane. Since this set of experimental data are used for param-
eter calibration, a good comparison is expected.

Undrained Triaxial Tests on Normally
and Overconsolidated Clay

Experimental data of undrained triaxial tests on normally and
overconsolidated white kaolinite clay specimens were also re-
ported by Biarez and Hicher �1994�. Three samples were isotro-
pically consolidated up to 0.8 MPa, and two of them were
unloaded to 0.4 and 0.067 MPa, so that the OCRs of the three
samples were equal to 1, 2, and 12, respectively. The same mate-
rial parameters in Table 1 were used to predict the stress-strain
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As shown in Fig. 7�a�, the computed and measured stress-
strain curves are in good agreement. The stress paths shown in
Fig. 7�b� indicate that for the normally consolidated �OCR=1�
and slightly overconsolidated �OCR=2� samples, the stress paths
do not overpass the critical state line. While, for the strongly
overconsolidated specimen �OCR=12�, the stress path goes above
the critical state line, at which dilation occurs, leading to an in-
crease of the mean effective stress. The pore pressure develop-
ment and e-log p� curves are shown in Figs. 7�c and d�. The
comparisons show good agreement.

It is to be noted that parameters a and b have significant in-
fluence on the stress path of undrained test. Fig. 8 shows different
effective stress paths as influenced by different values of a and b.
Based on the comparison in Fig. 7, the model using parameters
calibrated from drained tests is capable of predicting the stress-
strain behavior of undrained tests for specimens under different
overconsolidation ratios.

Black Kaolinite Clay
Black kaolinite clay is also a remolded clay mixed from clay
powder with a darker color. The black kaolinite clay has a plastic
limit �p=30%, and liquid limit �l=70%, which is much more
compressible than the white kaolinite clay. The parameters pre-
sented in Table 1 are calibrated from triaxial compression tests on
normally consolidated specimen, using the method described
above. Again, the mean cluster size d is 0.004 mm and the value
of N /V is calculated by Eq. �23�.

Drained Tests on Overconsolidated Clay
Tests on black kaolinite clay samples were performed by
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The tests begin with an isotropic consolidation up to 0.8 MPa,
then unloaded to 0.4, 0.2, and 0.1 MPa, respectively. The OCRs
are 1, 2, 4, and 8, respectively. The predicted void ratio changes
in Fig. 9�c� show a contractive behavior for OCR=1 and 2,
and a dilative behavior for OCR=4 and 8. The contractive and
dilative behaviors can also be seen in the predicted paths on the
e-log p curves in Fig. 9�d�. For OCR=4 and 8, the stress-strain
curves in Fig. 9�a� show strain softening, which corresponds to
the stress paths in Fig. 9�b� above the critical state line. An over-
all good agreement is observed between experimental and pre-
dicted results for different OCRs. The two examples of black and
white kaolinite clay demonstrate that the model is capable of
reproducing with good precision the mechanical behavior of both
stiff and soft remolded clays under drained and undrained triaxial
test conditions.

Microplane Behavior

The model is capable of describing the intercluster strains for
cluster contacts in all orientations. The orientation of a given
contact plane is represented by an angle � measured from the x
axis to the branch vector, as shown in Fig. 4. The angles � se-
lected in this study are 18°, 45°, 55°, and 72° respectively �note
that the vertical orientation, �=0, corresponds to a horizontal
contact plane�. The deformation behavior of the intercluster con-
tact planes are discussed here for both drained and undrained
conditions.

Drained Conditions

The drained test on black kaolinite clay with OCR=1 and
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�3c=0.8 MPa �see Fig. 9� is selected for showing intercluster
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behavior. Four steps are selected for this test �see circles marked
on Fig. 9�a��. For each step, the intercluster stress and strain
on contacts of various orientations are plotted to show their
evolution.

Fig. 10 shows the local stress-strain relationships for the
contact planes in the selected orientations. From the �-� curve
�Fig. 10�a��, we can see that the local stress paths have different
slopes for plane orientations from 18° to 72°. The four steps are
also marked on each stress path. Under an increase of the vertical
stress, the planes oriented near the horizontal direction �i.e., small
values of �� are subjected mainly to a normal stress component
�. The shear component becomes more significant when the
plane is inclined.

The local shear stress-strain curves �Fig. 10�b�� show that
every plane is mobilized to a different degree. The actively mov-
ing planes are located in a narrowly oriented band near the orien-
tation of about 55°, which is responsible for the overall
deformation of the specimen. Other planes are inactive with small
movement. This clearly indicates that the local strains do not
uniformly conform to the overall strain of the specimen.

The local stresses plotted in Figs. 10�c and d� indicate that the
local stresses uniformly conform to the overall stress of the as-
sembly, which proves that the static hypothesis �i.e., � j

�=�ijni
��

used in this model is satisfied in all load steps. The local shear
strains plotted in Fig. 10�e� indicate that the local shear strains
are relatively uniform up to the load Step 2 and become highly
nonuniform at Step 3 and Step 4. The largest shear strain occurs
on the planes near the orientation at about 55°. Fig. 10�f� shows a
very small change of the local normal strains during the four load
steps. However, at load Step 3 and Step 4, the plot illustrates
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largest shear strain on the planes near the orientation of 55°. This
indicates that a contraction shear band may occur at failure of the
normally consolidated clay.

The drained test on black kaolinite clay with OCR=8 and
�3c=0.1 MPa �see Fig. 9� is also selected for showing the inter-
cluster behavior. Four load steps are selected for this test �see
circles marked on Fig. 9�a�� to plot intercluster stresses and
strains to show their evolution.

The trends of our results are similar to that of OCR=1. The
major difference is that local stresses on some planes can exceed
the line of tan 
� due to the interlocking of aggregates in this
overconsolidated specimen. Fig. 11�b� shows that the plane of the
orientation equal to 55° contributes mostly to the deformation of
the assembly. The local stress plotted in Figs. 11�c and d� indi-
cates that the local stresses uniformly conform to the overall
stress of the assembly at all steps. The local shear and normal
strains plotted in Figs. 11�e and f� indicate that the largest shear
strain, occurring on the planes near the orientation equal to 55°, is
accompanied by large dilation. Thus a dilation shear band may
occur at failure for the overconsolidated clay.

Undrained Conditions

The undrained test on white kaolinite clay with OCR=1 and
�3c=0.8 MPa �see Fig. 7� has been selected to demonstrate inter-
cluster behavior. Four load steps are also selected for this test �see
circles marked on Fig. 7�a�� to show the evolution of local
stresses and strains.

From the �-� curve in Fig. 12�a�, we can see different local
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stress-strain curves �Fig. 12�b�� show that every plane is mobi-
lized to a different degree. The active planes are located in a
narrowly oriented band near the orientation of 55°.

The local stresses plotted in Figs. 12�c and d� indicate that
the local stresses uniformly conform to the overall stress of the
assembly, which demonstrates that the static hypothesis �i.e.,
� j

�=�ijni
�� is satisfied in all load steps. The local shear strains

plotted in Figs. 12�e and f� indicate that the local shear strains are
relatively uniform up to the load Step 3, and become highly non-
uniform at Step 4. The largest shear strain occurs on the planes
near the orientation of 55°, but no specific volume change has
been associated with it, because of the constraint of overall zero
volume change due to undrained conditions.

Inherent Anisotropy

Natural clay often exhibits anisotropic behavior. Kirkgard �1991�
performed undrained triaxial test on samples of San Francisco
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Bay mud to study the degree of anisotropy in this clay deposit.
The soil samples were taken from a depth of 6.1 m with a water
table depth of 6 m. Gradation analysis showed that the soil con-
sists of 55% clay and 45% silt. The soil has the following prop-
erties: water content of 98.5%, unit weight of 14.4 kN /m3,
specific gravity of 2.55, liquid limit of 1.36, and initial void ratio
of 1.35. The samples were tested by applying an axial load in the
horizontal and vertical directions to investigate different behav-
iors due to material anisotropy.

Material anisotropy is characterized by local material con-
stants, which are orientational dependent, and can be expressed as
a function of � and � �the two angles in the spherical coordinate
system, as shown in Fig. 4�. To describe such a parameter, a
density function E�� ,�� has been introduced. Integration of
E�� ,�� over all orientations should be equal to 1, i.e.

Horizontal
Sample

Vertical
Sample

1

3

2

Fig. 14. Schematic plot for vertical and horizontal samples
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0

�/2 	
0

2�

E��,��sin �d�d� �28�

Thus, for an isotropic material, the function E�� ,��=1 /2�.
For an orthotropic material, the density function can be expanded
to a series using the method of spherical harmonic expansion in
three dimensions. The truncated form of the series consisting of
only second-order terms is

E��,�� =
1

2�
�1 +

a0

4
�3 cos 2� + 1� + 3a22 sin2 � cos 2��

�29�

For a cross-anisotropic material, a22 becomes equal to zero and
Eq. �28� is reduced to

E��,�� =
1

2�

1 +

a0

4
�3 cos 2� + 1�� �30�

In three dimensions, the inherent anisotropy can be repre-
sented by a distribution whose major axis often coincides with
vertical or horizontal directions. An example of distributions with
different values of a0 is shown in Fig. 13. The axes of anisotropy
of the soil are identical to those of the axes of loading stresses.

It has been found �see Chang and Misra �1990�� that the an-
isotropy can be characterized by a tensor that matches the coeffi-
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cients of the spherical harmonic expansion. For example, in the
case of a cross anisotropic material, the friction angle can be
given by

�
 = 
ave�
1 + a0 0 0

0 1 −
a0

2
0

0 0 1 −
a0

2
� �31�

where 
ave =average value. In the case of 
ave=31.2° and
ao=−0.25, the friction angle in the minor axis is 
1=23.4° and in
the major axes 
2=
3=35.1°.

For a soil layer with an inherent anisotropy due to the geologi-
cal deposition process, the material properties are usually cross
anisotropic, with a symmetry around its major axis that coincides
often with the vertical direction. Two samples cored from vertical
and horizontal directions are represented schematically as a cube
in Fig. 14. The shaded area is perpendicular to the vertical direc-
tion �Direction 1�. The properties in Directions 2 and 3 are the
same, but different from the ones in Direction 1. Using the aver-
aged behavior of vertical and horizontal samples, we can calibrate
the parameters which are summarized in Table 1.

For the purpose of comparing the predictions with the experi-
mental results, two triaxial compression tests were simulated by
the model. The two soil samples were isotropically consolidated
up to 0.125 and 0.175 MPa, respectively. Afterward, both samples
were deviatorically loaded in undrained condition. To model
the difference in shear strength for vertical and horizontal
samples, we assign the following anisotropy of the friction angle:

3=35.1° and 
1=25.4°. The predicted curves in Fig. 15�a� show
good agreement with the maximum strength of the two samples.
To improve the predicted initial slopes of the undrained stress
paths, an additional anisotropy is assigned to the elastic stiffness,

�k̄n0�1=600 and �k̄n0�3=150. As a result, the predicted undrained
stress paths in Fig. 15�d� show more difference in the initial
slopes between the vertical and horizontal samples, thus showing
a better comparison with the experimental results.

Summary and Conclusion

The notion of treating clay clusters as grains makes it promising
for extending the well tested methodology of modeling granular
material to the modeling of clay. In the newly developed micro-
structural model for clay, the overall strain includes plastic sliding
and plastic compression among clay clusters. Although the model
involves the use of parameters at the scale of clay cluster, we do
not need to obtain these parameters directly from experimental
tests at this small scale. The parameters can be easily obtained
from calibrating two or three conventional triaxial tests on regular
size soil specimens.

The model was used to simulate the stress-strain behavior of
two different remolded clay. For each type of clay, using the same
set of parameters, we could simulate reasonably well both drained
and undrained tests. The model was also used to simulate the
stress-strain behavior of a natural clay, taking into account its
anisotropic nature caused by the clay deposition during geological
formation. Based on the model’s performance on these three dif-
ferent clays, the microstructural approach seems to be applicable
for capturing the effects of confining stress, OCRs, and inherent

anisotropy.
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