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An axisymmetric B-spline model for the

non-linear inflation of rubberlike membranes

E. Verron 1 and G. Marckmann

Laboratoire de Mécanique et Matériaux, Division Structures, École Centrale de

Nantes, BP 92101, 44321 Nantes cedex 3, France

Abstract

A new B-spline interpolation model for the free inflation of axisymmetric rubberlike
membranes is presented in this paper. The membrane coordinates are interpolated
by cubic B-splines and the treatment of the spline boundary conditions is high-
lighted. Both circular and cylindrical cases are considered. The formulation of the
element is detailed and formula for the tangent operator are presented. In order to
solve the non-linear system of equations, the Newton-Raphson algorithm is success-
fully associated with the arc-length method. Some numerical examples are presented
to validate our approach and to exhibit convergence properties of the method.

Key words: B-spline model, Hyperelasticity, Axisymmetric membrane inflation,
Non-linear procedure, Arc-length method

1 Introduction

The free inflation of hyperelastic rubberlike membranes has been extensively
studied in the past. Two different approaches are used to solve this type of
problem.

Most of the works are based on the continuum theory of Green and Adkins [10].
Analytical solutions were developed for simple cases such as the inflation of
infinite cylinders [1] or spherical membranes [3]. In the most general context
of clamped membranes, the problem reduces to a non-linear system of first or-
der differential equations with two points boundary conditions. Klingbeil and
Shield focused on the inflation of a circular plane membrane [15]. They used
a logarithmic strain energy function to model the rubber behaviour. Later,
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Kydoniefs and Spencer examined the special case of the inflation of a finite
cylinder clamped with a rigid annular, by using an analytical solution [16].
At the same time, general axisymmetric problems were solved using different
numerical methods by Feng and coworkers [26], [32]. The authors encoun-
tered difficulties due to the unstable nature of the equilibrium path. Later
Benedict et al. derived the governing equations of the simultaneous inflation
and elongation of a cylinder [4]. Depending on the elongation ratio, they de-
termined the limiting pressure between stable and unstable branches of the
equilibrium path. Using a similar method, Wineman extended the previous
results to the case of non-linear viscoelastic membranes using the K-BKZ con-
stitutive equation [30]. More recently, Khayat et al. detailed the occurrence
of unstable behaviours in the inflation of neo-Hookean membranes with non-
uniform radius and thickness [13].

The second approach proposed in literature is based on the application of the
finite element method to the problems of membrane inflation. The first paper
on the subject was produced by Oden and Sato [19] and set the foundation of
a Galerkin finite element approach to solve inflation problems. More recently
Charrier et al. studied the free and confined inflation of neo-Hookean axisym-
metric membranes [5]. Their developments were focused on the simulation of
the blow-moulding and thermoforming processes. In the same context Khayat
and Derdouri developed a hybrid finite element / finite difference algorithm
to study the free and confined inflation of Mooney-Rivlin membranes [14]. A
simplified approach based on the use of Biot stresses in governing equations
was proposed by Jiang and Haddow in 1995. Their method was successfully
applied to the case of the initially circular plane membrane [12]. Moreover, the
problem of unstable solutions and secondary paths was thoroughly examined
by Duffet and Reddy [9]. More recently, Shi and Moita [24] used the finite
element formulation developed previously by Wriggers and Taylor [31] with
an arc-length method to overcome limit points and to calculate secondary
branches.

In the present paper, a spline model of axisymmetric rubberlike membrane is
formulated. Attention is confined to the free inflation of both cylindrical and
spherical Mooney-Rivlin membranes using a smooth interpolation in terms of
cubic B-splines. In the next Section, the B-spline model is presented. The inter-
polation of the membrane geometry is detailed and the choice of the boundary
conditions of the spline functions is examined in relation with the nature of
the membrane. The governing equations of the problem are established in Sec-
tion 3. After recalling the kinematics of the problem, the out-of-balance force
vector is derived using the interpolation and the tangent stiffness matrix is ex-
plicitly calculated. The Section 4 is devoted to the numerical procedure used to
solve the problem. The classical Newton-Raphson procedure is associated with
a continuation method in order to overcome limit points. Here, the arc-length
condition is considered as a bordered equation. In order to show the capability
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of our model, illustrative numerical results are presented in Section 5. Finally,
concluding remarks are given in the last Section.

2 The B-spline element

2.1 Definition

First, basic definitions of splines are recalled. The reader can refer to [7] for
more details.

Consider an interval [a, b] ⊂ R partitioned in m subintervals by a set of m + 1
knots (ξi)i=0,m with ξ0 = a and ξm = b. A function f : [a, b] → R is a
polynomial spline of degree l (l is a positive integer) if it satisfies the two
following conditions:

(i) f is Cl−1 continuous on [a, b],
(ii) f is a polynomial function of degree l on each subinterval [ξi, ξi+1[ for i =

0, . . . ,m − 1

It can be shown that the set of polynomial splines of degree l associated with
the set of knots (ξi)i=0,m is a linear space of dimension m+ l [11]. This space is
noted Sl {(ξ

i)i=0,m}. In classical applications, linear (l = 1), quadratic (l = 2)
and cubic (l = 3) splines are the most widely used.

”Basic Spline Curves” were first introduced by Schoenberg [22], [23]. These
special spline functions were defined as a basis of Sl {(ξ

i)i=0,m}. They are
usually referred as B-splines. In the present paper we only focus on cubic B-
splines defined on [0, 1]. Using previous notations we have a = 0 and b = 1,
and the linear space of splines is S3 {(ξ

i)i=0,m} which dimension is m + 3. A
spline f of S3 {(ξ

i)i=0,m} has a unique expansion in terms of the B-splines
basis:

f(ξ) =
m+1
∑

i=−1

vi Bi(ξ) (1)

where (vi)i=−1,m+1 are the parameters of the spline f and (Bi(ξ))i=−1,m+1 are
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piecewise polynomial functions defined by:

Bi(ξ) =



























































































































































0 ξ ≤ ξi−2

(ξ−ξi−2)3

(ξi+1−ξi−2)(ξi−ξi−2)(ξi−1−ξi−2)
ξi−2 ≤ ξ < ξi−1

(ξ−ξi−2)2(ξi−ξ)

(ξi+1−ξi−2)(ξi−ξi−2)(ξi−ξi−1)
+

(ξi+1−ξ)(ξ−ξi−1)(ξ−ξi−2)

(ξi+1−ξi−1)(ξi−ξi−1)(ξi+1−ξi−2)

+
(ξ−ξi−1)2(ξi+2−ξ)

(ξi+1−ξi−2)(ξi−ξi−1)(ξi+2−ξi−1)

ξi−1 ≤ ξ < ξi

(ξi+1−ξ)2(ξ−ξi−2)

(ξi+1−ξi−2)(ξi+1−ξi−1)(ξi+1−ξi)
+

(ξi+2−ξ)(ξi+1−ξ)(ξ−ξi−1)

(ξi+2−ξi−1)(ξi+1−ξi−1)(ξi+1−ξi)

+
(ξi+2−ξ)2(ξ−ξi)

(ξi+2−ξi−1)(ξi+2−ξi)(ξi+1−ξi)

ξi ≤ ξ < ξi+1

(ξi+2−ξ)3

(ξi+2−ξi−1)(ξi+2−ξi)(ξi+2−ξi+1)
ξi+1 ≤ ξ < ξi+2

0 ξi+2 ≤ ξ

(2)

with the following conventions:

- ξi = ξ0 for i ≤ 0,
- ξi = ξm for i ≥ m,
- with these two conventions some denominators are equal to 0 and we adopt

the equality: 0/0 = 0

Figure 1 presents the B-spline function corresponding to a knot i.

0 1

2
3

1
6

ξi - 2 ξi - 1 ξi ξi + 1 ξi + 2

B i(ξ)

Fig. 1. The B-spline Bi(ξ)

4



2.2 Interpolation of a two-dimensional curve

2.2.1 Membrane interpolation

It will be shown later that the geometry of the undeformed axisymmetric
membrane is reduced to a two-dimensional continuous curve L. Each material
point P of the curve is positioned by (R(s), Z(s)) where s is the adimensional
arc-length coordinate which varies from 0 to 1 along the curve, and R(s) and
Z(s) are respectively the undeformed radial and axial coordinates. The curve
is divided in n parts. Boundaries of these parts are n+1 points (N j)j=0,n and
are called nodes, similarly to the classical finite element method vocabulary.
Coordinates of the node N j are denoted (Rj, Zj) and its arc-length coordinate
is sj.

Consider now an arbitrary set of m knots on L: ΩL = (ξi)i=0,m. Previous
coordinates R(s) and Z(s) can be interpolated by two cubic splines, i.e. two
elements of S3 {ΩL}:

R(s) =
m+1
∑

i=−1

αi Bi(s) (3)

Z(s) =
m+1
∑

i=−1

βi Bi(s) (4)

where (αi)i=−1,m+1 and (βi)i=−1,m+1 are the parameters of the two splines. For
each spline, the m + 3 parameters have to be determined in an unique man-
ner: m + 3 independent equations are needed. Taking into account boundary
conditions which provide two equations, only m + 1 interpolation equations
have to be considered. Therefore the choice m = n becomes obvious. In other
words the number of knots is set equal to the number of interpolated nodes.
In the present work, knots coordinates are chosen such that they correspond
to the arc-length coordinates of the nodes:

ξi = si for i = 0, . . . , n (5)

The arc-length coordinate and the number of knots (and nodes) will be re-
spectively denoted s and n throughout the rest of paper.

2.2.2 Boundary conditions

As mentioned above, boundary conditions provide two additional linear equa-
tions. Two different types of boundary conditions have to be examined de-
pending whether a boundary node lies on the symmetry axis or not. Only the
case of the first node N0 is detailed. Similar developments can be carried out
for the last node Nn.

5



First we consider the case where the first node is not in the symmetry axis. In
that case, natural end conditions for both interpolations are considered [11]:

R′′(0) = 0 (6)

Z ′′(0) = 0 (7)

In these equations the superscript prime denotes the differentiation with re-
spect to s. Using Eqs (6) and (7) as the two additional equations, interpolating
splines (3) and (4) can be written as terminated series of only n + 1 modified
B-splines functions:

R(s) =
n

∑

i=0

αi Bi
r(s) (8)

Z(s) =
n

∑

i=0

βi Bi
z(s) (9)

where the two modified B-splines sequences Bi
r(s)i=0,n and Bi

z(s)i=0,n are given
by:

Bi
r(s) =















































−2s0 + s1 + s2

s2 − s0 B−1 + B0(s) for i = 0

s0 − s1

s2 − s0B−1 + B1(s) for i = 1

Bi(s) for i = 2, . . . , n − 2

depends on the boundary condition at Nn for i = n − 1, n

(10)
for the radial coordinate interpolation and by exactly the same definitions for
the interpolation of the axial coordinate, said Bi

z(s)i=0,n.

Consider now the case where the first node lies on the symmetry axis. The
two splines have not the same boundary condition in N0. As the node must
remain on the axis we have: R(0) = 0. Then the boundary condition for the
radial coordinate is a natural end condition similarly to the previous case:
R′′(0) = 0. It implies that the modified B-splines Bi

r(s)i=0,n are given by
Eq. (10). For the axial coordinate Z(s), an Hermite end boundary condition
should be considered:

Z ′(0) = 0 (11)

Using this condition the modified B-splines relative to the axial coordinate are
given by:

Bi
z(s) =















B−1 + B0(s) for i = 0

Bi(s) for i = 1, . . . , n − 2

depends on the boundary condition at Nn for i = n − 1, n

(12)
In that case the two sequences of the new interpolation functions are different.

6



2.2.3 Displacement interpolation and differentiation properties

Similarly to the classical Finite Element Method, our element is considered
isoparametrical: displacements are interpolated using the same basis functions
as those used in the geometrical splines (3) and (4). Radial and axial displace-
ments are respectively denoted ur(s) and uz(s), and are interpolated by two
new splines:

ur(s) =
n

∑

i=0

γi Bi
r(s) (13)

uz(s) =
n

∑

i=0

δi Bi
z(s) (14)

in which (γi)i=0,n and (δi)i=0,n are the parameters of the two splines.

In order to determine the previous spline parameters, two square matrices Ar

and Az of dimension n + 1 are introduced. Generic terms Aij
r of Ar and Aij

z

of Az are respectively given by:

Aij
r = Bj

r(s
i) (15)

Aij
z = Bj

z(s
i) (16)

and the parameters (αi)i=0,n, (βi)i=0,n, (γi)i=0,n and (δi)i=0,n can be obtained
by using the previous interpolation formula (3), (4), (13) and (14) at the nodes
and solving the four linear systems of equations:

n
∑

j=0

Aij
r αj = Ri for i = 0, n (17)

n
∑

j=0

Aij
z βj = Zi for i = 0, n (18)

n
∑

j=0

Aij
r γj = ui

r for i = 0, n (19)

n
∑

j=0

Aij
z δj = ui

z for i = 0, n (20)

in which (ui
r, u

i
z) stands for the displacements of the node N i.

Now deformed radial and axial coordinates of the membrane material points
(r(s), z(s)) can be easily calculated by:

r(s) = R(s) + ur(s) =
n

∑

i=0

Bi
r(s) (αi + γi) (21)

z(s) = Z(s) + uz(s) =
n

∑

i=0

Bi
z(s) (βi + δi) (22)
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Moreover, using previous interpolations (21) and (22), and linear relations (19)
and (20), useful derivative formulas are established:

∂r

∂ui
r

(s) =
n

∑

j=0

Bj
r(s) A⋆ji

r

∂r

∂ui
z

(s) = 0 (23)

∂z

∂ui
r

(s) = 0
∂z

∂ui
z

(s) =
n

∑

j=0

Bj
z(s) A⋆ji

z (24)

∂r′

∂ui
r

(s) =
n

∑

j=0

Bj′

r (s) A⋆ji
r

∂r′

∂ui
z

(s) = 0 (25)

∂z′

∂ui
r

(s) = 0
∂z′

∂ui
z

(s) =
n

∑

j=0

Bj′

z (s) A⋆ji
z (26)

in which matrices A⋆
r

and A⋆
z

are the respective inverses of Ar and Az. Us-
ing these equations, new useful functions Di

r(s)i=0,n and Di
z(s)i=0,n, and their

derivatives with respect to s, Di′

r (s)i=0,n and Di′

z (s)i=0,n, are defined by:

Di
r(s) =

n
∑

j=0

Bj
r(s) A⋆ji

r (27)

Di
z(s) =

n
∑

j=0

Bj
z(s) A⋆ji

z (28)

and:

Di′

r (s) =
n

∑

j=0

Bj′

r (s) A⋆ji
r (29)

Di′

z (s) =
n

∑

j=0

Bj′

z (s) A⋆ji
z (30)

These functions will be used in the next part to simplify the discretization
of equilibrium equations. Note that they have to be computed only once just
after having defined the number of knots and the type of boundary conditions.

3 Governing equations

3.1 Problem kinematics and constitutive equation

Consider the free inflation of a rubberlike membrane. The material is assumed
homogeneous, isotropic, incompressible and elastic, and the membrane is a
cylinder of non-uniform radius and uniform thickness in the undeformed con-
figuration. The thickness is considered much less than any radius of curvature
and the membrane geometry is described by the position of its mid-surface.
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The undeformed and deformed mid-surface configurations are respectively de-
noted B0 and B. A particle P of B0 is located using the cylindrical polar
coordinates system (R, Θ, Z). After deformation, the same particle is located
at (r, θ, z) on the deformed configuration B. Due to the axial symmetry the
particle motion is given by:

r = R + ur (31)

θ = Θ (32)

z = Z + uz (33)

where ur and uz are respectively the radial and axial displacements of P as de-
fined in the previous part. Consequently, the undeformed membrane geometry
is reduced to an one-dimensional continuum curve of length L. Undeformed
and deformed coordinates, respectively (R,Z) and (r, z), and thickness, re-
spectively H and h, are functions of one independent variable [32]. Here the
reduced arc-length coordinate s is chosen. Note that s varies from 0 to 1 as
the real arc-length varies from 0 to L.

Moreover, principal stretch directions are known and the three corresponding
principal stretch ratios in the meridian, circumferential and radial directions
are respectively defined as:

λ1 =

√

r′2 + z′2

R′2 + Z ′2
, λ2 =

r

R
, λ3 =

h

H
(34)

and the corresponding components of the Green-Lagrange strain tensor E are:

Ei =
λ2

i − 1

2
for i = 1, 3 (35)

Due to incompressibility the third stretch ratio λ3 is eliminated using the
relation λ1λ2λ3 = 1 and the thickness of the deformed body is simply obtained
by using the following equation:

h =
1

λ1λ2

H (36)

Finally we introduce the outward normal to the surface n, which will be rele-
vant for the definition of loads:

n =























z′
√

r′2 + z′2

− r′
√

r′2 + z′2























(37)

These definitions are summarized in Fig. 2.
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Z
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2

3

Fig. 2. Inflation of an axisymmetric membrane: geometry.

In this paper we only examine the case of the Mooney-Rivlin constitutive
equation [18]. In the special case of incompressible materials, the correspond-
ing strain energy density function can be written in terms of λ1 and λ2:

W = C
[(

λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
)

+ α
(

λ−2
1 + λ−2

2 + λ2
1λ

2
2 − 3

)]

(38)

where C and α are the two parameters of the material. In the case α = 0
the model reduces to the neo-Hookean constitutive equation [27]. Considering
that the membrane is in a plane stress state, principal stresses of the second
Piola-Kirchhoff stress tensor are expressed as:

S1 = 2C

(

1 −
1

λ4
1λ

2
2

)

(

1 + αλ2
2

)

(39)

S2 = 2C

(

1 −
1

λ2
1λ

4
2

)

(

1 + αλ2
1

)

(40)

S3 = 0 (41)

respectively in the meridian, circumferential and axial directions.

3.2 Principle of Virtual Work

Ignoring inertia and body forces, the Principle of Virtual Work can be written
in the following form:

g(u, δu, p) =
∫

B0

δW dV −
∫

∂B
δu pn dS = 0 ∀ δu (42)

in which p is the internal blowing pressure, δu stands for a virtual displacement
vector and ∂B represents the deformed membrane surface. The first integral
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term is the virtual work of internal forces and the second integral term is the
virtual work of external loading forces. Note that the work of external forces
is defined in the current deformed configuration because the blowing pressure
force is a follower force. Using the axial symmetry, geometrical definitions (34)
and (37), and stress-strain relations (39), (40) and (41), the virtual work dif-
ference g(u, δu, p) simplifies:

g(u, δu, p) =
∫ 1

0
2 π R LH (S1 λ1 δλ1 + S2 λ2 δλ2) ds

−
∫ 1

0
2 π p r (δur z′ − δuz r′) ds (43)

Now the membrane is divided in n segments delimited by n+1 nodes (N i)i=0,n.
Thus, using the previous developments, the Principle of Virtual Work can be
expressed as:

g(u, δu, p) = δUT G(U, p) = 0 ∀ δU (44)

In this equation U is the nodal displacements vector:

U =











































...

ui
r

ui
z

...











































(45)

and G(U, p) is the out-of-balance force which must be equal to zero to ensure
equilibrium. Moreover G(U, p) can be written under the following form:

G(U, p) = Fint(U) − Fext(U, p) (46)

where Fint(U) and Fext(U) are the internal and external forces vectors respec-
tively.

With the previous differentiation rules (23)-(26) and functional definitions
(27)-(30), the internal forces vector is:

Fint(U) =
∫ 1

0
2 π R LH Bnl S ds (47)

where the non-linear matrix Bnl is a matrix of dimension 2(n + 1) × 2 and
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relies nodal displacements to strains:

Bnl =

























...
...

r′

dL2Di′

r (ξ) r
R2Di

r(ξ)

z′

dL2Di′

z (ξ) 0
...

...

























i=0,n

(48)

in which dL is defined as:

dL =
√

R′2 + Z ′2 (49)

The stress vector S in Eq. (47) is simply:

S =











S1

S2











(50)

where S1 and S2 are defined in Eqs (39) and (40).

Similarly the external forces vector is a vector of dimension 2(n+1) given by:

Fext(U, p) =
∫ 1

0
2 π p φ ds (51)

with:

φ =











































...

r z′ Di
r(ξ)

−r r′ Di
z(ξ)

...











































i=0,n

(52)

It is obvious that the system (46) is highly non-linear both geometrically and
by the constitutive equation. Therefore, the classical tangent stiffness matrix
has to be defined in order to solve the problem. This matrix denoted K is the
derivative of the out-of-balance force vector G(U, p) with respect to the nodal
displacements vector U. Using the same notations that Shi and Moita [24] used
for the classical finite element method, we introduce two stiffness matrices Kint

and Kext defined by:

K = Kint − Kext =
∂Fint

∂U
−

∂Fext

∂U
(53)

In this equation the internal stiffness matrix Kint is the sum of two terms:

Kint = KI
int + KII

int (54)
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which are given by:

KI
int =

∫ 1

0
2 π R LH

(

S1
∂Bcol 1

nl

∂U
+ S2

∂Bcol 2

nl

∂U

)

ds (55)

in which Bcol 1

nl and Bcol 2

nl stand for the first and second columns of Bnl re-
spectively, and:

KII
int =

∫ 1

0
2 π R LH Bnl

∂S

∂U
ds (56)

Similarly, the external stiffness matrix is:

Kext =
∫ 1

0
2 π p

∂φ

∂U
ds (57)

The ready-to-program formulas for these two stiffness matrices are detailed in
the appendix. In this work vectors and matrices integration is done by using
the Simpson’s method. More particularly all the examples presented in this
paper were computed with 200 integration points on the membrane.

4 Non-linear numerical procedure

As mentioned above, the problem is highly non-linear. Thus an incremental-
iterative approach is needed to determine equilibrium points. Moreover it
is well-known that pressure-displacement curves corresponding to rubberlike
membranes inflation problems exhibit limit points and ’snap-throughs’ [3],
[28]. This behaviour is due to the follower force produced by the inflating
pressure: this force depends on the current deformed membrane surface. Con-
sequently a continuation method has to be adopted to determine the equilib-
rium path [25]. Here a combination of the classical Newton-Raphson iterative
method and the arc-length method is developed. The arc-length method con-
sists of completing the system of equilibrium equations with an additional re-
lation between the load (here the pressure) and the displacement increments.
This method was first introduced by Riks [20] and various modifications were
proposed [6].

Consider a particular equilibrium point on the equilibrium path. This point
is defined by the displacement vector Ue and the inflating pressure pe which
satisfy the equilibrium equation. The goal of the numerical procedure is to
find one new equilibrium point on the path. This new point is defined by
displacement and pressure increments denoted ∆U and ∆p respectively, and
it satisfies simultaneously the two following equations:







G(Ue + ∆U, pe + ∆p) = 0

A(∆U, ∆p) = 0
(58)
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The first equation is the classical equilibrium equation and the second one is
the arc-length equation in which the function A is given by:

A(∆U, ∆p) =
(

‖∆U‖2 + ψ2‖∆Fext‖
2
)

− da2 (59)

where ∆Fext is the increment of the external forces vector (51) corresponding
to the pressure and the displacement field, ψ is a scale factor between dis-
placement and force components and da is the arc-length which is the control
parameter. In this study the factor ψ is set to zero and the method reduces
to the classical displacement control method [2].

The Newton-Raphson iterative method as applied to the previous system (58)
is now examined. Consider the algorithm at a given iteration, the system to
be solved is:



























Gn = Go +
∂G

∂∆U
dU +

∂G

∂∆p
dp = 0

An = Ao +
∂A

∂∆U
dU +

∂A

∂∆p
dp = 0

(60)

where superscripts ·n and ·o mean respectively ’new’ (for the present iteration)
and ’old’ (for the previous iteration), and where dU and dp are the respective
changes in displacement and pressure. Now, next increments to be considered
are given by:







∆Un = ∆Uo + dU

∆pn = ∆po + dp
(61)

Using the previous definition of the tangent stiffness matrix (53) and recalling
that ψ = 0, the system (60) becomes:







Gn = Go + KdU − dp fext = 0

An = Ao + 2 ∆Uo · dU = 0
(62)

where fext is the reduced external forces vector that only depends on the
displacement field:

fext(U) =
1

p
Fext(U, p) =

∫ 1

0
2 π φ ds (63)

In order to solve the problem (62), we consider the second equation of the
system as a bordered equation [21]. The tangent stiffness matrix is extended
and the system of equations is written as:







K −fext

2∆UoT 0

















dU

dp











= −











Go

Ao











(64)
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where the superscript ·T stands for the transposition. It is to note that the
tangent stiffness matrix K is non-symmetric due to the boundary conditions.
Thus the previous approach can be used without changing the nature of the
resolution algorithm.

In order to initiate this resolution scheme, the forward-Euler tangential pre-
dictor solution is adopted. The two predicted increments ∆Upred and ∆ppred

are supposed to satisfy the equilibrium equation (first equation of (62)) with
Go = 0:

∆Upred = ∆ppred dUtan (65)

where the tangent displacement vector dUtan is given by:

dUtan = K−1 fext (66)

Moreover, using the arc-length equation (second equation of system (62)), the
norm of the displacement predictor is considered to be equal to da:

‖∆Upred‖2 = da2 (67)

Consequently the pressure predictor to applied is given by:

∆ppred = ε
da

‖dUtan‖
with ε = ±1 (68)

Due to the presence of the sign factor ε, two values of the predicted pressure
are possible. In order to overcome limit points this sign must be evaluated. To
determine the value of ε, we consider the scalar product between the displace-
ment increment ∆Ue (increment between the two last equilibrium points) and
the tangent displacement vector, and we adopt its sign:

ε = sign
[

∆Ue · dUtan
]

(69)

5 Numerical results

In this part three examples are studied: the two first ones are compared with
analytical solutions and the last one is used to examine the influence of the
number of nodes on convergence.

5.1 Infinite cylinder

The first example is the inflation of a cylindrical membrane with infinitely
long boundary conditions.
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Consider a cylinder with uniform radius R0 in the undeformed configuration.
The length and the uniform thickness of the membrane are respectively L
and H. The material is modeled by the Mooney-Rivlin constitutive equation
and the material parameters are C and α as defined previously. The problem
geometry and the boundary conditions are shown in Fig. 3(a). In that case
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Fig. 3. Inflation of an infinite cylinder. (a) Model description. (b) Reduced pressure
versus adimensional radius for different values of α: (–) analytical results, (¤) nu-
merical results.

both first and last nodes are not on the symmetry axis and their axial positions
are fixed. Thus natural end boundary conditions are considered for the two
extremities and for both R- and Z-interpolations.

The response under the inflating pressure P is a uniform expansion of the
radius without axial expansion (λ1 = 1). The corresponding equilibrium equa-
tion in the circumferential direction is simply [1]:

σ2 =
Pr

h
(70)

where σ2 is the Cauchy stress in the circumferential direction and, r and h
are the uniform deformed radius and thickness respectively. Using the relation
between the Cauchy stress and the second Piola-Kirchhoff stress, i.e. σ2 =
λ2

2S2, and the stress-strain relation (40), this equilibrium equation becomes:

P =
2CH

R0

(

1 −
1

λ4

)

(1 + α) (71)

in which λ is the adimensional radius:

λ = λ2 =
r

R0

(72)

16



Introducing the reduced pressure p:

p =
PR0

2CH
(73)

Eq. (71) simplifies:

p = (1 + α)
(

1 −
1

λ4

)

(74)

This equation provides analytical results.

Numerical results are obtained with 21 nodes on the membrane and with the
following numerical data:

R0 = 1. L = 10. H = 0.01 C = 1. (75)

Three values of α are examined: α = 0., α = 0.1 and α = 0.25.

The comparison between analytical and numerical results is presented in Fig. 3(b).
The inflating pressure tends to the constant value 1+α as the cylinder inflates.
The curves show that numerical computations are in very good agreement with
analytical results.

5.2 Spherical membrane

In this second example the inflation of a spherical membrane is examined.

Consider a Mooney-Rivlin spherical membrane which radius and thickness in
the undeformed configuration are respectively R0 and H. Both boundary nodes
lie on the symmetry axis. In these nodes a natural end boundary condition is
considered for the R-interpolation and a Hermite end boundary condition is
imposed for the Z-interpolation (see Section 2). The model geometry and the
boundary conditions are presented in Fig. 4(a).

It is assumed that the membrane remains spherical during inflation. There-
fore, due to the spherical symmetry, the problem can be reduced to an one-
dimensional equilibrium equation and the pressure-adimensional radius rela-
tion is [3]:

P =
4CH

R0

(

1

λ
−

1

λ7

)

(

1 + αλ2
)

(76)

where λ is the ratio between the deformed and the undeformed radii, and P is
the inflating pressure. Similarly to the previous example the reduced pressure
is defined by:

p =
PR0

4CH
(77)
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Fig. 4. Inflation of a spherical membrane. (a) Model description. (b) Reduced pres-
sure versus adimensional radius for different values of α: (–) analytical results,
(¤) numerical results.

and the equilibrium equation (76) becomes:

p =
(

1

λ
−

1

λ7

)

(

1 + αλ2
)

(78)

For the numerical simulation the membrane is meshed with 41 nodes and the
following numerical values are adopted:

R0 = 1. H = 0.01 C = 1. (79)

As in the previous case three values of α are studied.

Eq. (78) was extensively examined in the past. It is well-known that the mem-
brane exhibits three different behaviours depending on the value of the ma-
terial parameter α [28]. For α = 0., there is one limit point and the pressure
can not withstand pressures greater than the maximum pressure. In the case
α = 0.1, the curve presents two limit points and three different branches: two
stable and one unstable. For α = 0.25, the pressure always increases as the ra-
dius of the balloon increases. As shown in Fig. 4(b) numerical solutions closely
fit to the analytical results in the three different cases. This demonstrates the
ability of the arc-length method to follow the primary path of equilibrium and
to overcome limit points.
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5.3 Fully clamped cylinder

The third and last example examined in this paper is the inflation of a fully
clamped cylinder. No simple analytic solution can be proposed and this prob-
lem is known to be highly unstable and difficult to solve [13].

5.3.1 Solution of the problem

Here we consider a cylindrical membrane which radius R0 and thickness H are
uniform along the membrane in the undeformed configuration. The length of
the cylinder is denoted L. The material is assumed to be of Mooney-Rivlin type
(the parameters are C and α). The membrane is fully clamped: axial and radial
coordinates of both extreme nodes are fixed and the B-splines interpolations
have natural end boundary conditions. The cylinder is inflated by a uniform
pressure P . In order to simplify the discussion some adimensional variables
are considered. The adimensional pressure is defined by:

p =
PR0

2CH
(80)

and the adimensional radial and axial coordinates are defined as R/R0 and
Z/R0 respectively.

For the numerical calculations only a semi-cylinder is studied due to the sym-
metry with respect to the Z = 0 axis. A mesh of 101 nodes on the semi-cylinder
is used. It will be shown later that such a mesh is sufficient to ensure conver-
gence.

First, the evolution of the pressure versus the maximum radius is studied.
Fig. 5 presents these results for three values of α. As shown in this figure the
fully clamped cylinder exhibits the same behaviour as in the spherical case.
Depending on the value of α the equilibrium path has one stable and one
unstable branches (α = 0.), two stable and one unstable branches (α = 0.1)
or only one stable branch (α = 0.25).

Moreover the deformed profiles of the membrane are examined. Fig. 6 presents
the deformed profiles under different inflating pressure for the three values of
α. For α = 0.1 and α = 0.25, the membrane inflates regularly on both stable
and unstable branches. The membrane with α = 0.25 is the stiffest one: the
pressure needed to inflate it until a given deformation level is ever greater
that the corresponding pressures needed for the two other values of α. In the
special case α = 0., i.e. for a neo-Hookean material, the cylinder exhibits a
bulge on the unstable branch (when the pressure decreases as the maximum
radius of the membrane profile increases). This observation was previously
made by some authors [17], [29].
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Fig. 5. Reduced pressure vs maximum radius for three values of α.
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Fig. 6. Evolution of the cylinder profile during inflation: (a) α = 0., (b) α = 0.1 and
(c) α = 0.25.

5.3.2 Convergence analysis

The next verification of the present approach is whether the loading curve and
the membrane profiles converge to a unique solution as meshes are refined. To
check this convergence property, let us examine the evolution of the solution
as the number of nodes changes. The previous calculation with 101 nodes is
considered as the reference solution. Six new simulations are performed for
different numbers of nodes equally distributed on the undeformed membrane:
5, 11, 21, 31, 41 and 51 nodes. In order to compare the corresponding solutions
with the reference solution, two convergence ratios are defined. The first one
is evaluated on the loading curve (the pressure vs maximum radius curve) and
is denoted Rl. It is defined as the maximum difference between the loading
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Fig. 7. Convergence properties. (a) Loading ratio Rl, (b) profiles ratio Rp: (◦) α = 0.,
(¤) α = 0.1 and (△) α = 0.25.

curves of a mesh and of the reference solution. The second ratio is used to
evaluate the discrepancy of solutions for the profiles of the inflated membrane.
First, distances between two profiles which have the same maximum radius
are computed for all loading pressures. Then the ratio, denoted Rp, is defined
as the maximum of these distances on the inflation history. Evolution of both
ratios are presented in Figs 7(a) and 7(b) respectively for Rl and Rp. The two
graphs are very similar. For the three values of the material parameter, we
can affirm that the convergence is satisfactory around 40 nodes for the two
criteria. Nevertheless the convergence speed differs depending on α. Greater
is the value of α, faster is the convergence on both ratios. For cases in which
some parts of the behaviour are unstable (α = 0. and α = 0.1), more nodes
are needed to ensure convergence than in the stable case (α = 0.25).

6 Concluding remarks

In this paper, the use of a spline interpolation to simulate the free inflation of
rubber membrane is examined. The model is build in a similar manner than
the classical finite element models usually used in such cases. The geometrical
coordinates of the membrane particles are interpolated by cubic B-splines.
Using the same interpolation rules for the displacement field, the governing
equations are discretized and the non-linear system of equations is solved by
using an incremental-iterative method. Numerical results for both cylindrical
and spherical membranes validate successfully our approach.
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The present study will be used in further works. First, the development of
contact procedures is in progress to simulate plastic forming processes. Some
appropriate detection algorithms will be developed in order to take into ac-
count the smoothness of the B-spline interpolation. Secondly, our model will
be joined with a fitting procedure in order to determine the constitutive equa-
tions of rubberlike materials. For this, numerical results will be compared with
data obtained from bubble inflation experiments [8].

Appendix

The first term of the internal stiffness matrix (55) is rewritten as:

KI
int =

∫ 1

0
2 π R LH kI

int ds (81)

with:

kI
int =
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(82)

Similarly, the second term (56) is given by:

KII
int =

∫ 1

0
2 π R LH kII

int ds (83)

with:
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int =
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(84)

For the external stiffness matrix (57), the same method is used:

Kext =
∫ 1

0
2 π pkext ds (85)
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in which:

kext =
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