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Industrial processes involving composite materials need for efficient numerical simulations in order to optimize the process parameters.
Even if the thermo-mechanical models are nowadays well established, efficient simulations need for further developments. In this work we
are addressing some of these issues, in particular the one related to fast solutions combining model reduction and parallel time integration.
A separated representation will be also proposed in the context of material homogenization allowing to alleviate the usual mesh
constraints.
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1. Introduction

Industrial processes involving composite materials need
for efficient numerical simulations in order to optimize the
process parameters. Even if the thermo-mechanical models
are nowadays well established, efficient simulations need
for further developments.

In this work we are considering some of these issues,
analyzed from a methodological point of view, without
considering its industrial counterpart that requires the cou-
pling of different numerical procedures, some of them pro-
posed and analyzed in this work.

Thermal models involved in the numerical modelling
of composite plates welding processes introduce, despite
1

its geometrical simplicity, a certain number of numerical
difficulties related to: (i) the very fine mesh required due
to the small domain thickness with respect to the other
characteristic dimensions as well as to the presence of a
heat source moving on the domain surface; (ii) the long
simulation times induced by the small thermal conductiv-
ity of polymers, the important thermal solicitations as
well as to the movement of the heat source; and (iii)
the necessity to define a homogenized thermal conductiv-
ity which can vary significantly from one point to other
in the domain.

The consequence of the first difficulty is the necessity of
using very fine meshes everywhere, and therefore, a great
number of degrees of freedom that could affect seriously
the algorithms efficiency. Moreover, when the transient
problem must be solved incrementally, the extremely large
number of time steps induces a second difficulty. For alle-
viating this drawback we will propose in the first part of the
paper a parallel time discretization combined with an adap-
tive reduced modelling.



The other difficulty concerns the material heterogeneity at
the microscopic scale. Even if we could in a first approxima-
tion neglect the dependence of thermal parameters (specific
heat, thermal conductivity, etc.) on the temperature – linear
modelling – the macroscopic thermal conductivity will
depend on the considered point in the macroscopic part,
because it depends strongly on the microstructure details
(fibers volume fraction, fiber orientations, etc.). Due to the
small size of fibers, very fine models are required in order
to analyze the microscopic patterns, which implies the neces-
sity of using high resolution homogenization techniques. As
just discussed, the main drawback comes from the extremely
large number of degrees of freedom involved in a such micro-
scopic analysis where the level of detail could be in the order
of the size of a fiber. In the second part of the present work
we will applied a novel numerical technique, recently pro-
posed in [2], that could be an appealing choice for treating
this kind of numerical models.

In both topics, the parallel time integration and the
homogenization techniques there are some well established
approaches that will be discussed later in the text. The main
aim of this paper is the coupling of model reduction and
time parallel integration in a way never until now consid-
ered, at least in our knowledge. The proposed procedure
could be considered alternative to the ‘‘pararéelle’’
approach proposed in [14]. The second contribution of this
work is the application of a separated representation, orig-
inally proposed in the context of multidimensional models
[2,3], for performing high resolution homogenization.

In all the cases we are only describing the first steps in
the development of all these numerical strategies, whose
analysis, integration and optimization require further
developments that are at present in progress.

1.1. Thermal model

From now on, the thermal model is assumed defined in
the 3D plate domain X = ]0, Lx[ · ]0,Ly[ · ]0, Lz[ where
Lz� Lx and Lz� Ly, in the time interval [0, tmax], on
whose boundary oX different kind of boundary conditions
are prescribed, the temperature on oTX and the heat flux on
oQX, with oX = oTX [ oQX. The components of x 2 X will
be denoted by (x,y,z). Without loss of generality, we con-
sider oTX = {x : z = Lz} and oQX the complementary part
of the domain boundary. The temperature T(x, t) is then
prescribed on oTX to be a given temperature Tg(x, t). In
oQX, and for the sake of simplicity in the description of
the proposed numerical approaches, we assume a null heat
flux across the boundary, that is (K(T,x)GradT) Æ n = 0,
where K(T,x) denotes the homogenized thermal conductiv-
ity tensor and n the unit outwards vector defined on the
domain boundary. Moreover, an initial condition must
be imposed at the initial time: T(x, t = 0) = T0(x).

The usual variational formulation of the conduction
heat equation is expressed by:

Find T(x, t 2 H1(X · [0, tmax])) verifying the essential
boundary conditions T(x 2 oTX, t) = Tg(x, t), such that
2

Z
X

qCðx; T ÞT � oT
ot

dX ¼ �
Z

X
GradT � � ðKðx; T ÞGrad T ÞdX

þ
Z

oQX
T �ðKðx; T ÞGrad T Þ � n dC

þ
Z

X
T �f ðx; T ; tÞdX 8T � 2 V ; ð1Þ

where H1 is the usual Sobolev functional space, V =
{v 2 H1 : v(x 2 oTX, t) = 0}, and the specific heat and the
homogenized thermal conductivity tensor depend on space
(in non-homogeneous media) and on the temperature. The
source term f(x,T, t) accounts for possible couplings or
change of phase phenomena.

From now on, as we consider null thermal fluxes on oQX
the boundary integral in Eq. (1) vanishes. Moreover, the
thermal properties in the domain X will be considered uni-
form, implying C = C(T) and K = K(T), which results inZ

X
qCðT ÞT � oT

ot
dX ¼ �

Z
X

GradT � � ðKðT ÞGradT ÞdX

þ
Z

X
T �f ðT ; tÞdX 8T � 2 V : ð2Þ

To solve Eq. (2) an appealing technique lies in the use of
the finite element method (FEM) which operates on a mesh
of the domain X ¼ [e¼Ne

e¼1 Xe. Due to the small domain
thickness and the evolution of the prescribed temperature
on the upper-boundary of the plate, the mesh size must
be very fine, with a consequent impact on the number of
nodes, and then on the number of degrees of freedom.

Introducing appropriate continuous field approxima-
tions in Eq. (2), we obtain assuming a semi-implicit time
integration:

ðMðT mÞ � DtDðT mÞÞT mþ1 ¼ MðT mÞT m þ DtF ðT mÞ; ð3Þ

where vector T contains the nodal temperatures (the asso-
ciated superscripts refer the considered time step) and F ac-
counts for the prescribed nodal temperatures and the
thermal sources in X. M and D represent specific heat
and thermal conduction effects, respectively.

This equation can be rewritten in a more compact form
as

GmT mþ1 ¼ H m: ð4Þ

The main issue related to Eq. (4) is the large size of the dis-
crete problem to be solved at each time step. To alleviate
this drawback we will consider a model reduction allowing
significant CPU time savings. For this purpose we start
introducing the proper orthogonal decomposition (POD)
also knows as Karhunen–Loève decomposition.

1.2. The proper orthogonal decomposition

We assume that the evolution of a certain field T(x, t)
is known. In practical applications, this field is defined
at the nodes of a spatial mesh xi and for some times
tm = m · Dt, with i 2 [1, . . . ,N] and m 2 [0, . . . ,M]. We



introduce the notation T ðxi; tmÞ ¼ T mðxiÞ � T m
i . Tm defines

the vector containing the nodal degrees of freedom (temper-
atures) at time tm. The main idea of the proper orthogonal
decomposition is to obtain the most typical or characteristic
structure /(x) among these Tm(x) "m. The maximization of

a ¼
Pm¼M

m¼1

Pi¼N
i¼1 /ðxiÞT mðxiÞ

� �2Pi¼N
i¼1 ð/ðxiÞÞ2

ð5Þ

leads toXm¼M

m¼1

Xi¼N

i¼1

~/ðxiÞT mðxiÞ
! Xj¼N

j¼1

/ðxjÞT mðxjÞ
!" #

¼ a
Xi¼N

i¼1

~/ðxiÞ/ðxiÞ; 8~/; ð6Þ

which can be rewritten in the formXi¼N

i¼1

Xj¼N

j¼1

Xm¼M

m¼1

T mðxiÞT mðxjÞ/ðxjÞ
" #

~/ðxiÞ
( )

¼ a
Xi¼N

i¼1

~/ðxiÞ/ðxiÞ; 8~/: ð7Þ

Defining the vector / such that its i-component is /(xi),
Eq. (7) results in the eigenvalue problem (8), whose eigen-
vectors related to the highest eigenvalues define the charac-
teristic structure of Tm(x)

~/Tc / ¼ a~/T/; 8~/ ) c/ ¼ a/; ð8Þ

where the two points correlation matrix is given by

cij ¼
Xm¼M

m¼1

T mðxiÞT mðxjÞ () c ¼
Xm¼M

m¼1

T mðT mÞT; ð9Þ

which is symmetric and positive definite. If we define the
matrix Q containing the discrete field history

Q ¼

T 1
1 T 2

1 � � � T M
1

T 1
2 T 2

2 � � � T M
2

..

. ..
. . .

. ..
.

T 1
N T 2

N � � � T M
N

0BBBBB@

1CCCCCA ð10Þ

then it is easy to verify that the matrix c in Eq. (8) results

c ¼ QQT: ð11Þ
1.3. A posteriori reduced modelling

We solve the eigenvalue problem defined by Eq. (8)
selecting the n eigenfunctions /k associated with the eigen-
values belonging to the interval defined by the highest
eigenvalue and that value divided by a large enough value
(108 in our simulations). In practice n is much lower than
N. Now, we could try to use these n eigenfunctions /k

for approximating the solution Tm(x) "m. For this purpose
we need to define the matrix B ¼ ½/1 � � � /n �
3

B ¼

/1ðx1Þ /2ðx1Þ � � � /nðx1Þ
/1ðx2Þ /2ðx2Þ � � � /nðx2Þ

..

. ..
. . .

. ..
.

/1ðxN Þ /2ðxN Þ � � � /nðxN Þ

0BBBB@
1CCCCA: ð12Þ

Now, if we consider the linear system of equations resulting
from the semi-implicit discretization of the thermal model
defined by Eq. (4)

GmT mþ1 ¼ H m ð13Þ

expressing

T mþ1 ¼
Xi¼n

i¼1

fmþ1
i /i ¼ Bfmþ1: ð14Þ

Eq. (13) results

GmT mþ1 ¼ H m ) GmBfmþ1 ¼ H m ð15Þ

and by multiplying both terms by BT we obtain

BTGm B fmþ1 ¼ BTHm; ð16Þ

where the size of BTGmB is n · n, instead N · N. When
n� N, as is the case in numerous physical models, the
solution of Eq. (16) is preferred because its reduced size.

Remark 1. Eq. (16) can be also deduced by introducing the
approximation (14) into the Galerkin variational form
related to the partial differential equation. If trial and test
functions in Eq. (2) are approximated using the form (14)
then Eq. (16) is easily deduced.

Remark 2. An alternative technique to reduce the size of
the eigenvalue problem lies in the application of the snap-
shot proper orthogonal decomposition. This technique is
based on finding the significant modes from the application
of the POD, but assuming that those modes can be written
as a linear combination of the M snapshots that were used
to define the decomposition. The main advantage of this
strategy is that theses modes result from the eigenproblem
defined by

ðQTQÞ! ¼ k! ð17Þ

whose size is M · M instead of N · N. Only the eigenvec-
tors related to large enough eigenvalues are retained. From
these eigenvectors the reduced approximation functions are
computed using the fact that these functions are linear
combination of the snapshots, i.e.

/i ¼ Q!i: ð18Þ
Remark 3. In the previous analysis the reduced basis was
built from the computed unknown field evolution that was
carried out solving the discrete evolution problem (4).
Thus, one could ask about the interest of a such approach.
There are two kind of approaches widely considered. The
first approach consists in solving the non-reduced model
(Eq. (4)) in a short time interval, allowing the extraction of



the characteristic functions and then the definition of the
reduced approximation basis that is then used to perform
the solution of the reduced evolution model (Eq. (16)) in
larger time intervals with the associated computing time
savings. The other approach consists in solving the non-
reduced model (Eq. (4)) in the whole time interval, whose
solution allows defining the reduced approximation basis
that then could be used for solving ‘‘similar’’ models, as the
ones that involve for example slight variations in some
material parameters or in the boundary conditions. Some
recent advances in such approaches can be found in
[16,15,18,5,7,12] and the references therein.
1.4. Enriching the approximation basis

Obviously, accurate simulations require an error evalu-
ation as well as the possibility of adapting the approxima-
tion basis by introducing new functions able to describe the
solution features. Ryckelynck proposed in [17] an adaptive
procedure, able to construct or enrich the reduced approx-
imation basis. For this purpose, he proposed to enrich the
reduced approximation basis by adding some Krylov sub-
spaces generated by the equation residual. Despite the fact
that this enrichment tends to increases the number of
approximation functions, when it is combined with a
POD decomposition that continuously reduces this num-
ber, the size of the problems is quickly stabilized. This
strategy, which was successfully used in [1] as well as in
[19], is summarized in the present section.

We assume the solution accurately described in the
interval ]0, ts] by using the reduced basis B. Now, the solu-
tion evolution is performed in the time interval ]ts, ts+1]
solving Eq. (16) making use of the reduced approximation
basis defined by matrix B:

fmþ1 ¼ ðBTGmBÞ�1BTH m: ð19Þ

When time ts+1 is reached, a control step is performed in
order to evaluate the accuracy of the solution computed
using the reduced basis. The control step is performed only
at the end of each time interval.

We assume that ts+1 � ts = M · Dt and consequently the
residual at ts+1, RM, can be computed from

RM ¼ GM�1BfM � HM�1: ð20Þ

If the norm of the residual is small enough kRMk < �kBfMk
(being � a small enough parameter) the computed solution
can be assumed as good, and the time integration goes on
in ]ts+1, ts+2] using Eq. (19) without changing the reduced
approximation basis.

On the contrary, if kRMkP �kBfMk, the approximation
must be improved. For this purpose, we propose to enrich
the reduced approximation basis by introducing the just
computed residual (or some Krylov’s subspaces generated
by the residual, as proposed in [17]):

B  ½BRM � ð21Þ
4

and now, the evolution is recomputed in the ]ts, ts+1] using
Eq. (19) with the just updated reduced basis B. When the
convergence criterion is satisfied (i.e. kRMk < �kBfMk) we
apply a POD on the entire past history ]0, ts+1] for defining
the reduced basis able to represent all the past evolution of
the unknown field, which results in an updated B that can
be considered as the optimal reduced basis to describe the
evolution of the unknown field in ]0, ts+1]. Using the just
updated reduced basis B the time evolution given by Eq.
(19) is performed in ]ts+1, ts+2] and the solution accuracy
is checked at t = ts+2.

If a basis enrichment was needed at the end of the pre-
vious time interval, at t = ts+1, then the length of the pres-
ent time interval is reduced according to ts+2 � ts+1 =
(ts+1 � ts)/2, and if not enrichment was needed, then the
time interval length is increased according to ts+2 � ts+1 =
2(ts+1 � ts) (see [1] for more details on the time interval
length adaptation).

The enrichment tends to increase the size of the reduced
basis, but the POD reduces its size. The combination of
both procedures allows to stabilize the size of the model
as we noticed in some of our former works [1].
2. Parallel time integration

The reduction technique just described can be coupled
with parallel time integration, naturally addressed by the
too small time steps required in the simulation. For per-
forming parallel time integration the entire time domain
is partitioned in a number of time intervals.

A well established technique for parallel time integra-
tion, the ‘‘pararéelle’’ approach, was proposed in [14]. In
this approach the solution in each time interval is com-
puted from a trial initial condition. The solution jumps at
the time intervals boundaries are used to update the pre-
scribed initial conditions related to each time interval.
The iteration procedure stops when no solution discontinu-
ities are noticed across the time intervals boundaries. As we
can notice this strategy needs for an iteration procedure
and adequate criteria to update the initial conditions at
each time interval as well as to evaluate the convergence.

In that follows we propose an alternative approach,
slightly different, based on the use of model reduction
and some results of ODE theory. When we consider a
reduced modelling the computing time related to both
approaches (our approach and the ‘‘pararéelle’’ one) is sim-
ilar. However, our approach does not involve neither an
iteration scheme nor the necessity of introducing conver-
gence criteria.
2.1. Solving systems of linear ordinary differential equations

In this section we consider the general discrete form of a
linear PDE

M _T ðtÞ ¼ DT ðtÞ þ F ðtÞ ð22Þ



from which we can identify the solutions of the homoge-
neous Th and complete Tc problems:

M _T hðtÞ ¼ DT hðtÞ;
M _T cðtÞ ¼ DT cðtÞ þ F ðtÞ:

(
ð23Þ

The general solution of Eq. (22) could be computed from
the general solution of the homogeneous problem and a
particular solution of the complete one, that is

T ðtÞ ¼ T hðtÞ þ T cðtÞ: ð24Þ

The general solution of the homogeneous problem Th(t)
results

T hðtÞ ¼
Xi¼N

i¼1

aiT i
hðtÞ; ð25Þ

where T i
hðtÞ is computed by solving the homogeneous

system

M _T
i
hðtÞ ¼ DT i

hðtÞ ð26Þ

related to the initial condition

T i
hðt ¼ 0Þ ¼ di; ð27Þ

where the jth component of vector di results the Kroeneck-
er’s delta dij.

On the other hand, the particular solution Tc(t) can be
computed by integrating the second differential equation
in (23) from any initial condition, for example
Tc(t = 0) = 0.

Now, the general solution is perfectly defined

T ðtÞ ¼ T hðtÞ þ T cðtÞ ¼
Xi¼N

i¼1

aiT i
hðtÞ þ T cðtÞ; ð28Þ

where the coefficients ai must be computed in order to sat-
isfy the initial condition:

T ðt ¼ 0Þ ¼ T 0 ¼ T hðt ¼ 0Þ þ T cðt ¼ 0Þ ¼
Xi¼N

i¼1

aiT i
hðt ¼ 0Þ ¼ a:

ð29Þ

At present, this approach, originally proposed in [10], does
not seem very useful, but we will prove in the following sec-
tion that this approach allows considering parallel time
integration.

2.2. Introducing reduced representations

The just described integration scheme can be generalized
for solving the evolution problem defined in the reduced
approximation basis. For this purpose we consider instead
Eq. (22) its reduced counterpart:

M _T ðtÞ ¼ DT ðtÞ þ F ðtÞ ) ðBTM BÞ _fðtÞ
¼ ðBTDBÞfðtÞ þ BTF ðtÞ: ð30Þ
5

From a similar reasoning, we can write

fðtÞ ¼ fhðtÞ þ fcðtÞ ¼
Xi¼n

i¼1

bif
i
hðtÞ þ fcðtÞ; ð31Þ

where functions fi
hðtÞ are solution of

ðBTMBÞ _fi

h
ðtÞ ¼ ðBTDBÞfi

hðtÞ ð32Þ

with ðfi
hðt ¼ 0ÞÞj ¼ dij; and fc(t) verifies

ðBTM BÞ _f
c
ðtÞ ¼ ðBTDBÞfcðtÞ þ BTF ðtÞ ð33Þ

with fc(t = 0) = 0.
The n coefficients bi (related to the n functions defining

the reduced approximation basis) must be calculated to
verify the initial condition

T ðt ¼ 0Þ ¼ T 0 ¼ Bfhðt ¼ 0Þ þ Bfcðt ¼ 0Þ ¼ Bb: ð34Þ

Now, two possibilities exist. The first one is based on the
weak imposition of the initial condition

BTT 0 ¼ BTBb) b ¼ ðBTBÞ�1BTT 0; ð35Þ
whereas the second one is based on adding the initial con-
dition to the reduced approximation basis, that is

B  ½T 0B�; ð36Þ
which allows to write from Eq. (34): bT = (1, 0, . . . , 0); from
which it can be noticed that only the solution related to
f1

hðtÞ is required.

2.3. Time interval partitioning in the linear case

Now, we consider the time interval [0, tmax] partitioned
into P intervals

½0; tmax� ¼
[p¼P

p¼1

½tp�1; tp� ¼
[p¼P

p¼1

Ip; ð37Þ

where t0 = 0 and tP = tmax. We firstly assume that all the
time intervals have the same reduced approximation basis
B. The time integration can be performed simultaneously
in the different time intervals according to the procedure
described in the previous section.

If the reduced approximation basis contains n functions,
then n + 1 problems must be integrated in each time inter-
val, n related to the general solution of the homogeneous
system and the last one associated with a particular solu-
tion of the complete system. Thus, for each time interval
Ip we compute

ðBTMBÞ _fi;p

h
ðtÞ ¼ ðBTDBÞfi;p

h ðtÞ 8p 2 ½1; . . . ; P � 8i 6 n

ð38Þ
with ðfi;p

h ðt ¼ tp�1ÞÞj ¼ dij; and

ðBTMBÞ _fp

c
ðtÞ ¼ ðBTDBÞfp

cðtÞ þ BTF ðtÞ 8p 2 ½1; . . . ; P �
ð39Þ

with fp
cðt ¼ tp�1Þ ¼ 0; from which the solution in each inter-

val is defined by



fpðtÞ ¼ fp
hðtÞ þ fp

cðtÞ ¼
Xi¼n

i¼1

bp
i f

i;p
h ðtÞ þ fp

cðtÞ ð40Þ

with

T pðtÞ ¼ BfpðtÞ: ð41Þ

We must notice that the resolution of Eqs. (38) and (39)
can be performed simultaneously (in a parallel computing
platform) for the different time intervals Ip.

Now, for computing all the coefficients bp
i we impose the

continuity conditions between the different time intervals

fpðt ¼ tpÞ ¼ fpþ1ðt ¼ tpÞ 8p 2 ½1; . . . ; P � 1� ð42Þ

implyingXi¼n

i¼1

bp
i fi;p

h ðt ¼ tpÞ þ fp
cðt ¼ tpÞ ¼ bpþ1 8p 2 ½1; . . . ; P � 1�

ð43Þ
as well as the initial condition that implies as discussed at
the end of the previous section either

b1 ¼ ðBTBÞ�1BTT 0 ð44Þ

or

ðb1ÞT ¼ ð1; 0; . . . ; 0Þ ð45Þ
if the first function of the reduced approximation is the ini-
tial condition.

It must be noticed that when the general solution of the
homogeneous equation and a particular solution of the
complete one have been defined on each time interval, then
Eq. (44) (or Eq. (45)) combined with Eq. (43) allow to
define immediately the numerical solution on the entire
time domain. We must also recall that the computation
of the solution in each time interval only involves the reso-
lution of n linear transient models of size n (n being the
number of degrees of freedom, that is, the number of func-
tions defining the reduced approximation basis, which usu-
ally is of the order of tens) and that solution can be
performed in parallel on each time interval.

If we are using the same reduced approximation basis in
all the time intervals (considered with the same length), and
the same number of time intervals are addressed to the dif-
ferent computer processors, the charge of each processor
will be the same.

2.4. Enriching the approximation bases

As previously discussed the approximation basis can be
improved by adding the residual or some Krylov subspaces
related to the governing equations residual. Thus, with the
solution determined according to Eq. (40) in each time
interval Ip, the residual Rp(t = tp), can be computed
"p P 1 from

Rp ¼ MB _fpðt ¼ tpÞ � DBfpðt ¼ tpÞ � F ðt ¼ tpÞ; ð46Þ

where _fpðt ¼ tpÞ � ðfpðt ¼ tpÞ � fpðt ¼ tp � DtÞÞ=Dt.
6

Now two simple possibilities exist

(1) To perform a global enrichment
B  ½BR1 � � �RP � ð47Þ

and recomputed all the solutions until convergence,
that is, while

kR1k þ � � � þ kRPkP P 	 �: ð48Þ

(2) To perform a local enrichment "p
Bp  ½BpRp� ð49Þ

from which the different solutions must be recom-
puted in each time interval, but now matrix and vec-
tors in Eqs. (38) and (39) depend on the time
interval considered from the dependence of these
entities on the reduced approximation bases accord-
ing to Eq. (30).
In the case of considering different reduced approxima-
tion basis in each time interval, the transmission conditions
between neighbor intervals must be reformulated. There
are different possibilities of performing this transmission,
the simplest one based on enforcing "p 2 [1, P � 1]:

Bpfpðt ¼ tpÞ ¼ Bpþ1fpþ1ðt ¼ tpÞ ð50Þ

that must be satisfied in a weak sense

fpþ1ðt ¼ tpÞ ¼ ððBpþ1ÞTBpþ1Þ�1ðBpþ1ÞTBpfpðt ¼ tpÞ: ð51Þ

In order to keep the reduced approximation order, after
some bases enrichment we can perform a POD decomposi-
tion in each interval to extract the significant information
on the solution evolution. The eigenfunctions selection cri-
terion is based in the relative value of the associated eigen-
values (with respect to the highest eigenvalue) as described
in Section 1.
2.5. Time interval partitioning in the non-linear case

In the non-linear case (out of the scope of the present
work due to the negligible influence of non-linearities in
the thermal processes here considered) the procedure
described in Section 2.1 cannot be applied. However, as
proposed in [9] it could be applied if the solution of that
non-linear problem is searched from the solution of a
sequence of linear problems using standard linearization
strategies (fixed point, Newton). In what follows the sim-
plest scheme which is based on the fixed point linearization,
is described and used.

Thus, coming back to Section 2.3, and assuming the
same reduced approximation basis for all the intervals Ip,
we must compute, for each time interval Ip, at iteration
l P 1



ðBTMðT ðl�1ÞðtÞÞBÞ _fi;p

h
ðtÞ ¼ ðBTDðT ðl�1ÞðtÞÞBÞfi;p

h ðtÞ
8p 8i 6 n ð52Þ

with ðfi;p
h ðt ¼ tp�1ÞÞj ¼ dij; and

ðBTMðT ðl�1ÞðtÞÞBÞ _fp

c
ðtÞ ¼ BTDðT ðl�1ÞðtÞÞB

� �
fp

cðtÞ

þ BTF ðT ðl�1ÞðtÞ; tÞ ð53Þ

with fp
cðt ¼ tp�1Þ ¼ 0 "p 2 [1,. . .,P].

In the previous expressions we have assumed a depen-
dency of the thermal conductivity and the specific heat
on temperature. The solution in each interval, after the
imposition of the transmission conditions, could be defined
either by using

T p;ðlÞðtÞ ¼ B
Xi¼n

i¼1

bp
i f

i;p
h ðtÞ þ fp

cðtÞ
!

ð54Þ

allowing to define T(l)(t); or by solving

ðBTMðBfpðtÞÞBÞ _fpðtÞ ¼ ðBTDðBfpðtÞÞBÞfpðtÞ
þ BTF ðBfpðtÞ; tÞ ð55Þ

that can be integrated using an explicit scheme from the ini-
tial condition expressed as

fpðt ¼ tp�1Þ ¼
Xi¼n

i¼1

bp
i f

i;p
h ðtp�1Þ 8p P 1: ð56Þ

We must notice that, as in the linear case, the resolution of
Eqs. (52) and (53) can be performed simultaneously (in a par-
allel computing platform) for the different time intervals Ip.

The iteration procedure stops when the fixed point is
reached, that is

Xp¼P

p¼1

Z tp

tp�1

kT p;ðlþ1ÞðtÞ � T p;ðlÞðtÞkdt < �: ð57Þ

If one consider the solution of Eqs. (52) and (53) with the
solution reconstruction given by Eq. (55) the proposed
strategy always converge, at most in P iterations, because
in the first iteration the solution in the first interval is per-
fectly determined from the initial condition, which implies
exact initial condition for the second interval at the second
iteration, and so on. In general the fixed point algorithm
converges quickly, and in this case if the number of time
intervals P is large enough, significant CPU times savings
could be attained. However, if the number of time interval
is lower than the number of fixed point iterations needed
for reaching convergence, then the efficiency of the method
becomes similar to the efficiency of a sequential solution.
The number of iterations needed to reach the convergence
depends on the treated case, however, our present numeri-
cal experiences as well as the ones reported in [9] seem
indicating that this number is around 5 (for moderate
non-linearities).
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2.6. Numerical example

For illustrating both procedures just described (the one
based on the model reduction and the one based on the
time partitioning) we consider in this section a simple
example concerning a 2D square domain X=]0,1[ · ]0,1[
and the time interval [0, tmax = 30]. We consider x =
(x,y), oTX = {x:y = 1} and oQX the complementary part
of the domain boundary. The temperature is then suddenly
prescribed on oTX "t > 0, according to

T ðx 2 oT X; tÞ ¼ 1þ cos
p
2

x� t
tmax

� �� �
ð58Þ

that induces a thermal chock at t = 0.
In oQX we assume a null heat flux across the boundary.

The initial condition imposed at the initial time is given by
T(x, t = 0) = T0(x) = 1. We also assume that the medium is
homogeneous and isotropic, which reduces the thermal
conductivity tensor to a scalar. In the linear case we assume
constant conductivity K = Id (Id being the unit tensor) and
specific heat qC = 1.

The domain mesh consists of 20 · 20 four nodes quadri-
lateral elements, the time step is fixed to Dt = 0.1 and a
fully implicit strategy is considered in the time integration.
In Fig. 1 we depict the temperature evolution at four differ-
ent times. During the time evolution, the history matrix Q

(Eq. (10)) is built-up taking the temperature each ten time
steps. Thus the resulting Q matrix contains 27 temperature
snapshots. Now, the POD decomposition can be applied,
solving the eigenvalue problem defined by Eq. (8), from
which it results only 4 eigenfunctions related to the 4 most
significant eigenvalues (the remaining eigenvalues being
lower than the highest one multiplied by 10�8 we decided
to neglect the influence of the associated eigenfunctions
in the solution evolution approximation).

For the sake of simplicity in the prescription of the ini-
tial condition we propose to add to this four functions the
one related to the initial temperature according to Eq. (36).
In Fig. 2 we depict the 3 first normalized eigenfunctions, as
well as the one corresponding to the initial condition. If the
solution evolution is now recomputed using the reduced
approximation basis that only involves 5 degrees of free-
dom, the computed solution is in perfect agreement with
the one computed using the finite element approximation
basis. For proving it, we depict in Fig. 3 the comparison
between TFEM(x, t = tmax), and the one computed in the
reduced approximation basis TRED(x, t = tmax). As it can
be noticed the maximum differences are of order 10�9.

If the time domain is partitioned in several intervals the
computed solution is, as expected, exactly the same than
the one computed using a single time interval, because both
computations have been carried out using the same
reduced basis. Now, in order to validate the adaptation
scheme we consider the reduced basis just computed
applied to the solution of a different problem. The only dif-
ferences between the problem that served to compute B and



Fig. 1. Temperature evolution at four different times: (a) t = 1.1 s; (b) t = 9.9 s; (c) t = 20.9 s; (d) t = 28.6 s.

Fig. 2. Initial functions of the reduced approximation basis: (a) initial temperature; (b) fist eigenfunction; (c) second eigenfunction; (d) third eigenfunction
(the three eigenfunctions (b)–(d) are associated with decreasing magnitude eigenvalues).
the present one concerns the essential boundary condition
that at present is given by

T ðx 2 oT X; tÞ ¼ 2þ cos
p
2

4x� t
tmax

� �� �
: ð59Þ
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We are solving the problem using two time intervals with
the same length. The computed solution at tmax using the re-
duced approximation basis previously computed involves a
slight deviation with respect to the one computed by using
the FEM. Fig. 4 compares both solutions: TFEM(x, tmax)



Fig. 3. Finite element and reduced approximation basis solution at t = tmax: (a) Computed solution using the reduced approximation basis;
(b) TFEM(x, t = tmax) � TRED(x, t = tmax).

Fig. 4. Finite element and reduced approximation basis solution at t = tmax before the basis adaptation: (a) Computed solution using the reduced
approximation basis; (b) TFEM(x, t = tmax) � TRED(x, t = tmax).
and TRED(x, tmax). The error norm considering the natural
norm L2(0, tmax;L2(X)) results kT RED � T FEMkL2 � 0:1.
The reduced basis used for computing the temperature evo-
lution was associated with the boundary condition given by
Eq. (58) that does not correspond with the one prescribed at
present (Eq. (59)), which justifies the slight deviation no-
ticed. Now, in order to reduce this deviation we proceed
to enrich the reduced approximation basis from the residu-
als computed at the end of each time interval according to
Eq. (47)

B  ½BR1R2�: ð60Þ

Now, the entire whole evolution is recomputed and the ba-
sis enriched until convergence.

The convergence is attained in 3 iterations, which
implies the introduction of 6 new approximations func-
tions. The comparison of the FEM and the reduced basis
solutions at tmax is depicted in Fig. 5. The associated error
norm is reduced in the order of 100.

3. High resolution homogenization

Due to the microscopic heterogeneity, the macroscopic
thermal modelling needs an homogenized thermal conduc-
tivity which depends on the microscopic details (fibers
arrangement in the microscopic representative volume
related to each point in the macroscopic domain).
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To compute this homogenized thermal conductivity in
the linear case, one could isolate a representative volume
element Xrve (we do not consider here the problematic
related to the definition of such representative volume
which is addressed for example in [13]) and assume that
the microstructure is perfectly defined at such scale. Thus,
the microscopic conductivity is assumed known at each
point in the microscopic domain k(x).

We can define de macroscopic temperature gradientgGradT ¼ hGradT i as

gGradT ¼ hGradT i ¼ 1

jXrvej

Z
Xrve

GradT dX: ð61Þ

We also assume the existence of a localization tensor L(x)
such that

GradT ðxÞ ¼ LðxÞ gGradT : ð62Þ

Now, we consider the microscopic heat flux q according to
the Fourier’s law

qðxÞ ¼ �kðxÞGradT ðxÞ ð63Þ

from which the macroscopic counterpart Q results

Q ¼ hqðxÞi ¼ h�kðxÞGradT ðxÞi

¼ h�kðxÞLðxÞi gGradT ð64Þ



Fig. 5. Finite element and reduced approximation basis solution at t = tmax after the basis enrichment: (a) Computed solution using the reduced
approximation basis; (b) TFEM(x, t = tmax) � TRED(x, t = tmax).
from which the homogenized thermal conductivity can be
defined as

K ¼ hkðxÞLðxÞi: ð65Þ

As k(x) is perfectly known everywhere in the representative
volume element, the definition of the homogenized thermal
conductivity tensor just requires the computation of the
localization tensor L(x). For this purpose we consider in
the 3D case the solution of the three boundary value prob-
lems related to the steady state heat transfer model in the
microscopic domain, defined by

DivðkðxÞGrad T 1ðxÞÞ ¼ 0;

T 1ðx 2 oXrveÞ ¼ x;

(
ð66Þ

DivðkðxÞGrad T 2ðxÞÞ ¼ 0;

T 2ðx 2 oXrveÞ ¼ y

(
ð67Þ

and

DivðkðxÞGrad T 3ðxÞÞ ¼ 0

T 3ðx 2 oXrveÞ ¼ z:

(
ð68Þ

It is easy to prove [11] that these three solutions verifygGrad T 1 ¼ hGradT 1ðxÞiT ¼ ð1; 0; 0Þ;gGrad T 2 ¼ hGradT 2ðxÞiT ¼ ð0; 1; 0Þ;gGrad T 3 ¼ hGradT 3ðxÞiT ¼ ð0; 0; 1Þ;

8>><>>: ð69Þ

where (Æ)T denotes the transpose. Thus, the localization ten-
sor results finally

LðxÞ ¼ ðGrad T 1ðxÞGradT 2ðxÞGradT 3ðxÞÞ: ð70Þ

From the computational point of view the main difficulty
concerns the solution of the three boundary value problems
using very fine meshes required to represent accurately all
the microscopic details.

3.1. Separated representation and tensor product

approximation basis

We first consider a representative volume element that
for composite materials applications must contain numer-
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ous fibers. Due to the characteristic size of those fibers a
very fine mesh will be required for solving accurately the
thermal models related to Eqs. (66)–(68). Thus, it is usual
to define 3D models consisting of thousands of millions
of nodes. Nowadays, the performance of computers allow
to solve, in a reasonable time, problems rarely exceeding
several millions of degrees of freedom.

In order to circumvent this difficulty we propose to use a
separated representation in combination with a tensor
product reduced approximation basis, which allows to a
discrete model of size N · D (N being the number of nodes
in each space direction and D the dimension of the space)
instead the ND characteristic of grid-based discrete models.
Thus, if we suppose N � 105 and D = 3, the size of the dis-
crete model will be 3 · 105 instead 1015.

In the following paragraphs we summarize the main ele-
ments of this technique that we have successfully applied
for solving some multidimensional models usually encoun-
tered in the kinetic theory models of complex fluids in
steady [2] and transient [3] regimes.

We consider the steady conduction heat transfer prob-
lem in X=]0,L[3, the temperature vanishing on the domain
boundary oTX � oX, T(x 2 oTX) = 0 (the non-homoge-
neous case will be addressed later)

DivðkðxÞGradT Þ ¼ �f ðxÞ; ð71Þ

where the temperature T and the microscopic thermal con-
ductivity tensor k depend on the space coordinates
x = (x1,x2,x3).

The problem solution can be assumed in the form

T ðx1; x2; x3Þ ¼
X1
j¼1

aj

Y3

k¼1

F kjðxkÞ; ð72Þ

where Fkj is the jth basis function, with unit norm, which
only depends on the kth coordinate.

It is well known that the solution of numerous problems
can be accurately approximated using a finite (sometimes
very reduced) number of approximation functions, i.e.

T ðx1; x2; x3Þ �
XJ

j¼1

aj

Y3

k¼1

F kjðxkÞ: ð73Þ



The previous expression implies the same number of
approximation functions in each dimension, but each one
of these functions could be expressed in a discrete form
using different number of parameters (nodes of the 1D
grid). At the present stage of development we consider that
the 1D meshes are fine enough for capturing all the solu-
tion details. The use of adaptive separated representations
in the context of multiresolution analysis (e.g. using wave-
lets) able to capture solution details and to account for dif-
ferent characteristic length scales, as used in the sparse grid
framework [6], constitutes a work in progress. In any case,
as proved in [2,3], this kind of approximation can describe
accurately solutions that exhibit boundary layers.

Now, an appropriate numerical procedure is needed for
computing the coefficients aj as well as the J approxima-
tions functions in each dimension.

The proposed numerical scheme consists of an iteration
procedure that solves at each iteration n the following three
steps:

Step 1: Projection of the solution in a discrete basis

If we assume the functions Fkj ("j 2 [1, . . . ,n];
"k 2 [1, . . . , 3]) known (verifying the boundary condi-
tions), the coefficients aj can be computed by introducing
the approximation of T into the Galerkin variational for-
mulation associated with Eq. (71):Z

X
GradT � � ðkðxÞGradT ÞdX ¼

Z
X

T �f ðxÞdX: ð74Þ

Thus, using the approximation of T

T ðx1; x2; x3Þ ¼
Xn

j¼1

aj

Y3

k¼1

F kjðxkÞ ð75Þ

and T*

T �ðx1; x2; x3Þ ¼
Xn

j¼1

a�j
Y3

k¼1

F kjðxkÞ ð76Þ

into Eq. (74), it resultsZ
X

Grad
Xn

j¼1

a�j
Y3

k¼1

F kjðxkÞ
!

� kðxÞGrad
Xn

j¼1

aj

Y3

k¼1

F kjðxkÞ
!!

dX

¼
Z

X

Xn

j¼1

a�j
Y3

k¼1

F kjðxkÞ
!

f ðxÞdX: ð77Þ

Now, we assume that f(x) and k(x) can be written in the
form

f ðx1; x2; x3Þ ¼
Pmf

h¼1

Q3
k¼1

fkhðxkÞ;

kijðx1; x2; x3Þ ¼
Pmk

h¼1

Q3
k¼1

ðkijÞkhðxkÞ:

8>>><>>>: ð78Þ
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This kind of separated representation can be easily per-
formed using singular value decomposition (in 2D) or
using an alternating least squares technique in the gen-
eral multidimensional case [4]. For this purpose we only
need to know the values of the scalar or tensorial field in
a cloud of nodes.

Eq. (77) involves integrals of a product of 3 functions
each one defined in a different dimension. Let

Q3
k¼1gkðxkÞ

be one of these functions to be integrated. The integral
over X can be performed by integrating each function
in its 1D definition interval and then multiplying the 3
computed integrals according toZ

X

Y3

k¼1

gkðxkÞdX ¼
Y3

k¼1

Z L

0

gkðxkÞdxk; ð79Þ

which makes possible a fast numerical integration.
Now, due to the arbitrariness of the coefficients a�j , Eq.
(77) allows to compute the n coefficients aj, solving the
resulting linear system of size n · n. This problem is lin-
ear and moreover n rarely exceeds the order of tens.
Thus, even if the resulting coefficient matrix is densely
populated, the time required for its solution is negligible
with respect to the one required for performing the
approximation basis enrichment (step 3).
Step 2: Checking convergence

From the solution of T at iteration n given by Eq. (75)
we compute the residual R related to Eq. (71)

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
XðDivðkðxÞGradT Þ þ f ðxÞÞ2

q
kTk : ð80Þ

If R < � (� being a small enough parameter) the iteration
process stops, yielding the solution T(x) given by Eq.
(75). Otherwise, the iteration procedure continues.

The integral in Eq. (80) can be written as the product
of one-dimensional integrals by performing a separated
representation of the square of the residual.
Step 3: Enrichment of the approximation basis

From the coefficients aj just computed the approxima-
tion basis can be enriched by adding the new functionsQ3

k¼1F kðnþ1ÞðxkÞ. For this purpose we solve the non-linear
Galerkin variational formulation related to Eq. (71):Z

X
GradT � � ðkðxÞGradT ÞdX ¼

Z
X

T �f ðxÞdX ð81Þ

using the approximation of T given by

T ðx1; x2; x3Þ ¼
Xn

j¼1

aj

Y3

k¼1

F kjðxkÞ þ
Y3

k¼1

RkðxkÞ: ð82Þ

The solution of Eq. (81) can be expressed from the sta-
tionarity of functional J(T)

JðT Þ ¼
Z

X

kðxÞ
2
ðGrad T Þ2 dX�

Z
X

Tf dX; ð83Þ



which results in

dJ ¼
Z

X
GraddT � ðkðxÞGradT ÞdX�

Z
X

dTf dX

¼ 0 ð84Þ
that corresponds to Eq. (81) by putting dT = T*.

Now, taking the variation of T according to its
expression given by Eq. (82), where the variation of
the known functions Fkj vanishes, we have

dT ¼ dðR1ðx1ÞR2ðx2ÞR3ðx3ÞÞ
¼ dR1ðx1ÞR2ðx2ÞR3ðx3Þ þ R1ðx1ÞdR2ðx2ÞR3ðx3Þ
þ R1ðx1ÞR2ðx2ÞdR3ðx3Þ ð85Þ

that can be rewritten as

T �ðxÞ ¼ R�1ðx1ÞR2ðx2ÞR3ðx3Þ þ R1ðx1ÞR�2ðx2ÞR3ðx3Þ
þ R1ðx1ÞR2ðx2ÞR�3ðx3Þ: ð86Þ

This leads to a non-linear variational problem, whose
solution allows to compute the 3 functions Rk(xk). Func-
tions Fk(n+1)(xk) are finally obtained by normalizing,
after convergence of the non-linear problem, the func-
tions R1, R2, R3.

To solve this problem we introduce a discretization of
those functions Rk(xk). Each one of these functions is
approximated using a 1D finite element interpolation. If
we assume that pk nodes are used to define the interpolation
of function Rk(xk) in the interval [0,L], then the size of the
resulting discrete non-linear problem is

Pk¼3
k¼1pk. The price

to pay for avoiding a whole mesh in the domain is the solu-
tion of some non-linear problems of size

Pk¼3
k¼1pk. However,

the size of those non-linear problems remains moderate and
no particular difficulties have been found in its solution.

Different non-linear solvers were analyzed in [2,3]. The
first strategy was based on the Newton scheme and the sec-
ond in an alternating directions strategy. The numerical
results presented in this paper have been computed using
the alternating directions method. It is important to note
that the discrete problems resulting at this enrichment stage
when one is using an alternating directions procedure are
three-diagonal.

Remark 4. Steps 2 and 3 constitute a convergent procedure
but we have noticed experimentally that the consideration
of step 1 accelerate the convergence in numerous cases, as
those concerning kinetic theory models widely considered
in our former works [2,3]. By this reason we decided to
keep this projection step in the global algorithm, without a
significant incidence on the computing time.
3.2. Numerical example

We consider the steady conduction heat transfer prob-
lem defined in a 2D square domain X = ]0, L[2 where the
conductivity is assumed isotropic and where the tempera-
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ture is prescribed on its boundary oTX � oX according to
T(x 2 oTX) = Tg(x) = x1 (which corresponds to problem
(66))

DivðkðxÞGradT Þ ¼ 0; ð87Þ

where the temperature T and the microscopic thermal con-
ductivity k depend on the space coordinates x = (x1,x2).
The associated variational formulation resultsZ

X
GradT � � ðkðxÞGradT ÞdX ¼ 0: ð88Þ

This problem can be transformed into a one with homoge-
neous boundary conditions by introducingeT ðxÞ ¼ T ðxÞ � x1; ð89Þ

which impliesZ
X

Grad eT � � ðkðxÞGrad eT ÞdX

¼
Z

X
Grad eT � � ðkðxÞGradðx1ÞÞdX; ð90Þ

where

ðkðxÞGradðx1ÞÞT ¼ ðkðxÞ; 0Þ: ð91Þ

The problem solution can be written in the form

eT ðx1; x2Þ ¼
X1
j¼1

aj

Y2

k¼1

F kjðxkÞ ð92Þ

or

eT ðx1; x2Þ �
XJ

j¼1

aj

Y2

k¼1

F kjðxkÞ: ð93Þ

Now, assuming that the conductivity can be separated
(using singular value decomposition or an alternating mov-
ing least squares technique):

kðx1; x2Þ ¼
Xmk

h¼1

Y2

k¼1

kkhðxkÞ ð94Þ

the integrals related to the 3 steps of the procedure de-
scribed in the previous section can be performed, and after
convergence the solution T(x) is obtained from eT ðxÞ
according to Eq. (89).

Fig. 6 illustrate the conductivity at each point x 2 X as
well as the different functions k1h(x1) and k2h(x2) involved
in its separated representation

kðx1; x2Þ ¼
Xmk

h¼1

Y2

k¼1

kkhðxkÞ: ð95Þ

Finally, Fig. 7 depicts the computed temperature fieldseT ðxÞ and T(x), respectively, where x1 � x, x2 � y, F1j � Fj

and F2j � Gj. In this calculation 104 nodes were considered
in each direction. Thus, the size of the problem was 2 · 104

instead the 108 that should been required in the context of
the finite element method for computing a solution with an
equivalent accuracy (we noticed in [3] that this strategy
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Fig. 6. Thermal conductivity distribution and separated representation: (a) conductivity distribution; (b) k11(x1); (c) k21(x2).
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exhibits a fourth order convergence rate). The separated
representation only involves 5 one-dimensional functions,
all them represented in Fig. 7.

4. Conclusion

This paper explores the ability of model reduction cou-
pled with parallel time integration for solving thermal
models. The main interest of that approach lies in the fact
that when the domain mesh involves tremendous number
of degrees of freedom being the time step also reduced
because the existence of fast evolving boundary conditions,
the combination of both strategies (the first one that allows
reduce the number of degrees of freedom and the second
one making possible the use of parallel computer platforms
for the time integration) seems to be an appealing choice.

Moreover, the use of separated representation and the
definition of tensor product reduced approximation basis
allows to employ high resolution homogenization tech-
niques, because in this case, even very fine 3D models result
perfectly tractable.
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