
HAL Id: hal-01004978
https://hal.science/hal-01004978

Submitted on 6 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Adaptive control for finite element analysis in plasticity
Pierre Ladevèze, Nicolas Moës

To cite this version:
Pierre Ladevèze, Nicolas Moës. Adaptive control for finite element analysis in plasticity. Computers
& Structures, 1999, 73 (1-5), pp.45-60. �10.1016/S0045-7949(98)00284-3�. �hal-01004978�

https://hal.science/hal-01004978
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Adaptive control for ®nite element analysis in plasticity

Pierre LadeveÁ ze*, Nicolas MoeÈ s

Laboratoire de Mécanique et Technologie, E.N.S. Cachan/C.N.R.S./Université Paris 6, 
61 Avenue de Président Wilson, 94235 Cachan Cedex, France

An error on the constitutive law, called dissipation error, is used to measure and to enhance the quality of ®nite
element computations of plastic structures whose behaviour is described by internal variables. This measure takes
into account all the classical sources of error involved in the computation: the space discretization (the mesh), the
time discretization and the iterative technique used to solve the nonlinear discrete problem. To quantify more

speci®cally the contribution of these three error sources to the error, three error indicators are calculated: a space
indicator, a time indicator and an iteration indicator. Then, the error and the three indicators are used in an
adaptive strategy: the space indicator allows us to adapt the mesh, the time indicator to adapt the time

discretization and the iteration indicator makes it possible to limit the number of iterations of the global iterative
algorithm.

1. Introduction

The importance of numerical simulation in the

industrial activity is growing from day to day and the

problems treated are becoming more and more com-

plex (three-dimensional problems with large defor-

mations, impacts on composites, etc.). The crucial

issue is now to be able to control the computation, i.e.

to estimate the error and optimize the calculation par-

ameters (mesh size, time discretization, number of iter-

ations for the iterative techniques, etc.).

In addition to the developments of the compu-

tational techniques, important advances have been

made in the materials behaviour modelization. For

instance, the description of material models using a set

of internal variables (plastic strain, hardening par-

ameters, etc.) is becoming more and more popular.

Here, we are concerned with error estimation and

adaptive control for ®nite element computations of

plastic structures whose behaviour is described by in-

ternal variables. For instance, the Prandtl±Reuss plas-

tic model falls into this category. The assumptions of

small strains and displacements, as well as isothermal

and quasi-static loading, are made.

Many papers deal with error estimation for linear

problems. Three main approaches must be distin-

guished. The ®rst one, chronologically speaking, is

based on the concept of error on the constitutive law

[1] and has been applied, among other areas, to ther-

mal [1] and elastic problems [2]. The second one, intro-

duced by BabuÆ ska and Rheinboldt [3,4], then

developed by Zienkiewicz, Gago and Kelly [5,6] and

more recently by Oden et al. [7], uses the equilibrium

residuals through local problems to estimate the error.

The last one, developed by Zienkiewicz and Zhu [8±

10], consists of comparing the ®nite element solution

to a smoother one obtained by special averaging tech-

niques. A validation of these a posteriori error estima-

tors can be found in [11,12]. Finally, let us mention
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the dual analysis approach based on upper and lower

bounds for the energy [13,14].

In comparison with the linear case, much less work

has been devoted to the nonlinear case. For nonlinear

time-independent problems, BabuÆ ska and Rheinboldt

[15] and Johnson and Hansbo [16] have designed error

estimates for nonlinear elasticity and Hencky-type

plasticity, respectively. For nonlinear time-dependent

problems, techniques devised for linear problems or

time-independent nonlinear problems are used at each

time step [17±19]. Unfortunately, the error estimates so

built do not take into account the errors due to the

time discretization. In a time-dependent nonlinear pro-

blem, the quality of the ®nite element solution at time

t depends indeed not only on the quality of the mesh,

but also on the two following in¯uences: the quality of

the time discretization performed since the beginning

of the loading, and the defect of convergence of the

global iterative algorithm at each computed time

(Newton's algorithm, for instance).

An error on the constitutive law taking into account

the three sources of error described previously has

been proposed by LadeveÁ ze [20]. This measure, based

on Drucker's inequality, was ®rst applied in [21] for

plane stress problems and three-node triangles; a pro-

cedure to adapt the mesh is also described. The

Drucker error has recently been reused and enhanced

in order to conduct a simultaneous adaptive control of

the space and time discretization for three- and six-

node triangles in plane and axisymmetric problems

[22]. The Drucker error is based on a su�cient con-

dition that ensures the stability of the material.

For materials described by a set of internal vari-

ables, a new a posteriori error estimate, called dissipa-

tion error, has been elaborated in [23,24]. The key idea

is to divide the equations of the problem into two

groups:

. A group of equations related to the free energy

including the equation of equilibrium, the kinematic

constraints and the state equations.

. A group of equations related to the dissipation, i.e.

the laws describing the evolution of the material

state.

The dissipation error characterizes the quality of an

approximate admissible solution, i.e. a solution satisfy-

ing the ®rst group of equations. This quality is quanti-

®ed by the non-veri®cation of the second group of

equations. This fact naturally leads to the terminology

of dissipation error. The usefulness of the dissipation

error has been evaluated in the framework of the clas-

sical incremental ®nite element method in [25]. As for

the Drucker error, the dissipation error does take into

account all the error sources involved in the compu-

tation. To quantify more speci®cally the contributions

of the space and time discretizations, two indicators

have been introduced in [25].

In the present paper, we introduce a third indicator

to quantify the contribution of the iterative technique

to the error. Then, an adaptive strategy is proposed.

The error and the three indicators makes it possible to

adapt simultaneously all the parameters of the compu-

tation: the mesh, the time discretization and the stop-

ping criterion of the iterative algorithm. The strategy is

tested for two plane stress problems, with the Prandtl±

Reuss plastic model.

The plan of the paper is as follows. The reference

problem and the dissipation error are described in

Sections 2 and 3, respectively. The implementation of

the dissipation error in the framework of the classical

incremental ®nite element is detailed in Section 4. In

Section 5, the time and space error indicator are

recalled and the iteration indicator is introduced. The

adaptive control strategy is proposed in the ®nal sec-

tion and two complete examples are treated.

2. The continuous reference problem

Concerning the notations, vectors will be underlined

(U, U �, . . . ) and second-order tensors in outline font.

For instance, strains and stresses will be denoted by s

and e, respectively. This notation will also be used to

denote the additional internal variables. More complex

operators will be in bold (e.g. K for the Hooke's ten-

sor). Finally, the ®rst derivative of a function f with

scalar argument will be denoted by f '.

The solid medium under study occupies a domain O

bounded by @O, which is independent of t (small strain

and displacement assumption). The environment of the

medium is schematized for all t $ [0,T ], with an

imposed displacement Ud on a part @1O of the bound-

ary, a traction Fd on @2O (complementary to @1O), and

a volumic load fd on the domain O. The partition of

@O in @1O and @2O is taken as constant in time.

The desired solution must ful®ll the kinematic con-

straints, the equilibrium equation, the state equations,

the evolution laws and the initial conditions. We will

work in the usual bounded energy frame, U denotes

the space of the displacement ®eld U de®ned on O,

and S the space of the stress ®eld, also de®ned on O.

The extensions of these two spaces to the entire time

range [0,T ] will be denoted U
[0,T ] and S

[0,T ]. Finally,

Tr stands for the trace.

The kinematic constraints read

U 2 U
�0,T �
ad �1�

where
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U
�0,T �
ad �

�

U 2 U
�0,T � such thatU � Ud on

�0,T � � @ 1O
	

�2�

The quasi-static equilibrium equation takes the form

s 2 S
�0,T �
ad �3�

where S
[0,T ]
ad ={s $S

[0,T ] satisfying Eq. (4) 8U�
$ U0,

8t$ [0,T ]},

�

O

Tr
�

se�U��
�

dOÿ

�

O

f
d
U�dOÿ

�

@ 2O

FdU
�dS � 0 �4�

In the above,

U0 �
�

U 2 U such thatU � 0 on @ 1O
	

�5�

The behaviour is described by internal variables.

The state of the material is characterized at each point

by the total strain e, the inelastic strain e
p and a set of

internal variables denoted by X. The associated vari-

ables are the stress s for e and e
p, and the quantity Y

for X. Thus, the expression of the dissipation is

Tr�s_e
p ÿY �X : �6�

The second term speci®es the contribution of (X, Y) to

the dissipation. If X denotes a column of Rn, then Y is

also a column of Rn and

Y �X � Y
t
X ,

where t stands for the usual transposition. More pre-

cisely, two spaces e and f are placed in duality by the

following bilinear form:

�

_e
p

ÿ _X

�

,

�

s

Y

�

4Tr�s_e
p � ÿY � _X,

e� f4R

With the small strain assumption, the total strain is

the symmetric part of the gradient of U; in an ortho-

normed basis, it can be written

�

e�U�
�

ij
�

1

2

ÿ

Ui,j �Uj,i

�

This assumption also yields the additivity relation for

the rate of elastic eÇ e and inelastic eÇp strains, eÇ=eÇe+eÇp.

For the state equations, according to the ®rst prin-

ciple of thermodynamics, a free energy c, depending

only on the state variables e, ep and X can be intro-

duced. The following classical assumptions are made:

. c depends only on the elastic strain e
e and the in-

ternal variables X;

. c(ee, X)=ce (e
e)+cp(X);

. linear elasticity: ce (ee)= 1
2
Tr[Keeee ], where K is

Hooke's tensor.

The derivation of c yields the state equations s=Kee

and Y=G(X), where G(X) is the derivative of cp with

respect to X.

For the evolution laws, the second principle of ther-

modynamics, written as

Tr
�

s_e
p ÿY � _Xr0

imposes a constraint on the evolution laws relating

(eÇp,ÿXÇ ) and (s,Y). This law can be written:

�

_e
p

ÿ _X

�

� B

��

s

Y

��

, e
p � 0,X � 0 for t � 0

B is an operator relevant to the material. It must be

positive to respect the second principle of thermodyn-

amics. The material is supposed to be initially virgin.

A typical way to de®ne the operator B is to give a

scalar function j �(s,Y), generally convex, called the

potential of dissipation, and to write

�

e
p

ÿ _X

�

2

�

@sj
��s,Y�

@Yj
��s,Y�

�

�7�

where (@
s
j �,@Yj

�) denotes the subdi�erential of j � at

(s,Y). This de®nes a standard material. When the po-

tential is di�erentiable, the subdi�erential becomes a

classical gradient and the belonging an equality. The

interest of a standard model lies in the following classi-

cal property. The second principle of thermodynamics

is ful®lled if the potential satis®es:

j� convex, j��0,0� � 0, j���,��r0 �8�

As an example, consider the Prandtl±Reuss plastic

model. In addition to the plastic strain, the model

involves another scalar internal variable p that can be

interpreted as the cumulative plastic strain. The free

energy is of the form:

c�ee,p� �
1

2
Tr�Ke

e
e
e � � g� p�

where g is a function characterizing the hardening law.

So,

s � Ke
e, Y � R � g 0� p� �9�

Classical hardening laws are R=lp (linear hard-

ening), R=kyp
1/m (power hardening) and

R=RM(1ÿexp(ÿgp )) (exponential hardening) where l,

ky, m, RM and g are constant material parameters.

Prandtl±Reuss materials are standard with a dissipa-

tion potential given by

j��s,R� � 0 if fR0
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j��s,R� � �1 if f > 0

where

f �s,R� � ksDk ÿ �R� R0�

s
D is the deviator of the stresses, R0 is the initial yield

stress, and

ksDk � �Tr�sD
s
D ��1=2

One may easily check that j � ful®lls the su�cient con-

ditions (8) and therefore the second thermodynamics

principle.

3. The dissipation error

The notion of error on the constitutive law has been

introduced in [26]. It relies on splitting the equations

of the problem into two groups. When the behaviour

is formulated by a functional law, the ®rst group com-

bines both the equilibrium equations and the kinematic

constraints, and the second group contains the consti-

tutive law. The quality of an approximate solution

satisfying the ®rst group (i.e. an admissible solution) is

quanti®ed by the non-ful®lment of the second group of

equations (constitutive law). If Drucker's stability

inequality holds for the material, a natural way to

measure the error can be obtained [21,22]. The error

on the constitutive relation has a strong mechanical

basis since less con®dence is given to the behaviour of

the material.

When the state of the material is described by in-

ternal variables, the notion of admissibility must be

revised. Indeed, the state equationsÐassociated with

the free energyÐand the evolution lawsÐassociated

with the dissipative phenomenaÐmust be distinguished

in the formulation. In [24], the state equations are

included in the de®nition of admissibility, the error

being measured on the evolution laws alone. The pro-

blem is divided precisely into two groups:

. The ®rst group de®nes the admissibility of a sol-

ution. It combines the equations related to the free

energy: the equilibrium equation, the kinematic con-

straints and the state equations: s=K(eÿe
p) and

Y=G(X). We also add to this group the initial con-

ditions (de®ning the initial state of the material, here

taken as virgin) (ep,X)=0 at t= 0 on O.

. The second group, related to the dissipation, only

includes the evolution laws.

Two questions must be answered to actually utilize the

dissipation error concept. The ®rst one deals with the

admissibility. In general, the ®nite element solution

obtained from the computation is not admissible. For

instance, the stresses are not exactly statically admissi-

ble. The construction of an admissible solution from

the ®nite element one will be addressed in Section 4.

The second question concerns the de®nition of the

error measurement.

For standard material, the error measurement can

be de®ned using the properties of the Legendre±

Fenchel transform. This transform associates a dual

potential j(eÇp,ÿXÇ ) to j �(s,Y):

j�_e
p
,ÿ _X � � sup �s,Y�2f

ÿ

Tr� _s_e
p � ÿY �Xÿ j��s,Y�

�

The Legendre±Fenchel transform possesses two inter-

esting classical properties. Using the condensed nota-

tion

Z�_e
p
, _X ,s,Y� �j�_e

p
,ÿ _X ��j��s,Y� ÿ Tr�s_e

p � �Y� _X

they take the form

Z�_e p, _X ,s,Y�r0, 8�_e p, _X ,s,Y� 2 e� f

Z�_e p, _X ,s,Y� � 0 ,

�

_e
p

ÿ _X

�

2

�

@sj
��s,Y�

@Yj
��s,Y�

�

The ®rst relation is usually called the Legendre±

Fenchel inequality, and the second relation simply

means that Z is zero if and only if the evolution laws

are satis®ed.

The quantity Z allows one to measure the quality of

veri®cation of the evolution laws at each time and

each place. The absolute error e may thus be de®ned as

follows

e �

�T

0

�

O

Z�_e
p
, _X ,s,Y�dOdt �10�

The absolute error is zero if and only if the admissible

solution and the exact solution both coincide on [0,T ].

The relative error E is de®ned by E=e/D, where

D � 4 sup t2�0,T �dt

dt � �1ÿ g�

�t

0

�

O

sup

�

ÿ

j��s,Y� � j�_e p, _X �
�

,
R0

ksDk

�

�

�

_c e�e
e�

�

�

�

�

dOdt

� g

�

O

1

2
Tr
�

Kÿ1
ss

�

� cp�X�dOjt

The g parameter (0 R g R 1) gives the relative

weight of the dissipation and the free energy in the de-

nominator. We set g= 1
2
. The minimum dissipation

value
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R0

ksDk

�

�

�

_c e�e
e�

�

�

�

where cÇe is the derivative of the elastic free energy

with respect to time, has been introduced in [25] to

obtain reasonable error in elasticity in comparison

with the classical error on the constitutive law for such

problems [2].

Thanks to the simple norm chosen, it is easy to

express the global error E in terms of local contri-

butions. The local contribution to the error of the

space±time domain oi (oiW [0,T ] � O) is de®ned by

Eo i
�

�

o i

Z do i

D
�11�

If [I
i = 1oi=[0,T ] � O and oi\oj=; for i$ j,

E �
X

I

i�1

Eo i
�12�

In the ®nite element computation, the time±space

domain is naturally divided into elements E and time-

steps Dt. If o denotes Dt � E, Dt � O or [0,T ] � E, Eo
represents the contribution to the error of a time-step

over an element, a time step over the whole structure

or an element over the whole time period, respectively.

If o denotes [0,t ] � O, Eo represents the contribution

of the time interval [0,t ] over the whole structure:

E�0,t��O �

�t

0

�

O

Z dOdt

D
�13�

For the applications, we will consider the Prandtl±

Reuss plastic model with linear hardening. The ex-

pressions of the dual potentials for this model are given

by

j��s,R� � CC� , j�_e
p
,ÿ _p � � R0 _p �CC �14�

where

C � �
�

�s,R� 2 fjfR0,Rr0
	

C �
�

�_e p,ÿ _p � 2 ejTr�_e p� � 0,k_e pk ÿ _pR0
	

CA is the indicator function associated with the convex

domain A (i.e. CA=0 inside A, and CA=+1 out-

side). The condition Rr0 is introduced in the de®-

nition of the potential j � for reasons detailed in [25].

4. Finite element and admissible solutions

The dissipation error cannot be directly measured

on the ®nite element solution because it is not gener-

ally admissible. We will now see how it is possible to

easily get an admissible solution from the ®nite el-

ement one in the case of the classical incremental

®nite element computation obtained through the dis-

placement method. First, we detail the discrete pro-

blem.

4.1. The discrete problem

In an incremental method, the problem to be solved

on [0,T ] is divided into a succession of resolutions

over [tn,tn + 1] (n = 0, . . . ,N ÿ 1; t0=0, tN=T ).

Assuming the solution is known until tn, one must

then build the solution over [tn,tn + 1]. First, a time dis-

cretization must be carried out. Usually, one only

seeks the solution at the ®nal time tn + 1. So, the kin-

ematic constraints and the equilibrium equation are

written at tn + 1, and the behaviour becomes a non-

linear algebraic relation linking the ®elds at tn + 1.

Formally,

sn�1 ÿ sn � An�en�1 ÿ en� �15�

where sn,en (sn + 1,en + 1) are the stresses and strains

at tn (tn + 1). The An notation emphasizes that the

stresses at tn + 1 are no longer expressed as a

functional law of the strain rate history, but now as a

nonlinear algebraic law of the increase of strain

en + 1ÿen over the time step. Note that the internal

variables generally explicitly appear in the numerical

scheme.

Concerning the space discretization, the domain is

divided into elements on which the displacement ®eld

is interpolated between nodal values using shape func-

tions. The displacement at M reads

Uh�M� � N�M�q �16�

where N(M ) is the shape function matrix and q the

nodal displacement set. The discrete problem to be

solved at tn + 1 read as given below.

4.1.1. Kinematic constraints

Uh,n�1 2 U
tn�1

h,ad
�17�

where

U
tn�1

h,ad �
�

U 2 Uh such thatU � Ud on @ 1O at tn�1

	

and Uh denotes the ®nite element displacement space.

4.1.2. Equilibrium equations

sh,n�1 2 S
tn�1

h,ad �18�
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where

S
tn�1

h,ad �
�

s 2 Sh satisfying Eq: �19� at tn�18U
� 2 Uh,0

	

�

Oh

Tr
�

sh,n�1e�U
��
�

dOh ÿ

�

O

f
d
�U�dO

ÿ

�

@ 2O

Fd �U
�dS � 0

�19�

In the above,

Uh,0 �
�

U 2 Uh such thatU � 0 on @ 1O
	

and Sh denotes the space of stresses de®ned at the in-

tegration points of the domain O. The integration

fOh
�dOh in Eq. (19) is performed classically using a dis-

crete integration technique. Thus, the stresses given by

the computation (as well as the plastic strains and in-

ternal variables) are only known at the integration

points.

4.1.3. Constitutive relations

sh,n�1 ÿ sh,n � An

ÿ

e�Uh,n�1� ÿ e�Uh,n�
�

The discrete problem, which is a nonlinear algebraic

system, is solved in an iterative way, typically with

Newton's method. Two types of solutions always exist

as the iterations proceed: a solution (UÆh,n + 1, �sh,n + 1)

satisfying both the kinematic constraints and the equi-

librium in a ®nite element sense

�U h,n�1 2 U
tn�1

h,ad, �s h,n�1 2 S
tn�1

h,ad

and a solution (UÄh,n + 1, ~sh,n + 1) satisfying both the

kinematic constraints and the ``discrete'' behaviour

~U h,n�1 2 U
tn�1

h,ad

~s h,n�1 ÿ ~s h,n � An

�

e� ~U h,n�1� ÿ e� ~U h,n�
�

Deriving a solution (UÄh,n + 1, ~sh,n + 1) from the sol-

ution (UÏh,n + 1, ~sh,n + 1) is performed by integrating

the behaviour at each integration point of the structure

with UÄh,n + 1=UÆh,n + 1. Deriving a solution

(UÆh,n + 1, �sh,n + 1) from (UÄh,n + 1, ~sh,n + 1) (equilibrium

phase) is performed by a linear global resolution.

When the two solutions are close, the iterative process

stops and the ®nite element code generally gives the

solution satisfying the ``discrete'' behaviour.

4.2. The construction of an admissible solution

From the ®nite element solution, we must construct

an admissible solution (denoted by hats), i.e. a solution

satisfying

Û 2 U
�0,T �
ad , ŝ 2 S

�0,T �
ad

ŝ � K
ÿ

e�Û� ÿ e
p
�

, Ŷ � G�X̂�, on �0,T � � O

�êp,X̂� � 0 at t � 0 on O

The rather unrestrictive assumption of linear evol-

ution for imposed loads and displacements between

consecutive computed time is applied. We also assume

that the prescribed displacements and applied loads

are zero at t = 0.

4.2.1. Construction of ŝ $ S
[0,T]
ad

The ®nite element stresses are not statically admissi-

ble at the time steps (they are not even known at every

point, but only at the integration points). Let us rigor-

ously construct equilibrated stresses at each time step.

Suppose we do have stresses that satisfy the equili-

brium equation in the ®nite element sense �sh,n + 1(if

this is not the case, we just need to apply the ``equili-

brium phase'' of the iterative method). From these

stresses, we then construct the rigorously equilibrated

stresses ŝn + 1 using techniques developed for the elas-

ticity [2]. These techniques consist ®rst of building load

densities in equilibrium with the applied loading on the

boundary of each element. Then, stresses are built on

each element separately. The density building only

requires the resolution of small local linear problems,

and the stress building is conducted analytically el-

ement by element.

With equilibrated stresses at each time step, and

owing to the linear evolution of the loading, we interp-

olate ŝn + 1 over each time step to obtain ŝ $ S
[0,T ]
ad .

Let an (an + 1) be the values of a at tn (tn + 1). Linear

interpolation of a means:

on �tn,tn�1�, a �
tn�1 ÿ t

tn�1 ÿ tn
an �

tÿ tn

tn�1 ÿ tn
an�1

At t= 0, we take ŝ0=0, which is statically admissible

with the initial null loading.

4.2.2. Construction of UÃ $U[0,T ]
ad

Since the prescribed displacements display linear

evolution on each time step, and since the ®nite el-

ement displacement ®eld satis®es the kinematic con-

straints at each computed time, an element of U[0,T ]
ad is

simply obtained by interpolating the ®nite element dis-

placement ®eld between the computed times. At t = 0,

we take UÃ=0. For the Prandtl±Reuss plastic model,

the inelastic strains take place at constant volume. In

order to avoid an in®nite error, the ®nite element ®eld

6



is modi®ed at each computed time before the interp-

olation in order to satisfy the incompressibility con-

dition Tr[e(UÃ )ÿKÿ1
ŝ]=0. For the plane stress

problems treated in the application, this condition is

easily achieved by adequately choosing the strain in

the thickness ê33.

4.2.3. Construction of the inelastic strains

The following expression must be used to compute

the inelastic strains on [0,T ] � O in order to respect

Hooke's law:

e
p � e�Û� ÿKÿ1

ŝ �20�

As UÃ=0 and ŝ=0 at t= 0 on O, we have e
p=0 at

t= 0 on O. The initial condition on ê
p is thus satis-

®ed.

4.2.4. Determination of the internal variables values

The computed internal variables are seldom given in

classical ®nite element code. So, herein we do not con-

sider them as given at the computed time, and we con-

struct them. Several choices are possible. Here, for the

Prandtl±Reuss plastic model with linear hardening, we

take:

p̂n�1 � sup�p̂1,n�1,p̂2,n�1�

where

p̂1,n�1 � p̂n � �tn�1 ÿ tn�k _̂e
p

n�1k

p̂2,n�1 �
1

l
<kŝ

D
n�1k ÿ R0 >�

and pÃ is obtained by a linear interpolation of the

pÃn + 1. This choice results from a step by step minimiz-

ation of the error [25].

4.3. Interpretation of the error

The interpretation of the dissipation error in terms

of more classical norms like the L 2 error in the stresses

or the energy (H 1) norm in the displacements is not

straightforward and further work needs to be done in

this direction. As a matter of fact, to our knowledge,

the regularity of the exact solution (i.e. whether the

stress ®eld belongs to L 2 and the displacement ®eld to

H 1) is still not clear from the mathematical point of

view for a general constitutive relation described by in-

ternal variables. In Ref. [25], the dissipation error has

been compared to the exact free energy error and we

obtained on an example that the dissipation error was

overestimating the energy error by a factor of 1.6, the

exact solution being obtained through an ``overkill''

(very ®ne discretizations in time and space).

5. The error indicators

The dissipation error takes into account all the una-

voidable error sources entering into the computation

of a time-dependent nonlinear problem: the space dis-

cretization, the time discretization and the iterative

technique used to solve the nonlinear discrete problem.

To demonstrate this fact, we observe the behaviour of

the error when the space or time discretizations are

re®ned. Two plane stress problems are considered: the

holed plate problem and the frame problem. The geo-

metry and the loading are given in Figs. 1±4. For the

two examples, the Prandtl±Reuss plastic model is used

with the following dimensionless parameters

R0 � 1, l � 8:16, E � 244:95, n � 0:3

E and n denote Young's modulus and Poisson's ratio,

respectively. The ®nite element results are obtained

with the CASTEM2000 code and three- and six-nodes

triangular elements are used.

Table 1 (®rst line) presents the evolution of the error

Fig. 1. The holed plate problem.

Fig. 2. The loading.
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E with an increasing number of time increments for a

given mesh and Table 2 (®rst line) presents the evol-

ution of the error for an increasing quality of the mesh

and a given time discretization.

We can conclude that the error decreases as the

space or time discretizations are re®ned and tends to

stabilize under a given level of re®nement. This result

proves that the error depends on both the space and

time discretizations. Under a certain re®nement in

space (time), the error is stable because it is mainly

due to the time (space) discretization.

Let us de®ne the time error as the limit of the error

when the number of elements tends to ``in®nity'' (thus,

no error due to the space exists any more):

Etime � lim
h 40

E

Similarly, we de®ne the space error as the limit of the

error when the number of time steps tends to ``in®n-

ity'':

Espace � lim
Dt 40

E

When both the number of elements and time steps

become large, the error consists only of the conver-

gence default of the global iterative algorithm. This

error, called the iteration error, reads

Eite � lim
h 40,Dt 40

E

With the adaptive control of the computational par-

ameters in mind, it is important to calculate reliable

estimates of the quantities Etime, Espace and Eite, as direct

calculation of these quantities is not realistic.

The dissipation error is associated to the continuous

reference problem described in Section 2. There exist

three discrete problems besides the continuous one: the

space discrete problem, the time discrete problem and

the time±space discrete problem. Applying the dissipa-

tion error concept to the three ``new'' discrete pro-

blems provides reliable estimates of Etime, Espace and Eite.

In the next section, we give the precise writing of the

three discrete problems. Then, we de®ne the three esti-

mates, called indicators: the space indicator, the time

indicator and the iteration indicator. Note that the

time and space error indicators concept has already

been studied in the past [22,27].

5.1. The discrete problems

5.1.1. The space discrete problem

U
[0,T ]
h denotes the set of ®nite element displacements

de®ned on [0,T ] � O and S
[0,T ]
h denote the set of stres-

ses de®ned on [0,T ] � Oh where Oh is the set of the in-

tegration points of the structure. The quantities

e
p
h,Xh,Yh are also to be found on [0,T ] � Oh. One

must ®nd (Uh,sh,Yh,e
p
h,Xh) satisfying:

. the kinematic constraints

Uh 2 U
�0,T �
h,ad

where U
[0,T ]
h,ad ={U $ U

[0,T ]
h such that U=Ud on

[0,T ] � @1O};

. the equilibrium equation

sh 2 S
�0,T �
h,ad

where S
[0,T ]
h,ad ={s $ S

[0,T ]
h satisfying Eq. (19) 8

U�
$Uh,0, 8 t $ [0,T ]}, Uh,0={U $Uh such that

U=0 on @1O};

. the state equations

on �0,T � � Oh,

sh � K
ÿ

e�Uh� ÿ e
p
h

�

Fig. 3. The frame problem.

Fig. 4. The loading.
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Yh � G�Xh�

. the evolution laws

on �0,T � � Oh,

 

_e
p
h

ÿ _X h

!

2

�

@sh
j��sh,Yh�

@Yh
j��sh,Yh�

�

and at t= 0, eph=0, Xh=0, on Oh.

5.1.2. The time discrete problem

The solution (Un + 1,sn + 1Yn + 1,e
p
n + 1,Xn + 1) is

to be found at every computed time and over the

whole domain. The equilibrium equation is continuous

and the evolution laws are discretized. The implicit

scheme is chosen:

 

_e
p
n�1

ÿ _X n�1

!

2

�

@sn�1
j��sn�1,Yn�1�

@Yn�1
j��sn�1,Yn�1�

�

where eÇpn + 1 and XÇ n + 1 follow the notation

_x n�1 �
x n�1 ÿ x n

tn�1 ÿ tn
�21�

5.1.3. The time±space discrete problem

Both the equilibrium equation and the evolutions

laws are discretized. The solution is denoted by

(Uh,n + 1, sh,n + 1, Yh,n + 1, e
p
h,n + 1, Xh,n + 1).

Table 1

Error and indicators (%) for a growing number of time steps

The holed plate problem

Number of steps 2 4 8 16 32

E 39.58 12.96 7.93 7.30 7.66

ispace 5.20 5.40 6.04 7.08 7.78

itime 37.61 8.15 2.05 0.51 0.17

iite � 102 1.09 3.02 3.73 7.11 6.56

The frame problem

Number of steps 3 6 12 24 48

E 25.75 16.37 13.83 13.76 14.01

ispace 10.90 11.67 12.47 13.29 13.87

itime 17.68 4.82 0.92 0.24 0.08

iite � 102 0.28 1.39 0.92 1.19 1.73

Table 2

Error and indicators (%) for a growing quality of the mesh

The holed plate problem

Mesh mesh1 mesh2 mesh3 mesh4 mesh5

E 14.71 7.93 4.35 3.70 2.59

itime 2.15 2.04 2.08 2.08 2.11

ispace 12.23 6.04 2.33 1.60 0.52

iite � 102 3.86 3.73 6.84 4.48 7.01

The frame problem

Mesh mesh1 mesh2 mesh3 mesh4 mesh5

E 40.94 35.89 21.79 19.47 18.64

itime 19.29 17.93 17.66 17.65 17.65

ispace 34.08 26.50 5.44 2.35 1.25

iite � 102 0.38 0.26 0.21 0.19 0.60
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5.2. De®nition of the indicators

Let us now apply the dissipation concept to the

three discrete problems. The admissible solution de®-

nition still corresponds to the kinematic constraints,

the equilibrium equation and the state equations. So,

an admissible solution for the space discrete problem is

a solution de®ned on the entire interval of time that

satis®es the kinematic constraints, the equilibrium

equation in the ®nite element sense and the state

equations at each integration point of the structure.

An admissible solution for the time discrete problem is

a solution de®ned on the whole domain and satisfying

rigorously the kinematic constraints, the equilibrium

equation and the state equations at each computed

time. Finally, an admissible solution for the time±

space discrete problem is a solution satisfying the kin-

ematic constraints, the equilibrium equation in the

®nite element sense and the state equations at each in-

tegration points and each computed time. The con-

struction of the admissible solutions partly uses the

technique described in Section 4.2. The three admissi-

ble solutions will be denoted by hats.

The error associated to an admissible solution is

measured by the non-veri®cation of the evolution laws.

This leads to the following absolute error indicators:

Itime �

�T

0

�

Oh

Z
ÿ

_̂e
p
�

h, _̂X h,ŝh,ŶhdOhdt

Ispace �
X

Nÿ1

n�0

�tn�1 ÿ tn�

�

O

Z
ÿ

_̂e
p
�

n�1, _̂X n�1,ŝn�1,Ŷn�1dO

Iite �
X

Nÿ1

n�0

�tn�1

ÿ tn�

�

Oh

Z
ÿ

_̂e
p
�

h,n�1, _̂X h,n�1,ŝh,n�1,Ŷh,n�1dOh

The integration over Oh indicates that the integrations

points are those of the ®nite element computation.

Note also that Ispace really measures the error associ-

ated to the time discrete problem since

Z
�

_e
p
n�1,

_X n�1,sn�1,Yn�1

�

� 0

 

_e
p
n�1

ÿ _X n�1

!

2

�

@sn�1
j��sn�1,Yn�1�

@Yn�1
j��sn�1,Yn�1�

�

The same remark holds for the iteration indicator.

The corresponding relative error indicators are

de®ned as

itime �
Itime

Dtime

ispace �
Ispace

Dspace

iite �
Iite

Dite

where

Dtime � 2 sup t2�0,T �dt

dt �

�t

0

�

Oh

bhdOhdt�

�

Oh

c��ŝh,X̂h�dOhjt

bh � sup

"

j��ŝh,X̂h� � j� _̂e p
h, _̂X h�,

R0

kŝ
D
h k

j _c e�ê
e
h�j

#

c��ŝh,X̂h� �
1

2
Tr
�

Kÿ1
ŝhŝh

�

� cp�X̂h�

Dspace � 2 sup k2�0,...,Nÿ1�dk

dk �
X

k

n�0

�tn�1 ÿ tn�

�

O

bn�1dO�

�

O

c��ŝk�1,X̂k�1�dO

�
X

k

n�0

�tn�1 ÿ tn�
2

�

O

c�� _̂s n�1, _̂X n�1�dO

bn�1 � sup

�

j�� _̂s n�1,
_̂Yn�1�

� j� _̂e
p
n�1, _̂X n�1�,

R0

kŝ
D
n�1k

jTr�Kê
e
n�1 _̂e

e
n�1�j

�

Dite � 2 sup k2�0,...,Nÿ1�dh,k

dh,k has the same expression as dk except that O is

replaced by Oh and dh,k is evaluated with the ®elds

(Uh,n + 1,sh,n + 1,Yh,n + 1,e
p
h,n + 1,Xh,n + 1).

5.3. Numerical results

Tables 1 and 2 give the computed indicators. We

note that:

. The time (space) indicator itime(ispace) is almost

insensitive to the number of elements (time steps)

and approximates very well the time (space) error

Etime(Espace).

. The space and time indicators decrease monotoni-

cally with respect to the number of elements and

time steps, respectively.

. The error is close to the sum of the space and time

indicators.

. The iteration indicator iite is very small in compari-

son with the space and time indicators.
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The last point shows that the error due to the iterative

technique is much smaller than the time and space dis-

cretization errors. During the ®nite element compu-

tation, the quality of the discrete problem resolution is

governed by a tolerance y on the equilibrium equation

residuals. The convergence criterion is based on the

energy norm:

k �s h,n�1 ÿ ~s h,n�1kL2�Oh�

k �s h,n�1kL2�Oh�

Ry �22�

The ®nite element results for Tables 1 and 2 were

obtained with y=10ÿ3.

Tables 3 and 4 give the in¯uence of a tolerance

modi®cation on the error and on the indicators. A

coarse and a ®ne discretization are considered for both

examples. We note that:

. under a certain critical tolerance ycrit, the error and

the space and time indicators are insensitive to the

tolerance;

. the iteration indicator is more or less linear in the

tolerance;

. the tolerance y decreases exponentially with respect

to the number of iterations.

ycrit, which depends both on the quality of the space

and time discretization, is smaller when the discretiza-

tion is ®ner. In other words, when the discretization of

the problem is coarse, only a few iterations are needed;

otherwise a larger number is needed.

The critical tolerance concept is important in the

framework of adaptive control of the computation.

Indeed, if the ®nite element computation is carried out

with the critical tolerance, no useless global iteration is

Table 3

In¯uence of the tolerance on the error and on the indicators for the holed plate problem. ``Number of iterations'' is the total num-

ber of iterations of the ®nite element computation

y 100 10ÿ1 10ÿ2 10ÿ3 10ÿ4 10ÿ5

The holed plate problem (coarse discretization)

E 25.24 13.89 12.96 12.96 12.96 12.96

ispace 28.89 7.73 5.41 5.40 5.40 5.40

itime 23.09 9.94 8.22 8.15 8.14 8.14

iite/y 27.38 36.21 13.82 30.23 29.71 38.53

Number of iterations 4 17 31 50 64 78

The holed plate problem (®ne discretization)

E 20.69 6.25 2.71 2.55 2.57 2.57

ispace 20.54 6.50 2.12 1.88 1.89 1.89

itime 20.09 5.21 1.07 0.60 0.53 0.52

iite/y 20.04 55.54 63.51 85.02 115.1 124.2

Number of iterations 7 18 56 97 137 169

Table 4

In¯uence of the tolerance on the error and on the indicators for the frame problem

y 100 10ÿ1 10ÿ2 10ÿ3 10ÿ4 10ÿ5

The frame problem (coarse discretization)

E 26.60 16.42 16.36 16.37 16.37 16.37

ispace 22.74 11.75 11.67 11.67 11.67 11.67

itime 21.62 5.32 4.87 4.82 4.82 4.82

ite/y 17.78 5.59 6.48 4.48 5.08 5.17

Number of iterations 28 72 106 130 154 180

The frame problem (®ne discretization)

E 12.40 6.05 5.37 5.36 5.36 5.36

ispace 12.59 5.13 4.47 4.47 4.47 4.47

time 10.74 2.39 0.64 0.55 0.55 0.55

iite/y 11.09 17.01 8.23 6.20 7.54 8.04

Number of iterations 40 112 194 262 322 386
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done and the in¯uence of the iterative technique is

avoided. For the examples treated, the following re-

lation

iite �
1

10
min�itime;ispace�

is more or less satis®ed when y 1 ycrit. This relation is

independent from the discretization of the problem

and will be taken into account in the next section.

6. Adaptive control

The adaptive control of the computation is taken in

the following sense: given a ®rst coarse computation

leading to an error E, one wishes to make a new calcu-

lation (as cheap as possible) leading to a required error

E0. We propose the following strategy.

Initial parameters choice: the initial mesh results

from a mesh optimization in elasticity for a required

error of, for instance, 2E0, with the loading applied cor-

responding to the maximum loading in the real pro-

blem. The time discretization needs simply to represent

the loading. The initial tolerance is set to y=10ÿ2.

Determination of the optimized parameters: the error

behaves almost as the sum of the space and time indi-

cators. In order to share e�ciently the two indicators

in the required error, we minimize a cost function. An

h-type mesh adaptation is used (the size of the el-

ements is modi®ed but their degree is kept constant).

We suppose that the cost function is proportional to

the number of elements at a certain power a and the

number of time steps at a certain power b. The

unknowns involved in the cost function are the size

modi®cations of the elements and the time steps, rE
and rDt, respectively. Let hE be the size of an element

in the initial mesh and h
�

E the size of the correspond-

ing element in the optimized mesh. rE is the quotient

rE �
h�E
hE

Similarly, rDt is the quotient of the time step size Dt in

the optimized time discretization to the size Dt � in the

initial one

rDt �
Dt�

Dt

The cost function thus reads

 

X

E

1

r2E

!a 
X

Dt

1

rDt

!b

Note that the rE (rDt) are de®ned for each element

(time-step) in the initial mesh (time discretization).

We still need to express the required error in terms

of the rE and rDt. The element contributions to the

space indicator for the optimized mesh ispace,E � are

supposed to be linked to the contribution in the initial

mesh ispace,E by

ispace,E � � r
p
E ispace,E

The same supposition is made for the time contri-

butions:

itime,Dt� � r
q
Dtitime,Dt:

The choice of the parameters p and q will be discussed

further. The minimization problem reads:

Problem 1.

Minimize

 

X

E

1

r2E

!a 
X

Dt

1

rDt

!b

under the restrictions:

E0 � ispace,0 � itime,0, ispace,0 �
X

E

r
p
E ispace,E,

itime,0 �
X

Dt

r
q
Dtitime,Dt

When solving this minimization problem, one ob-

serves that the goal indicators ispace,0 and itime,0 depend

only upon the goal error E0 and the four parameters a,

b, p and q:

ispace,0 �
2a=p

2a=p� b=q
E0, itime,0 �

b=q

2a=p� b=q
E0

Table 5

Space indicator (%) as a function of the number of degrees of freedom for three- and six-node triangles

Number of degrees of freedom 184 662 2506 9746

ispace (three-node) 32.90 28.05 14.63 5.42

ispace (six-node) 13.38 5.37 1.82 0.62
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It can also be observed that the Problem 1 is

decoupled in Problems 2 and 3.

Problem 2.

Minimize
X

E

1

r2E
with ispace,0 �

X

E

r
p
E ispace,E

Problem 3.

Minimize
X

Dt

1

rDt
with itime,0 �

X

Dt

r
q
Dtitime,Dt:

Owing to the decreasing behaviour of the time indi-

cator in Table 1, we have taken q= 2. Concerning the

space, Table 5 gives the space indicator evolution for a

growing number of degrees of freedom for the holed

plate problem. One can see that the six-node triangles

are much more e�cient than the three-node triangles.

So, we will use only six-node triangles and we take

p= 2. With the value q = 2, p = 2 and the choice

a=2, b=1 the space and time indicators contribute to

the goal error in the ratios 4/5, 1/5, respectively.

Minimization problems 2 and 3 give the size modi®-

cations for the mesh and the time steps. These modi®-

cations are used to remesh the domain and to de®ne a

new time discretization. The time interval is

``remeshed'' on the basis of rDt.

Finally, the new tolerance y � is chosen so that

iite,0 �
1

10
min�itime,0;ispace,0�

Since iite is proportional to the tolerance, we take

y� �
iite,0

iite
y

If the quotient of the initial error to the goal error is

too important (r3), one or several intermediate steps

are performed in the adaptive control.

Examples: Tables 6 and 7 and Figs. 5±6 summarize

two adaptive control examples. In both cases, the goal

error is set to 5% and one intermediate step is needed.

The initial meshes were optimized in elasticity for an

error of 10%. We observe that the mesh gets ®ner in

the re-entrant corners and that the time discretization

has been re®ned during the loadings and has not been

modi®ed during the unloadings. All the meshes were

obtained with the ARAIGNEE [28] software.

7. Conclusion

A new a posteriori error estimation, called dissipa-

tion error, has been implemented to control time-

dependent nonlinear ®nite element analysis. The dissi-

pation error, combined with e�cient time, space and

iteration indicators made it possible to adapt simul-

taneously the mesh, the time discretization and the

stopping criterion of the iterative algorithm. The re-

liability of the adaptive strategy was shown for two

plane stress problems with the plastic Prandtl±Reuss

model.

Table 7

Summary of the adaptive control for the frame problem

E ispace itime iite Number of elements Number of steps y

Initially 28.15 14.33 17.90 0.03 194 3 1 � 10ÿ2

Asked 10 8 2 0.20

Obtained 12.30 10.03 2.18 0.38 253 7 7.41 � 10ÿ2

Asked 5 4 1 0.10

Obtained 5.37 4.48 0.74 0.17 661 11 1.91 � 10ÿ2

Table 6

Summary of the adaptive control for the holed plate problem

E ispace itime iite Number of elements Number of steps y

Initially 43.91 13.40 37.75 0.09 37 2 1 � 10ÿ2

Asked 10 8 2 0.20

Obtained 11.80 9.6 3.1 1.20 69 5 2 � 12 � 10ÿ2

Asked 5 4 1 0.10

Obtained 5.04 4.31 0.62 0.11 172 7 1.72 � 10ÿ3
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