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Introduction

The importance of numerical simulation in the industrial activity is growing from day to day and the problems treated are becoming more and more complex (three-dimensional problems with large deformations, impacts on composites, etc.). The crucial issue is now to be able to control the computation, i.e. to estimate the error and optimize the calculation parameters (mesh size, time discretization, number of iterations for the iterative techniques, etc.).

In addition to the developments of the computational techniques, important advances have been made in the materials behaviour modelization. For instance, the description of material models using a set of internal variables (plastic strain, hardening parameters, etc.) is becoming more and more popular.

Here, we are concerned with error estimation and adaptive control for ®nite element computations of plastic structures whose behaviour is described by internal variables. For instance, the Prandtl±Reuss plastic model falls into this category. The assumptions of small strains and displacements, as well as isothermal and quasi-static loading, are made.

Many papers deal with error estimation for linear problems. Three main approaches must be distinguished. The ®rst one, chronologically speaking, is based on the concept of error on the constitutive law [START_REF] Ladeveá Ze | The basis of the error on the constitutive law method for the control of ®nite element computations: the work of the mid 70[END_REF] and has been applied, among other areas, to thermal [START_REF] Ladeveá Ze | The basis of the error on the constitutive law method for the control of ®nite element computations: the work of the mid 70[END_REF] and elastic problems [START_REF] Ladeveá Ze | Error estimation and mesh optimization for classical ®nite elements[END_REF]. The second one, introduced by BabuAE ska and Rheinboldt [START_REF] Babuae Ska | A posteriori estimates for the ®nite element method[END_REF][START_REF] Babuae Ska | Adaptive approaches and re-Fig. 5. Initial, intermediate and ®nal mesh and error evolution for the holed plate problem. liability estimators in ®nite element analysis[END_REF], then developed by Zienkiewicz, Gago and Kelly [START_REF] Kelly | A posteriori error analysis and adaptative processes in ®nite element method. Part 1: error analysis[END_REF][START_REF] Gago | A posteriori error analysis and adaptative processes in ®nite el-ement method. Part 2: adaptative mesh re®nement[END_REF] and more recently by Oden et al. [START_REF] Oden | Toward a universal h±p adaptative ®nite element strategy. Part 2: a posteriori error estimation[END_REF], uses the equilibrium residuals through local problems to estimate the error. The last one, developed by Zienkiewicz and Zhu [8± 10], consists of comparing the ®nite element solution to a smoother one obtained by special averaging techniques. A validation of these a posteriori error estimators can be found in [START_REF] Babuska | Validation of a posteriori error estimators by numerical approach[END_REF][START_REF] Babuska | Validation of recipes for the recovery of stresses and derivatives by a computer-based approach[END_REF]. Finally, let us mention 1 the dual analysis approach based on upper and lower bounds for the energy [START_REF] De Veubeke | Displacement and equilibrium models in the ®nite element method[END_REF][START_REF] Debongnie | Dual analysis with general boundary conditions[END_REF].

In comparison with the linear case, much less work has been devoted to the nonlinear case. For nonlinear time-independent problems, BabuAE ska and Rheinboldt [START_REF] Babuska | Computational error estimates and adaptative processes for some nonlinear structural problems[END_REF] and Johnson and Hansbo [START_REF] Johnson | Adaptative ®nite element methods in computational mechanics[END_REF] have designed error estimates for nonlinear elasticity and Hencky-type plasticity, respectively. For nonlinear time-dependent problems, techniques devised for linear problems or time-independent nonlinear problems are used at each time step [17±19]. Unfortunately, the error estimates so built do not take into account the errors due to the time discretization. In a time-dependent nonlinear problem, the quality of the ®nite element solution at time t depends indeed not only on the quality of the mesh, but also on the two following in¯uences: the quality of the time discretization performed since the beginning of the loading, and the defect of convergence of the global iterative algorithm at each computed time (Newton's algorithm, for instance).

An error on the constitutive law taking into account the three sources of error described previously has been proposed by LadeveÁ ze [START_REF] Ladeveá Ze | Sur une famille d'algorithmes en me canique des structures[END_REF]. This measure, based on Drucker's inequality, was ®rst applied in [START_REF] Ladeveá Ze | Accuracy of elastoplastic and dynamic analysis[END_REF] for plane stress problems and three-node triangles; a procedure to adapt the mesh is also described. The Drucker error has recently been reused and enhanced in order to conduct a simultaneous adaptive control of the space and time discretization for three-and sixnode triangles in plane and axisymmetric problems [START_REF] Gallimard | Error estimation and adaptativity in elastoplasticity[END_REF]. The Drucker error is based on a sucient condition that ensures the stability of the material.

For materials described by a set of internal variables, a new a posteriori error estimate, called dissipation error, has been elaborated in [START_REF] Ladeveá Ze | La me thode aÁ grand incre ment de temps pour l'analyse de structures aÁ comportement non lineÂaires de crit par variables internes[END_REF][START_REF] Ladeveá Ze | Me canique non line aire des structures[END_REF]. The key idea is to divide the equations of the problem into two groups:

. A group of equations related to the free energy including the equation of equilibrium, the kinematic constraints and the state equations. . A group of equations related to the dissipation, i.e.

the laws describing the evolution of the material state.

The dissipation error characterizes the quality of an approximate admissible solution, i.e. a solution satisfying the ®rst group of equations. This quality is quanti-®ed by the non-veri®cation of the second group of equations. This fact naturally leads to the terminology of dissipation error. The usefulness of the dissipation error has been evaluated in the framework of the classical incremental ®nite element method in [START_REF] Ladeveá Ze | A new a posteriori error estimation for nonlinear time-dependent ®nite element analysis[END_REF]. As for the Drucker error, the dissipation error does take into account all the error sources involved in the computation. To quantify more speci®cally the contributions of the space and time discretizations, two indicators have been introduced in [START_REF] Ladeveá Ze | A new a posteriori error estimation for nonlinear time-dependent ®nite element analysis[END_REF].

In the present paper, we introduce a third indicator to quantify the contribution of the iterative technique to the error. Then, an adaptive strategy is proposed. The error and the three indicators makes it possible to adapt simultaneously all the parameters of the computation: the mesh, the time discretization and the stopping criterion of the iterative algorithm. The strategy is tested for two plane stress problems, with the Prandtl± Reuss plastic model.

The plan of the paper is as follows. The reference problem and the dissipation error are described in Sections 2 and 3, respectively. The implementation of the dissipation error in the framework of the classical incremental ®nite element is detailed in Section 4. In Section 5, the time and space error indicator are recalled and the iteration indicator is introduced. The adaptive control strategy is proposed in the ®nal section and two complete examples are treated.

The continuous reference problem

Concerning the notations, vectors will be underlined (U, U Ã , ...) and second-order tensors in outline font. For instance, strains and stresses will be denoted by s and e, respectively. This notation will also be used to denote the additional internal variables. More complex operators will be in bold (e.g. K for the Hooke's tensor). Finally, the ®rst derivative of a function f with scalar argument will be denoted by f '.

The solid medium under study occupies a domain O bounded by @O, which is independent of t (small strain and displacement assumption). The environment of the medium is schematized for all t $ [0,T ], with an imposed displacement U d on a part @ 1 O of the boundary, a traction F d on @ 2 O (complementary to @ 1 O), and a volumic load f d on the domain O. The partition of @O in @ 1 O and @ 2 O is taken as constant in time.

The desired solution must ful®ll the kinematic constraints, the equilibrium equation, the state equations, the evolution laws and the initial conditions. We will work in the usual bounded energy frame, U denotes the space of the displacement ®eld U de®ned on O, and S the space of the stress ®eld, also de®ned on O. The extensions of these two spaces to the entire time range [0,T ] will be denoted U [0,T ] and S [0,T ] . Finally, Tr stands for the trace.

The kinematic constraints read

U P U 0,T ad 1 where 2 U 0,T ad È U P U 0,T such that U U d on 0,T Â@ 1 O É 2
The quasi-static equilibrium equation takes the form s P S 0,T ad 3

where S [0,T ] ad ={s $ S [0,T ] satisfying Eq. ( 4)

VU à $ U 0 , Vt$ [0,T ]}, O Tr  seU à à dO À O f d U à dO À @ 2 O F d U à dS 0 4 
In the above,

U 0 È U P U such that U 0 on @ 1 O É 5
The behaviour is described by internal variables. The state of the material is characterized at each point by the total strain e, the inelastic strain e p and a set of internal variables denoted by X. The associated variables are the stress s for e and e p , and the quantity Y for X. Thus, the expression of the dissipation is Trs_ e p À Y X : 6

The second term speci®es the contribution of (X,

Y)t o the dissipation. If X denotes a column of R n , then Y is also a column of R n and Y X Y t X ,
where t stands for the usual transposition. More precisely, two spaces e and f are placed in duality by the following bilinear form:

_ e p À _ X ! , s Y ! 4Tr s_ e p À Y _ X, e  f4R
With the small strain assumption, the total strain is the symmetric part of the gradient of U; in an orthonormed basis, it can be written

 eU à ij 1 2 À U i,j U j,i Á
This assumption also yields the additivity relation for the rate of elastic e Ç e and inelastic e Ç p strains, e Ç =e Ç e +eÇ p . For the state equations, according to the ®rst principle of thermodynamics, a free energy c, depending only on the state variables e, e p and X can be introduced. The following classical assumptions are made:

. c depends only on the elastic strain e e and the internal variables X; . c(e e , X)=c e (e e )+c p (X);

. linear elasticity: c e (e e )= 1 2 Tr[Ke e e e ], where K is Hooke's tensor.

The derivation of c yields the state equations s=Ke e and Y=G(X), where G(X) is the derivative of c p with respect to X.

For the evolution laws, the second principle of thermodynamics, written as

Tr  s_ e p À Y _ Xr0
imposes a constraint on the evolution laws relating (e Ç p ,ÀX Ç ) and (s,Y). This law can be written:

_ e p À _ X ! B s Y ! , e p 0, X 0 for t 0
B is an operator relevant to the material. It must be positive to respect the second principle of thermodynamics. The material is supposed to be initially virgin.

A typical way to de®ne the operator B is to give a scalar function j à (s,Y), generally convex, called the potential of dissipation, and to write

e p À _ X P @ s j à s,Y @ Y j à s,Y 7 
where (@ s j à ,@ Y j à ) denotes the subdierential of j à at (s,Y). This de®nes a standard material. When the potential is dierentiable, the subdierential becomes a classical gradient and the belonging an equality. The interest of a standard model lies in the following classical property. The second principle of thermodynamics is ful®lled if the potential satis®es:

j à convex, j à 0,00, j à ,r0 8 
As an example, consider the Prandtl±Reuss plastic model. In addition to the plastic strain, the model involves another scalar internal variable p that can be interpreted as the cumulative plastic strain. The free energy is of the form:

ce e ,p 1 2
Tr Ke e e e g p where g is a function characterizing the hardening law. So,

s Ke e , Y R g H p 9

Classical hardening laws are R=lp (linear hardening), R=k y p 1/m (power hardening) and R=R M (1Àexp(Àgp )) (exponential hardening) where l, k y ,m ,R M and g are constant material parameters. Prandtl±Reuss materials are standard with a dissipation potential given by

j à s,R0 if fR0 3 j à s,RIif f > 0 where f s,Rks D kÀR R 0
s D is the deviator of the stresses, R 0 is the initial yield stress, and

ks D k Tr s D s D 1=2
One may easily check that j à ful®lls the sucient conditions [START_REF] Zienkiewicz | A simple error estimator and Fig. 6. Initial, intermediate and ®nal mesh and error evolution for the frame problem. adaptative procedure for practical engineering analysis[END_REF] and therefore the second thermodynamics principle.

The dissipation error

The notion of error on the constitutive law has been introduced in [START_REF] Ladeveá Ze | Nouvelles proce dures d'estimations d'erreur relative aÁ la me thode des e le ments ®nis[END_REF]. It relies on splitting the equations of the problem into two groups. When the behaviour is formulated by a functional law, the ®rst group combines both the equilibrium equations and the kinematic constraints, and the second group contains the constitutive law. The quality of an approximate solution satisfying the ®rst group (i.e. an admissible solution) is quanti®ed by the non-ful®lment of the second group of equations (constitutive law). If Drucker's stability inequality holds for the material, a natural way to measure the error can be obtained [START_REF] Ladeveá Ze | Accuracy of elastoplastic and dynamic analysis[END_REF][START_REF] Gallimard | Error estimation and adaptativity in elastoplasticity[END_REF]. The error on the constitutive relation has a strong mechanical basis since less con®dence is given to the behaviour of the material.

When the state of the material is described by internal variables, the notion of admissibility must be revised. Indeed, the state equationsÐassociated with the free energyÐand the evolution lawsÐassociated with the dissipative phenomenaÐmust be distinguished in the formulation. In [START_REF] Ladeveá Ze | Me canique non line aire des structures[END_REF], the state equations are included in the de®nition of admissibility, the error being measured on the evolution laws alone. The problem is divided precisely into two groups:

. The ®rst group de®nes the admissibility of a solution. It combines the equations related to the free energy: the equilibrium equation, the kinematic constraints and the state equations: s=K(eÀe p ) and Y=G(X). We also add to this group the initial conditions (de®ning the initial state of the material, here taken as virgin) (e p ,X)=0 at t =0onO. . The second group, related to the dissipation, only includes the evolution laws.

Two questions must be answered to actually utilize the dissipation error concept. The ®rst one deals with the admissibility. In general, the ®nite element solution obtained from the computation is not admissible. For instance, the stresses are not exactly statically admissi-ble. The construction of an admissible solution from the ®nite element one will be addressed in Section 4.

The second question concerns the de®nition of the error measurement.

For standard material, the error measurement can be de®ned using the properties of the Legendre± Fenchel transform. This transform associates a dual potential j(e Ç p ,ÀX Ç )t oj à (s,Y):

j_ e p , À _ X sup s,YPf À Tr _ s_ e p À Y X À j à s,Y

Á

The Legendre±Fenchel transform possesses two interesting classical properties. Using the condensed notation Z_ e p , _ X ,s,Yj_ e p , À _ X j à s,YÀTr s_ e p Y _ X they take the form

Z_ e p , _ X ,s,Yr0, V_ e p , _ X ,s,YPe  f Z_ e p , _ X ,s,Y0 D _ e p À _ X P @ s j à s,Y @ Y j à s,Y
The ®rst relation is usually called the Legendre± Fenchel inequality, and the second relation simply means that Z is zero if and only if the evolution laws are satis®ed.

The quantity Z allows one to measure the quality of veri®cation of the evolution laws at each time and each place. The absolute error e may thus be de®ned as follows

e T 0 O Z_ e p , _ X ,s,YdOdt 10 
The absolute error is zero if and only if the admissible solution and the exact solution both coincide on [0,T ].

The relative error E is de®ned by E=e/D, where

D 4 sup tP0,T d t d t 1 À g t 0 O sup À j à s,Yj_ e p , _ X Á , R 0 ks D k _ c e e e ! dOdt g O 1 2 Tr  K À1 ss à c p XdOj t
The g parameter (0 R g R 1) gives the relative weight of the dissipation and the free energy in the denominator. We set g= 1 2 . The minimum dissipation value

R 0 ks D k _ c e e e
where c Ç e is the derivative of the elastic free energy with respect to time, has been introduced in [START_REF] Ladeveá Ze | A new a posteriori error estimation for nonlinear time-dependent ®nite element analysis[END_REF] to obtain reasonable error in elasticity in comparison with the classical error on the constitutive law for such problems [START_REF] Ladeveá Ze | Error estimation and mesh optimization for classical ®nite elements[END_REF]. Thanks to the simple norm chosen, it is easy to express the global error E in terms of local contributions. The local contribution to the error of the space±time domain

o i (o i W[0,T ] Â O) is de®ned by E o i o i Z do i D 11 
If I i =1 o i =[0,T ] Â O and o i o j =Y for i$j, E I i1 E o i 12 
In 

E 0,tÂO t 0 O Z dOdt D 13
For the applications, we will consider the Prandtl± Reuss plastic model with linear hardening. The expressions of the dual potentials for this model are given by

j à s,RC C à , j_ e p , À _ p R 0 _ p C C 14
where

C Ã È s,RPfjfR0,Rr0 É C È _ e p , À _ p PejTr_ e p 0,k_ e p kÀ _ p R0 É
C A is the indicator function associated with the convex domain A (i.e. C A =0 inside A, and C A =+I outside). The condition Rr0 is introduced in the de®nition of the potential j à for reasons detailed in [START_REF] Ladeveá Ze | A new a posteriori error estimation for nonlinear time-dependent ®nite element analysis[END_REF].

Finite element and admissible solutions

The dissipation error cannot be directly measured on the ®nite element solution because it is not gener-ally admissible. We will now see how it is possible to easily get an admissible solution from the ®nite element one in the case of the classical incremental ®nite element computation obtained through the displacement method. First, we detail the discrete problem.

The discrete problem

In an incremental method, the problem to be solved on [0,T ] is divided into a succession of resolutions over [t n ,t n +1 ]( n =0,...,N À 1; t 0 =0, t N =T ). Assuming the solution is known until t n , one must then build the solution over [t n ,t n +1 ]. First, a time discretization must be carried out. Usually, one only seeks the solution at the ®nal time t n +1 . So, the kinematic constraints and the equilibrium equation are written at t n +1 , and the behaviour becomes a nonlinear algebraic relation linking the ®elds at t n +1 . Formally,

s n1 À s n A n e n1 À e n 15
where s n ,e n (s n +1 ,e n +1 ) are the stresses and strains at t n (t n +1 ). The A n notation emphasizes that the stresses at t n +1 are no longer expressed as a functional law of the strain rate history, but now as a nonlinear algebraic law of the increase of strain e n +1 Àe n over the time step. Note that the internal variables generally explicitly appear in the numerical scheme.

Concerning the space discretization, the domain is divided into elements on which the displacement ®eld is interpolated between nodal values using shape functions. The displacement at M reads U h MNMq 16 where N(M ) is the shape function matrix and q the nodal displacement set. The discrete problem to be solved at t n +1 read as given below.

4.1.1. Kinematic constraints U h,n1 P U tn1 h,ad 17 
where

U tn1 h,ad È U P U h such that U U d on @ 1 O at t n1 É
and U h denotes the ®nite element displacement space. 

É Oh Tr  s h,n1 eU à à dO h À O f d U à dO À @ 2 O F d U à dS 0 19 
In the above,

U h,0 È U P U h such that U 0 on @ 1 O É
and S h denotes the space of stresses de®ned at the integration points of the domain O. The integration f O h ÁdO h in Eq. ( 19) is performed classically using a discrete integration technique. Thus, the stresses given by the computation (as well as the plastic strains and internal variables) are only known at the integration points.

Constitutive relations

s h,n1 À s h,n A n À eU h,n1 ÀeU h,n Á
The discrete problem, which is a nonlinear algebraic system, is solved in an iterative way, typically with Newton's method. Two types of solutions always exist as the iterations proceed: a solution (U AE h,n +1 , s h,n +1 ) satisfying both the kinematic constraints and the equilibrium in a ®nite element sense U h,n1 P U tn1 h,ad , s h,n1 P S tn1 h,ad and a solution (U Ä h,n +1 , sh,n +1 ) satisfying both the kinematic constraints and the ``discrete'' behaviour

Ũ h,n1 P U tn1 h,ad s h,n1 À s h,n A n e Ũ h,n1 Àe Ũ h,n
Deriving a solution (U Ä h,n +1 , sh,n +1 ) from the solution (U Ï h,n +1 , sh,n +1 ) is performed by integrating the behaviour at each integration point of the structure with

U Ä h,n +1 =U AE h,n +1 . Deriving a solution (U AE h,n +1 , s h,n +1 ) from (U Ä h,n +1
, sh,n +1 ) (equilibrium phase) is performed by a linear global resolution. When the two solutions are close, the iterative process stops and the ®nite element code generally gives the solution satisfying the ``discrete'' behaviour.

The construction of an admissible solution

From the ®nite element solution, we must construct an admissible solution (denoted by hats), i.e. a solution satisfying

Û P U 0,T ad , ŝ P S 0,T ad ŝ K À e ÛÀe p Á , Ŷ G X, on 0,T ÂO ê p , X0 at t 0 on O
The rather unrestrictive assumption of linear evolution for imposed loads and displacements between consecutive computed time is applied. We also assume that the prescribed displacements and applied loads are zero at t =0.

4.2.1. Construction of ŝ $ S [0,T] ad
The ®nite element stresses are not statically admissible at the time steps (they are not even known at every point, but only at the integration points). Let us rigorously construct equilibrated stresses at each time step. Suppose we do have stresses that satisfy the equilibrium equation in the ®nite element sense s h,n +1 (if this is not the case, we just need to apply the ``equilibrium phase'' of the iterative method). From these stresses, we then construct the rigorously equilibrated stresses ŝn +1 using techniques developed for the elasticity [START_REF] Ladeveá Ze | Error estimation and mesh optimization for classical ®nite elements[END_REF]. These techniques consist ®rst of building load densities in equilibrium with the applied loading on the boundary of each element. Then, stresses are built on each element separately. The density building only requires the resolution of small local linear problems, and the stress building is conducted analytically element by element.

With equilibrated stresses at each time step, and owing to the linear evolution of the loading, we interpolate ŝn +1 over each time step to obtain ŝ $ S [0,T ] ad . Let a n (a n +1 ) be the values of a at t n (t n +1 ). Linear interpolation of a means:

on t n ,t n1 , a t n1 À t t n1 À t n a n t À t n t n1 À t n a n1
At t = 0, we take ŝ0 =0, which is statically admissible with the initial null loading.

Construction of U Ã $ U [0,T ] ad

Since the prescribed displacements display linear evolution on each time step, and since the ®nite element displacement ®eld satis®es the kinematic constraints at each computed time, an element of U [0,T ] ad is simply obtained by interpolating the ®nite element displacement ®eld between the computed times. At t =0, we take U Ã =0. For the Prandtl±Reuss plastic model, the inelastic strains take place at constant volume. In order to avoid an in®nite error, the ®nite element ®eld is modi®ed at each computed time before the interpolation in order to satisfy the incompressibility condition Tr[e(U Ã )ÀK À1 ŝ]=0. For the plane stress problems treated in the application, this condition is easily achieved by adequately choosing the strain in the thickness ê33 .

Construction of the inelastic strains

The following expression must be used to compute the inelastic strains on [0,T ] Â O in order to respect Hooke's law:

e p e ÛÀK À1 ŝ 20 
As U Ã =0 and ŝ=0 at t =0 on O, we have e p =0 at t =0 on O. The initial condition on êp is thus satis-®ed.

Determination of the internal variables values

The computed internal variables are seldom given in classical ®nite element code. So, herein we do not consider them as given at the computed time, and we construct them. Several choices are possible. Here, for the Prandtl±Reuss plastic model with linear hardening, we take:

pn1 sup p1,n1 , p2,n1 where p1,n1 pn t n1 À t n k _ e p n1 k p2,n1 1 l <k ŝD n1 kÀR 0 >
and pà is obtained by a linear interpolation of the pà n +1 . This choice results from a step by step minimization of the error [START_REF] Ladeveá Ze | A new a posteriori error estimation for nonlinear time-dependent ®nite element analysis[END_REF].

Interpretation of the error

The interpretation of the dissipation in terms of more classical norms like the L 2 error in the stresses or the energy (H 1 ) norm in the displacements is not straightforward and further work needs to be done in this direction. As a matter of fact, to our knowledge, the regularity of the exact solution (i.e. whether the stress ®eld belongs to L 2 and the displacement ®eld to H 1 ) is still not clear from the mathematical point of view for a general constitutive relation described by internal variables. In Ref. [START_REF] Ladeveá Ze | A new a posteriori error estimation for nonlinear time-dependent ®nite element analysis[END_REF], the dissipation error has been compared to the exact free energy error and we obtained on an example that the dissipation error was overestimating the energy error by a factor of 1.6, the exact solution being obtained through an ``overkill'' (very ®ne discretizations in time and space).

The error indicators

The dissipation error takes into account all the unavoidable error sources entering into the computation of a time-dependent nonlinear problem: the space discretization, the time discretization and the iterative technique used to solve the nonlinear discrete problem. Table 1 (®rst line) presents the evolution of the error E with an increasing number of time increments for a given mesh and Table 2 (®rst line) presents the evolution of the error for an increasing quality of the mesh and a given time discretization. We can conclude that the error decreases as the space or time discretizations are re®ned and tends to stabilize under a given level of re®nement. This result proves that the error depends on both the space and time discretizations. Under a certain re®nement in space (time), the error is stable because it is mainly due to the time (space) discretization. us de®ne the time error as the limit of the error when the number of elements tends to ``in®nity'' (thus, no error due to the space exists any more):

E time lim h 40 E
Similarly, we de®ne the space error as the limit of the error when the number of time steps tends to ``in®nity'': 

E

With the adaptive control of the computational parameters in mind, it is important to calculate reliable estimates of the quantities E time , E space and E ite , as direct calculation of these quantities is not realistic.

The dissipation error is associated to the continuous reference problem described in Section 2. There exist three discrete problems besides the continuous one: the space discrete problem, the time discrete problem and the time±space discrete problem. Applying the dissipation error concept to the three ``new'' discrete problems provides reliable estimates of E time , E space and E ite . In the next section, we give the precise writing of the three discrete problems. Then, we de®ne the three estimates, called indicators: the space indicator, the time indicator and the iteration indicator. Note that the time and space error indicators concept has already been studied in the past [START_REF] Gallimard | Error estimation and adaptativity in elastoplasticity[END_REF][START_REF] Coorevits | Maillage adaptatif anisotrope: application aux probleÁ mes de dynamiques[END_REF]. . the equilibrium equation

s h P S 0,T h,ad
where S [0,T ] h,ad ={s $ S [0,T ] h satisfying Eq. ( 19)

V U Ã $ U h,0 , V t $ [0,T ]}, U h,0 ={U $ U h such that U=0 on @ 1 O};
. the state equations on 0,T ÂO h , Y h GX h . the evolution laws on 0,T ÂO h ,

s h K À eU h Àe p h Á
2 _ e p h À _ X h 3 P @ sh j à s h ,Y h @ Yh j à s h ,Y h and at t =0,e p h =0, X h =0, on O h .

The time discrete problem

The solution (U n +1 ,s n +1 Y n +1 ,e p n +1 ,X n +1 )i s to be found at every computed time and over the whole domain. The equilibrium equation is continuous the evolution laws are discretized. The implicit scheme is chosen:

2 _ e p n1 À _ X n1 3 P @ sn1 j à s n1 ,Y n1 @ Yn1 j à s n1 ,Y n1
where e Ç p n +1 and X Ç n +1 follow the notation

_ x n1 x n1 À x n t n1 À t n 21 

The time±space discrete problem

Both the equilibrium equation and the evolutions laws are discretized. The solution is denoted by (U h,n +1 , s h,n +1 , Y h,n +1 , e p h,n +1 , X h,n +1 ). 

De®nition of the indicators

Let us now apply the dissipation concept to the three discrete problems. The admissible solution de®nition still corresponds to the kinematic constraints, the equilibrium equation and the state equations. So, an admissible solution for the space discrete problem is a solution de®ned on the entire interval of time that satis®es the kinematic constraints, the equilibrium equation in the ®nite element sense and the state equations at each integration point of the structure. An admissible solution for the time discrete problem is a solution de®ned on the whole domain and satisfying rigorously the kinematic constraints, the equilibrium equation and the state equations at each computed time. Finally, an admissible solution for the time± space discrete problem is a solution satisfying the kinematic constraints, the equilibrium equation in the ®nite element sense and the state equations at each integration points and each computed time. The construction of the admissible solutions partly uses the technique described in Section 4.2. The three admissible solutions will be denoted by hats.

The error associated to an admissible solution is measured by the non-veri®cation of the evolution laws. This leads to the following absolute error indicators:

I time T 0 Oh Z À _ e p Á h , _ X h , ŝh , Ŷh dO h dt I space NÀ1 n0 t n1 À t n O Z À _ e p Á n1 , _ X n1 , ŝn1 , Ŷn1 dO I ite NÀ1 n0 t n1 À t n Oh Z À _ e p Á h,n1 , _ X h,n1 , ŝh,n1 , Ŷh,n1 dO h
The integration over O h indicates that the integrations points are those of the ®nite element computation. Note also that I space really measures the error associated to the time discrete problem since

Z _ e p n1 , _ X n1 ,s n1 ,Y n1 0 2 _ e p n1 À _ X n1 3 P @ sn1 j à s n1 ,Y n1 @ Yn1 j à s n1 ,Y n1
The same remark holds for the iteration indicator. 

t n1 À t n O b n1 dO O c à ŝk1 , Xk1 dO k n0 t n1 À t n 2 O c à _ s n1 , _ X n1 dO b n1 sup j à _ s n1 , _ Y n1 j _ e p n1 ,

Numerical results

Tables 1 and2 give the computed indicators. We note that:

. The time (space) indicator i time (i space ) is almost insensitive to the number of elements (time steps) and approximates very well the time (space) error E time (E space ). . The space and time indicators decrease monotonically with respect to the number of elements and time steps, respectively. . The error is close to the sum of the space and time indicators. . The iteration indicator i ite is very small in comparison with the space and time indicators.

The last point shows that the error due to the iterative technique is much smaller than the time and space discretization errors. During the ®nite element computation, the quality of the discrete problem resolution is governed by a tolerance y on the equilibrium equation residuals. The convergence criterion is based on the energy norm:

k s h,n1 À s h,n1 k L2Oh k s h,n1 k L2Oh Ry 22 
The ®nite element results for Tables 1 and2 were obtained with y=10 À3 . Tables 3 and4 give the in¯uence of a tolerance modi®cation on the error and on the indicators. A coarse and a ®ne discretization are considered for both examples. We note that:

. under a certain critical tolerance y crit , the error and the space and time indicators are insensitive to the tolerance; . the iteration indicator is more or less linear in the tolerance; . the tolerance y decreases exponentially with respect to the number of iterations.

y crit , which depends both on the quality of the space and time discretization, is smaller when the discretization is ®ner. In other words, when the discretization of the problem is coarse, only a few iterations are needed; otherwise a larger number is needed.

The critical tolerance concept is important in the framework of adaptive control of the computation. Indeed, if the ®nite element computation is carried out with the critical tolerance, no useless global iteration is is more or less satis®ed when y 1 y crit . This relation is independent from the discretization of the problem and will be taken into account in the next section.

Adaptive control

The adaptive control of the computation is taken in the following sense: given a ®rst coarse computation leading to an error E, one wishes to make a new calculation (as cheap as possible) leading to a required error E 0 . We propose the following strategy.

Initial parameters choice: the initial mesh results from a mesh optimization in elasticity for a required error of, for instance, 2E 0 , with the loading applied corresponding to the maximum loading in the real problem. The time discretization needs simply to represent the loading. The initial tolerance is set to y=10 À2 .

Determination of the optimized parameters: the error behaves almost as the sum of the space and time indicators. In order to share eciently the two indicators in the required error, we minimize a cost function. An h-type mesh adaptation is used (the size of the elements is modi®ed but their degree is kept constant). We suppose that the cost function is proportional to the number of elements at a certain power a and the number of time steps at a certain power b. The unknowns involved in the cost function are the size modi®cations of the elements and the time steps, r E and r Dt , respectively. Let h E be the size of an element in the initial mesh and h à E the size of the corresponding element in the optimized mesh. r E is the quotient

r E h à E h E
Similarly, r Dt is the quotient of the time step size Dt in the optimized time discretization to the size Dt à in the initial one

r Dt Dt à Dt
The cost function thus reads

2 E 1 r 2 E 3 a 2 Dt 1 r Dt 3 b
Note that the r E (r Dt ) are de®ned for each element (time-step) in the initial mesh (time discretization). We still need to express the required error in terms of the r E and r Dt . The element contributions to the space indicator for the optimized mesh i space,E Ã are supposed to be linked to the contribution in the initial mesh i space,E by

i space,E Ã r p E i space,E
The same supposition is made for the time contributions:

i time,Dt à r q Dt i time,Dt :

The choice of the parameters p and q will be discussed further. The minimization problem reads:

Problem 1. Minimize 2 E 1 r 2 E 3 a 2 Dt 1 r Dt 3 b
under the restrictions:

E 0 i space,0 i time,0 , i space,0 E r p E i space,E , i time,0 Dt r q Dt i time,Dt
When solving this minimization problem, one observes that the goal indicators i space,0 and i time,0 depend only upon the goal error E 0 and the four parameters a, b,pand q: i space,0 2a=p 2a=p b=q E 0 , i time,0 b=q 2a=p b=q E 0 Owing to the decreasing behaviour of the time indicator in Table 1, we have taken q = 2. Concerning the space, Table 5 gives the space indicator evolution for a growing number of degrees of freedom for the holed plate problem. One can see that the six-node triangles are much more ecient than the three-node triangles. So, we will use only six-node triangles and we take p = 2. With the value q =2, p = 2 and the choice a=2, b=1 the space and time indicators contribute to the goal error in the ratios 4/5, 1/5, respectively.

Minimization problems 2 and 3 give the size modi®cations for the mesh and the time steps. These modi®cations are used to remesh the domain and to de®ne a new time discretization. The time interval is ``remeshed'' on the basis of r Dt .

Finally, the new tolerance y à is chosen so that i ite,0 1 10 mini time,0 ;i space,0

Since i ite is proportional to the tolerance, we take

y à i ite,0 i ite y
If the quotient of the initial error to the goal error is too important (r3), one or several intermediate steps are performed in the adaptive control.

Examples: Tables 6 and7 and Figs. 5±6 summarize two adaptive control examples. In both cases, the goal error is set to 5% and one intermediate step is needed. The initial meshes were optimized in elasticity for an error of 10%. We observe that the mesh gets ®ner in the re-entrant corners and that the time discretization has been re®ned during the loadings and has not been modi®ed during the unloadings. All the meshes were obtained with the ARAIGNEE [START_REF] Cognal | Optimisation et ®abilite des calculs e le ments ®nis en e lastoplasticiteÂ[END_REF] software.

Conclusion

A new a posteriori error estimation, called dissipation error, has been implemented to control timedependent nonlinear ®nite element analysis. The dissipation error, combined with ecient time, space and iteration indicators made it possible to adapt simultaneously the mesh, the time discretization and the stopping criterion of the iterative algorithm. The reliability of the adaptive strategy was shown for two plane stress problems with the plastic Prandtl±Reuss model. 

3 E

 3 To demonstrate this fact, we observe the behaviour of the error when the space or time discretizations are re®ned. Two plane stress problems are considered: the holed plate problem and the frame problem. The geometry and the loading are given in Figs. 1±4. For the two examples, the Prandtl±Reuss plastic model is used with the following dimensionless parameters R 0 1, l 8:16, E 244:95, n 0:and n denote Young's modulus and Poisson's ratio, respectively. The ®nite element results are obtained with the CASTEM2000 code and three-and six-nodes triangular elements are used.
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 12 Fig. 1. The holed plate problem.
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 40 When both the number of elements and time steps become large, the error consists only of the convergence default of the global iterative algorithm. This error, called the iteration error, reads E ite lim h 40,Dt 40
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 1 The discrete problems 5.1.1. The space discrete problem U [0,T ] h denotes the set of ®nite element displacements de®ned on [0,T ] Â O and S [0,T ] h denote the set of stresses de®ned on [0,T ] Â O h where O h is the set of the integration points of the structure. The quantities e p h ,X h ,Y h are also to be found on [0,T ] Â O h . One must ®nd (U h ,s h ,Y h ,e p h ,X h ) satisfying: . the kinematic constraints U h P U 0,T h,ad where U [0,T ] h,ad ={U $ U [0,T ] h such that U=U d on [0,T ] Â @ 1 O};
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 3 Fig. 3. The frame problem.
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 4 Fig. 4. The loading.

  

  

  S h satisfying Eq: 19 at t n1 VU Ã P U h,0

	where	
	S tn1 h,ad	È s P
		4.1.2. Equilibrium equations
		s h,n1 P S tn1 h,ad	18

Table 1

 1 Error and indicators (%) for a growing number of time steps

	The holed plate problem					
	Number of steps	2	4	8	16	32
	E	39.58	12.96	7.93	7.30	7.66
	i space	5.20	5.40	6.04	7.08	7.78
	i time	37.61	8.15	2.05	0.51	0.17
	i ite  10 2	1.09	3.02	3.73	7.11	6.56
	The frame problem					
	Number of steps	3	6	12	24	48
	E	25.75	16.37	13.83	13.76	14.01
	i space	10.90	11.67	12.47	13.29	13.87
	i time	17.68	4.82	0.92	0.24	0.08
	i ite  10 2	0.28	1.39	0.92	1.19	1.73

Table 3

 3 In¯uence of the tolerance on the error and on the indicators for the holed plate problem. ``Number of iterations'' is the total number of iterations of the ®nite element computation

	y	10 0	10 À1	10 À2	10 À3	10 À4	10 À5
	The holed plate problem (coarse discretization)					
	E	25.24	13.89	12.96	12.96	12.96	12.96
	i space	28.89	7.73	5.41	5.40	5.40	5.40
	i time	23.09	9.94	8.22	8.15	8.14	8.14
	i ite /y	27.38	36.21	13.82	30.23	29.71	38.53
	Number of iterations	4	17	31	50	64	78
	The holed plate problem (®ne discretization)					
	E	20.69	6.25	2.71	2.55	2.57	2.57
	i space	20.54	6.50	2.12	1.88	1.89	1.89
	i time	20.09	5.21	1.07	0.60	0.53	0.52
	i ite /y	20.04	55.54	63.51	85.02	115.1	124.2
	Number of iterations	7	18	56	97	137	169

Table 4

 4 In¯uence of the tolerance on the error and on the indicators for the frame problem

	y	10 0	10 À1	10 À2	10 À3	10 À4	10 À5
	The frame problem (coarse discretization)					
	E	26.60	16.42	16.36	16.37	16.37	16.37
	i space	22.74	11.75	11.67	11.67	11.67	11.67
	i time	21.62	5.32	4.87	4.82	4.82	4.82
	ite /y	17.78	5.59	6.48	4.48	5.08	5.17
	Number of iterations	28	72	106	130	154	180
	The frame problem (®ne discretization)					
	E	12.40	6.05	5.37	5.36	5.36	5.36
	i space	12.59	5.13	4.47	4.47	4.47	4.47
	time	10.74	2.39	0.64	0.55	0.55	0.55
	i ite /y	11.09	17.01	8.23	6.20	7.54	8.04
	Number of iterations	40	112	194	262	322	386

Table 5

 5 Space indicator (%) as a function of the number of degrees of freedom for three-and six-node triangles

	Number of degrees of freedom	184	662	2506	9746
	i space (three-node)	32.90	28.05	14.63	5.42
	i space (six-node)	13.38	5.37	1.82	0.62

Table 7

 7 Summary of the adaptive control for the frame problem

		E	i space	i time	i ite	Number of elements	Number of steps	y
	Initially	28.15	14.33	17.90	0.03	194	3	1 Â 10 À2
	Asked	10	8	2	0.20			
	Obtained	12.30	10.03	2.18	0.38	253	7	7.41 Â 10 À2
	Asked	5	4	1	0.10			
	Obtained	5.37	4.48	0.74	0.17	661	11	1.91 Â 10 À2

Table 6

 6 Summary of the adaptive control for the holed plate problem

		E	i space	i time	i ite	Number of elements	Number of steps	y
	Initially	43.91	13.40	37.75	0.09	37	2	1 Â 10 À2
	Asked	10	8	2	0.20			
	Obtained	11.80	9.6	3.1	1.20	69	5	2 Â 12 Â 10 À2
	Asked	5	4	1	0.10			
	Obtained	5.04	4.31	0.62	0.11	172	7	1.72 Â 10 À3