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Abstract

A variational formulation of the coupled thermo-mechanical boundary-value problem for general 
dissipative solids is presented. The coupled thermo-mechanical boundary-value problem under 
consideration consists of the equilibrium problem for a deformable, inelastic and dissipative solid 
with the heat conduction problem appended in addition. The variational formulation allows for 
general dissipative solids, including finite elastic and plastic deformations, non-Newtonian viscosity, 
rate sensitivity, arbitrary flow and hardening rules, as well as heat conduction. We show that a joint 
potential function exists such that both the conservation of energy and the balance of linear 
momentum equations follow as Euler–Lagrange equations. The identification of the joint potential 
requires a careful distinction between equilibrium and external temperatures, which are equal at 
equilibrium. The variational framework predicts the fraction of dissipated energy that is converted to 
heat. A comparison of this prediction and experimental data suggests that a-titanium and Al2024-T 
conform to the variational framework.
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1. Introduction

This paper is concerned with the formulation of variational principles characterizing the

solutions of the coupled thermo-mechanical problem for general dissipative solids, here

understood as the equilibrium problem of an inelastic deformable solid to which the heat

conduction problem is appended in addition. Problems of this nature arise in a variety of

important fields of application, including: metal forming, machining, casting and other

manufacturing processes; high-velocity impact such as ballistic penetration; and others. By

a general dissipative solid we understand a deformable solid, possibly undergoing large

deformations, possessing viscosity, internal processes and capable of conducting heat. By a

variational characterization of the thermo-mechanical problem we specifically mean the

identification of a functional whose stationary points are solutions of the problem. Once

this functional is known, the stable solutions of the problem may be identified with certain

extrema of the functional, should any exist.

Following the pioneering work of Biot (1956, 1958), the variational form of the

coupled thermoelastic and thermoviscoelastic problems has been extensively investigated

(Herrmann, 1963; Ben-Amoz, 1965; Oden and Reddy, 1976; Molinari and Ortiz, 1987;

Batra, 1989). In addition, at present there are well-developed variational principles for the

equilibrium problem of general dissipative solids in the absence of heat conduction (Han et

al., 1997a, b; Ortiz and Stainier, 1999). By contrast, the case of thermo-mechanical

coupling in dissipative materials has received comparatively less attention (cf., Simo and

Miehe, 1992; Armero and Simo, 1992, 1993, for notable exceptions).

When the equilibrium and heat conduction problems for general dissipative solids are

combined, the resulting coupled problem lacks an obvious variational structure. This

lack of variational structure reveals itself upon linearization of the coupled problem,

which results in a non-symmetric operator. This essential difficulty accounts for the

lack of variational formulations of the coupled thermo-mechanical problem for general

dissipative solids. However, in this paper we show that an integrating factor exists

which delivers the sought variational structure. The ability to identify such an integrating

factor hinges critically on a careful distinction between two types of temperature: an

equilibrium temperature, which follows as a state variable; and an external temperature,

which equals the equilibrium temperature at equilibrium. Specifically, we investigate

integrating factors that follow from a temperature-dependent rescaling of time in all rate

processes. We show that, within this class, the integrating factor is unique. Once the

requisite integrating factor is identified, potentials can be determined whose critical points

are the solutions of the coupled thermo-mechanical problem in both its rate and

incremental forms.

The ability to recast the coupled thermo-mechanical problem in variational form has a

number of consequences and some beneficial effects. For instance, the variational

framework opens the way for the application of the tools of calculus of variations to the

analysis of the solutions of the problem. In particular, conditions for the existence and

uniqueness of solutions follow from the direct method of the calculus of variations (cf.,

e.g., Dal Maso, 1993). In addition, localization phenomena such as shear bands can be

effectively studied within the framework of free-discontinuity problems (cf., e.g., Braides,

1998; Ambrosio, 2000). A variational statement of the problem also facilitates the

formulation of numerical approximations, e.g., by means of Galerkin or Rayleigh–Ritz

methods. In addition, in its time-discretized form the variational framework leads to the
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formulation of robust and efficient state-update algorithms in computational thermo-

viscoplasticity (Ortiz and Stainier, 1999).

However, perhaps the most far-reaching consequence of the existence of a vari-

ational framework is that it places constraints on the constitutive behavior of solids. In

particular, if the thermo-mechanical behavior of a solid is variational then the rate of

conversion of dissipated work to heat cannot be specified arbitrarily. Instead, it is predicted

by the theory. Conversely, the predicted rate of heating can be used as a means of

testing if the thermo-mechanical behavior of a solid is variational. We perform this

test for two different materials: a-titanium and Al2024-T3. In particular, we calculate

temperature histories under the conditions of the Kolsky (split-Hopkinson) pressure bar

experiment and compare the predictions with the measurements of Hodowany et al.

(2000). In both cases the comparison is excellent, which suggests that the thermo-

mechanical behavior of a-titanium and Al2024-T3 does indeed conform to the variational

framework.

2. General framework

We shall be concerned with the motions and thermodynamic processes undergone by a

continuous body of reference configuration B � R
3. The motions of the body are described

by a time-dependent deformation mapping u : B� ½a; b� ! R
3, where ½a; b� is the time

interval elapsed during the motion. The motions of the body obey conservation of mass

d

dt

Z

U

RdV ¼ 0, (2.1)

conservation of linear momentum

d

dt

Z

U

RV dV ¼

Z

U

RB dV þ

Z

qU

PN dS, (2.2)

conservation of angular momentum

d

dt

Z

U

u� ðRVÞdV ¼

Z

U

u� ðRBÞdV þ

Z

qU

u� ðPNÞdS, (2.3)

the first law of thermodynamics

d

dt

Z

U

RE dV þ
d

dt

Z

U

1

2
RjVj2 dV

¼

Z

U

RB � V dV þ

Z

qU

ðPNÞ � V dS þ

Z

U

RQdV �

Z

qU

H �N dS, ð2:4Þ

and the second law of thermodynamics

d

dt

Z

U

N dV �

Z

U

RQ

T
dV þ

Z

qU

H �N

T
dSX0, (2.5)

where U � B is an arbitrary subbody; R is the mass density per unit undeformed volume;

V ¼ _u is the material velocity; B is the body force density per unit mass; N is the unit

outward normal; P is the first Piola–Kirchhoff stress tensor; E is the internal energy per

unit undeformed volume; N is the entropy per unit undeformed volume; T is the absolute

temperature; Q is the distributed heat source per unit mass; andH is the outward heat flux.
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Alternatively, these conservation laws can be expressed in local form as

_R ¼ 0, (2.6a)

R _V ¼ DivP þ RB, (2.6b)

PF
T ¼ FP

T, (2.6c)

_E ¼ P � _F þ RQ�DivH , (2.6d)

_G � _N �
RQ

T
þDiv

H

T
X0, (2.6e)

where F ¼ Gradu is the deformation gradient and _G is the internal entropy production

rate per unit undeformed volume.

In addition, we suppose that the local thermodynamic state of an infinitesimal material

neighborhood is defined by: the local deformation gradient F 2 GLþð3;RÞ � the Lie group

of invertible and orientation-preserving linear transformations in R3; the local entropy

density per unit undeformed volume N 2 R; and a collection Z 2 M of additional or

internal variables. The set M in which Z takes values varies depending on the material class

and cannot be specified universally for all solids. Depending on the nature of the internal

variables,Mmay be: a vector space; a manifold, e.g., if the internal processes are subject to

holonomic constraints; or a Lie group, e.g., if the internal variables are naturally composed

by multiplication. In addition, the attainable internal variable rates may be subject to non-

holonomic constraints of the type

LðZÞ _Z ¼ 0. (2.7)

We shall assume that the internal energy density and the absolute temperature are

functions of the local state, i.e.,

E ¼ EðF;N;ZÞ, (2.8a)

T ¼ TðF;N;ZÞ. (2.8b)

The equilibrium stresses and the thermodynamic driving forces conjugate to the internal

variables are, by definition,

P
e � qFEðF;N ;ZÞ, (2.9a)

Y � �qZEðF;N ;ZÞ. (2.9b)

The viscous or non-equilibrium stress is then

P
v � P � P

e. (2.10)

A theorem of Coleman and Noll (1963) then shows that (2.8b) is necessarily of the form

T ¼ qNEðF;N;ZÞ, (2.11)

and that all processes must comply with the dissipation inequality

T _G ¼ Y � _Z þ P
v � _F �

1

T
H �GradTX0. (2.12)
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Expanding _E in (2.6d) and using the equilibrium relations (2.9a), (2.9b), (2.11) and (2.10)

the energy equation takes the entropy form

T _N ¼ P
v � _F þ Y � _Z �DivH þ RQ. (2.13)

Alternatively, we may introduce the Helmholtz free energy by applying the Legendre

transformation

AðF;T ;ZÞ ¼ inf
N
fEðF;N ;ZÞ � TNg, (2.14)

in terms of which the equilibrium relations take the form

N ¼ �
qA

qT
ðF;T ;ZÞ, (2.15a)

P
e ¼

qA

qF
ðF;T ;ZÞ, (2.15b)

Y ¼ �
qA

qZ
ðF;T ;ZÞ. (2.15c)

Example 2.1 (State functions for thermoelastic–viscoplastic materials). A theory of

thermoelastic-viscoplastic materials may be based on a multiplicative decomposition of

the deformation gradient F of the form (Lee, 1969)

F ¼ F
e
F
p, (2.16)

into an elastic part Fe and a plastic part Fp. For metals, the elasticity and the specific heat

of the material may be assumed to be ostensibly independent of the internal processes. This

leads to a free energy of the form (Ortiz and Stainier, 1999):

AðFe;T ;Fp;ZÞ ¼ W eðFe;TÞ þW pðT ;Fp;ZÞ þ RCvT 1� log
T

T0

� �

, (2.17)

where W e is the elastic strain-energy density, Wp is the stored energy of cold work, Z is a

collection of hardening variables depending on the material type (Lubliner, 1972), Cv is the

specific heat per unit mass at constant volume and T0 is a reference temperature. In this

setting, the complete set of internal variables is fFp;Zg. The plastic deformation F
p must

define an invertible orientation-preserving local deformation, and hence the natural

domain of Fp is the multiplicative Lie group GLþð3;RÞ. By material-frame indifference, it

follows that W e can only depend on F
e through the elastic right-Cauchy Green

deformation tensor:

C
e ¼ F

eT
F
e ¼ F

p�T
CF

p�1, (2.18)

whereupon (2.17) simplifies to

AðF;T ;Fp;ZÞ ¼ W eðCe;TÞ þW pðT ;Fp;ZÞ þ RCvT 1� log
T

T0

� �

. (2.19)

5



Example 2.2 (Flow rules). An example of internal variable set arises in single-crystal

plasticity, where Z ¼ fg1; :::; gNg, ga is the slip strain on slip system a, and the rules of

crystallographic slip require that (Ortiz and Stainier, 1999; Rice, 1971)

_F
p
F
p�1 �

X

N

a¼1

_gasa �ma ¼ 0, (2.20)

where ðsa;maÞ are orthogonal unit vectors characteristic of the crystal class. Evidently, the

flow rule (2.20) is of the general form (2.7). Another familiar example is provided by

isotropic J2-flow theory of plasticity (Ortiz and Stainier, 1999). In this case, Z ¼ fepg,

where ep is the effective plastic strain, and the Prandtl–Reuss flow rule of plastic

deformation requires

trð _F
p
F
p�1Þ ¼ 0, (2.21a)

k _F
p
F
p�1k2 � 3

2
j_epj2 ¼ 0, (2.21b)

which are also of the general form (2.7). &

In order to obtain a closed set of governing equations defining well-posed initial

boundary-value problems the equilibrium relations summarized above need to be

supplemented with appropriate kinetic relations enabling the determination of P
v, _Z

and H . We begin by considering a few special cases by way of example.

Example 2.3 (Rate-sensitivity). Consider a thermoelastic-plastic material such as de-

scribed in example 2.1. Suppose that a kinetic potential cðYÞ exists such that

_Z ¼ qYcðYÞ. (2.22)

Introduce the dual potential

c�ð _ZÞ ¼ sup
Y

fY � _Z � cðYÞg (2.23)

with the property that

Y ¼ q _Z
c�ð _ZÞ: & (2.24)

Example 2.4 (Newtonian viscosity). A continuum is said to possess Newtonian viscosity if

the viscous part of the Cauchy stress tensor obeys the relation

rv ¼ z trðdÞI þ 2Zd, (2.25)

where

d ¼ symð _FF�1Þ (2.26)

is the rate of deformation tensor, and z and Z are viscosity parameters. The corresponding

viscous part of the first Piola–Kirchhoff stress tensor is

P
v ¼ JrvF�T, (2.27)

where J ¼ detðFÞ is the Jacobian determinant of deformation gradient F. A simple

calculation shows that the Newtonian viscosity law possesses the potential structure

P
v ¼ q _F

f�ð _FF�1Þ, (2.28)
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 where the viscous potential per unit undeformed volume is

f� ¼ J
z

2
trðdÞ2 þ Zd � d

� �

: & (2.29)

Example 2.5 (Heat conduction). Assume that a Fourier potential wðGÞ (also known as

Biot’s dissipation function (Biot, 1958)) exists such that

H ¼ qGwðGÞ, (2.30)

where

G ¼ �
1

T
GradT : & (2.31)

A general kinetic potential is a function Dð _F; _Z ;G ;F;N;ZÞ such that

P
v ¼ q _F

Dð _F; _Z;G ;F;N;ZÞ, (2.32a)

Y ¼ q _Z
Dð _F; _Z;G ;F;N;ZÞ, (2.32b)

�H ¼ qGDð _F; _Z ;G ;F;N;ZÞ, (2.32c)

i.e., a function that acts as joint potential for the viscosity law, rate-sensitivity and the heat

conduction law. For instance, for a material having uncoupled rate sensitivity, viscosity and

heat conduction,

D ¼ c� þ f� � w, (2.33)

where c�, f� and w are the kinetic potential, viscous potential and Fourier potential,

respectively, defined in the foregoing. Note that it is possible to define a dual general

kinetic potential by way of a Legendre transform

D�ð _F; _Z;H ;F;N;ZÞ ¼ sup
G

½Dð _F; _Z;G ;F;N;ZÞ þH � G � (2.34)

such that

G ¼ qHD
�ð _F; _Z;H ;F;N;ZÞ. (2.35)

Convexity of D� then ensures verification of inequality (2.12) (positive dissipation).

Specific examples of the thermodynamic and kinetic potentials introduced in the

foregoing are presented in Section 5.2.

3. Variational principles for the rate problem

We now seek to find a variational characterization of the rate problem, i.e., the problem

of finding the rate of change of the state of a body given its current state and appropriate

forcing and boundary conditions. Specifically, we wish to identify a functional whose

critical or stationary points are the solutions of the rate problem.

3.1. Thermoelastic materials

To set the stage for the treatment of the general dissipative solid, we begin by

considering the simpler case of a conducting thermoelastic solid. In this case, the internal
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energy density is of the form

E ¼ EðF;NÞ. (3.1)

We shall find it convenient to carefully differentiate between the equilibrium temperature

corresponding to the state ðF;NÞ, given by the equilibrium relation

Y ¼ qNEðF;NÞ, (3.2)

and an external temperature field T. At equilibrium these two temperatures are equal

everywhere, but this condition is not imposed a priori. It should be carefully noted that the

notion of equilibrium invoked in differentiating between Y and T pertains to local

thermodynamic equilibrium at material points and does not preclude the consideration of

transient phenomena at the level of the entire body.

We wish to characterize variationally the solutions of the thermoelastic rate problem:

T _N ¼ �DivH þ RQ in B, (3.3a)

H �N ¼ H̄ on qNB, (3.3b)

T ¼ T̄ on qBnqNB, (3.3c)

T ¼ Y in B. (3.3d)

Here, H̄ is the prescribed outward heat flux over the Neumann boundary qNB; and T̄ is the

prescribed temperature over the Dirichlet boundary qBnqNB. The current state ðF;NÞ of

the solid is assumed given and the objective is to determine the unknown fields ðT ; _NÞ. The

weak form of (3.3a)–(3.3d) is

b½T ; _N�ðZ; nÞ �

Z

B

H �Grad
Z

T
dV þ

Z

B

RQ
Z

T
dV �

Z

qNB

H̄
Z

T
dS

þ

Z

B

½ðY� TÞn� _NZ�dV , ð3:4Þ

Z and n are admissible variations of T and _N, respectively, i.e., variations such that

Z ¼ 0 on qBnqTB. (3.5)

Suppose in addition that there exists a Fourier potential wðG ;F;NÞ such that Fourier’s law

of heat conduction is of the form (2.30). Then, the weak form (3.4) becomes

b½T ; _N�ðZ; nÞ �

Z

B

qGw �Grad
Z

T
dV þ

Z

B

RQ
Z

T
dV �

Z

qNB

H̄
Z

T
dS

þ

Z

B

½ðY� TÞn� _NZ�dV , ð3:6Þ

and, assuming sufficient differentiability, the second variation evaluates to

a½T ; _N�ðZ; n; x;mÞ � Dðb½T ; _N�ðZ; nÞÞðx;mÞ

¼ �

Z

B

qGGw �Grad
Z

T
�Grad

x

T
þ qGw �Grad

xZ

T2

� �

dV

�

Z

B

RQ
xZ

T2
dV þ

Z

qNB

H̄
xZ

T2
dS �

Z

B

ðxnþ ZmÞdV , ð3:7Þ
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which, evidently, is symmetric in ðx;mÞ and ðZ; nÞ. From this symmetry it follows that the

weak form b is the first variation of the potential (cf., e.g., Marsden and Hughes, 1983)

F½T ; _N� ¼ F0 þ

Z 1

0

b½TðlÞ; _NðlÞ�
dT

dl
;
d _N

dl

� �

dl, (3.8)

where ðTðlÞ; _NðlÞÞ is a path joining a referential state ðT0; _N0Þ to ðT ; _NÞ and F0 ¼

F½T0; _N0� is referential datum. Therefore, it follows that the weak statement

b½T ; _N�ðZ; nÞ ¼ 0, (3.9)

of the rate problem is equivalent to the stationarity principle

dF ¼ 0, (3.10)

i.e., ðT ; _NÞ is a solution of the rate problem if and only if it is a critical point of F. The

evaluation of formula (3.8) is straightforward and yields, explicitly,

F½T ; _N� ¼

Z

B

ðY� TÞ _N � w �
1

T
GradT ;F;N

� �� �

dV

þ

Z

B

RQ log
T

T0

dV �

Z

qNB

H̄ log
T

T0

dS, ð3:11Þ

where we have set _N0 ¼ 0 and F0 ¼ 0 without loss of generality. The stationarity principle

(3.10) may be readily verified as follows. Taking variations with respect to admissible fields

yields
Z

B

� _NZþH �Grad
Z

T

� �

dV þ

Z

B

RQ
Z

T
dV �

Z

qNB

H̄
Z

T
dS ¼ 0, (3.12a)

Z

B

ðY� TÞndV ¼ 0. (3.12b)

Eq. (3.12b) requires that Y ¼ T at equilibrium. Integrating by parts Eq. (3.12a) yields

Z

B

� _N �
DivH

T
þ

RQ

T

� �

ZdV þ

Z

qNB

ðH �N � H̄Þ
Z

T
dS ¼ 0, (3.13)

which gives the heat equation in entropy form and the Neumann boundary conditions, as

required.

Suppose now, by way of guiding example, that qNB ¼ ;, Q is square-integrable over B,

wðG ;F;NÞ is quadratic and strictly convex in G . Then, for every square-integrable _N the

functional F½T ; _N� attains a unique maximum and has no other extrema (cf., e.g., Dal

Maso, 1993). In addition, the reduced functional

F½ _N� ¼ sup
T

F½T ; _N� (3.14)

is convex. The remaining problem of determining the field _N may thus be expressed as the

minimization problem

inf
_N

F½ _N�. (3.15)

9



Alternatively, both variational problems may be collected jointly as

inf
_N

sup
T

F½T ; _N�. (3.16)

It should be noted that, owing to the dependence of F½T ; _N� on gradients of T, the reduced

functional F½ _N� is strongly nonlocal. For the example under consideration, (3.15) or (3.16)

may alternatively be used instead of the stationarity condition (3.10). For general materials

we may still postulate the saddle-point (3.16) as the variational statement of the rate

problem, in the expectation that, among all critical points of F½T ; _N�, its saddle points

define the stable solutions of the problem.

The properties of the solutions of (3.15) and (3.16) follow from standard theory (cf., e.g.,

Dal Maso, 1993) and may be summarized as follows. For definiteness, assume that B is

open and bounded, qNB ¼ ;, corresponding to Dirichlet boundary conditions, and

rephrase the problem in terms of the field u ¼ logðT=T0Þ, which takes values over the

entire real line R. If w is convex in ru and grows as a power jrujp, 1opoþ1, then F½�; _N�

attains its supremum F½ _N� in the Sobolev space W 1;pðBÞ. If, in addition, w is strictly convex

in ru then the temperature field is determined uniquely. If w is continuous but not convex

in ru and grows as a power jrujp, then the supremum of F½�; _N� is attained by its

relaxation. The relaxation of F½�; _N� is obtained simply by replacing wðru;F;NÞ by its

convex envelope w��ðru;F;NÞ, the largest convex function majorized by wðru;F;NÞ. The

reduced potential F½ _N� is the supremum of a collection of linear functionals and, therefore,

is convex, lower semi-continuous and coercive in W 1;qðBÞ, with 1=pþ 1=q ¼ 1. Hence,

F½ _N� has a minimum point in W 1;qðBÞ.

An alternative avenue for arriving at the preceding variational problems is as follows.

Begin by introducing the functional of temperature

C½Y� ¼ �

Z

B

wðG;F;NÞdV þ

Z

B

RQ log
Y

T0

dV �

Z

qNB

H̄ log
Y

T0

dS, (3.17)

where we set G ¼ �Y�1GradY. Define its subdifferential, or functional derivative, qC½Y�

with respect to Y through the identity

hqC½Y�; Zi ¼ DC½Y�ðZÞ, (3.18)

where DC½Y�ðZÞ is the Frechet derivative of C (Rudin, 1973) and we assume

differentiability as required. A straightforward calculation gives, explicitly,

qC½Y� ¼
RQ

Y
�

DivH

Y
. (3.19)

The energy equation can now be expressed in the equation-of-evolution form (cf., e.g.,

Barbu, 1976)

_N ¼ qC½Y�. (3.20)

Let

C�½ _N� ¼ sup
T

C½T � �

Z

B

T _N dV

� �

(3.21)
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be the dual functional (Ekelan and Temam, 1976). Then, (3.20) is equivalent to the

minimum problem

inf
_N

C�½ _N� þ

Z

B

Y _N dV

� �

. (3.22)

Combining (3.21) and (3.22) we arrive at the variational problem

inf
_N

sup
T

Z

B

ðY� TÞ _N dV þC½T �

� �

. (3.23)

But

F½T ; _N� ¼

Z

B

ðY� TÞ _N dV þC½T � (3.24)

and, consequently, (3.23) is equivalent to (3.16).

Conceptually, the most succinct and direct variational characterization of the rate

problem is furnished by the minimum principle (3.15), which characterizes the entropy rate

field _N as the minimizer of the single-field functional F½ _N�. In practice this characterization

has the drawback that, as noted earlier, the functional F½ _N� is strongly nonlocal and

involves long-range interactions. By contrast, the advantage of the two-field variational

principle (3.16) is that the functional F½T ; _N� is local.

3.2. Extension to general materials

We now proceed to extend the preceding variational framework to general materials. To

this end, we consider materials characterized by internal energy density (2.8a), equilibrium

relations (2.9a), (2.11) and (2.9b); and potential kinetic relations (2.32a)–(2.32c). As in the

preceding example, we shall find it necessary to carefully differentiate between the

equilibrium temperature corresponding to the state ðF;N;ZÞ, given by the equilibrium

relation

Y ¼ qNEðF;N;ZÞ, (3.25)

and an external temperature field T. At equilibrium these two temperatures are equal

everywhere, but this condition is not imposed a priori. We wish to characterize

variationally the solutions of the general rate problem:

Div ðPe þ q _F
DÞ þ RB ¼ 0 in B, (3.26a)

ðPe þ q _F
DÞ �N ¼ T̄ on qTB, (3.26b)

_u ¼ _̄u on qBnqTB, (3.26c)

T _N ¼ P
v � _F þ Y � _Z �DivH þ RQ in B, (3.26d)

�qGD �N ¼ H̄ on qNB, (3.26e)

T ¼ T̄ on qBnqTN, (3.26f)
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T ¼ Y in B, (3.26g)

Y ¼ q _Z
D in B. (3.26h)

Here, qTB and qNB denote the traction and Neumann boundaries where the tractions and

heat flux are prescribed, respectively; T̄ are the applied tractions over the traction

boundary; _̄u are the prescribed velocities over the displacement boundary; H̄ is the

prescribed outward heat flux over the Neumann boundary; T̄ is the prescribed temperature

over the Dirichlet boundary; and we set G ¼ �T�1 GradT in the computation of the

kinetic potential D. In the general rate problem just stated the current local state ðF;N;ZÞ

is given and the objective is to determine the unknown rates ð _F; _N; _ZÞ. It should be

carefully noted that Pe, Y and Y are functions of state and, since the local state is fixed,

they appear in the general rate problem as known fields. In order to simplify the notation,

throughout this section we shall omit all dependencies of the response functions on the

fixed state ðF;N;ZÞ.

The general rate (3.26a)–(3.26h) does not have an obvious variational structure. A naive

weak statement of Eqs. (3.26a)–(3.26h), e.g., obtained by multiplying each of the field

equations by admissible variations of the fields, leads to a weak form that does not derive

from a potential. Thus, the ability to formulate the general rate problem in variational

form hinges on the identification of an integration factor that delivers the requisite

symmetry of the Dirichlet form. We shall specifically consider integrating factors obtained

by a time rescaling of the kinetic equations. We accomplish this rescaling by computing the

kinetic potential as

D ¼ Dðf ðT ;YÞ _F; f ðT ;YÞ _Z;GÞ (3.27)

which corresponds to resetting the time scale according to the mapping dt ! dt=f ðT ;YÞ

in all rate processes. The function f ðT ;YÞ is required to satisfy the identity

f ðT ;TÞ ¼ 1. (3.28)

This normalization condition ensures that the physical time scale is recovered at

equilibrium. The rescaled weak form is

b½ _u;T ; _N; _Z�ðv; Z; n; bÞ

¼

Z

B

½ðPe þ f q _F
DÞ �Grad vdV �

Z

B

RB � vdV �

Z

qTB

T̄ � vdS

þ

Z

B

�Z _N þ ðf q _F
D � _F þ f q _Z

D � _ZÞ
Z

T
� qGD �Grad

Z

T

h i

dV

þ

Z

B

RQ
Z

T
dV �

Z

qNB

H̄
Z

T
dS

þ

Z

B

ðY� TÞndV �

Z

B

ðY � f q _Z
DÞ � bdV , ð3:29Þ

which can be expressed as the sum

b ¼ bI þ bII , (3.30)
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where

bI ½ _u;T ; _N; _Z�ðv; Z; n; bÞ

¼

Z

B

½ðPe þ f q _F
DÞ �Grad vdV �

Z

B

RB � vdV �

Z

qTB

T̄ � vdS

þ

Z

B

�Z _N þ ðq _F
D � _F þ q _Z

D � _ZÞqT f Z� qGD �Grad
Z

T

h i

dV

þ

Z

B

RQ
Z

T
dV �

Z

qNB

H̄
Z

T
dS

þ

Z

B

ðY� TÞndV �

Z

B

ðY � f q _Z
DÞ � bdV , ð3:31Þ

and

bII ½ _u;T ; _N; _Z�ðv; Z; n;bÞ ¼

Z

B

ðq _F
D � _F þ q _Z

D � _ZÞ
f

T
� qT f

� �

Z. (3.32)

A lengthy but straightforward calculation shows that the linearization of bI is symmetric.

Hence, the Dirichlet form corresponding to b is itself symmetric if and only if

qT f ¼
f

T
. (3.33)

The general solution of this equation is

f ¼ CðYÞT . (3.34)

In addition, the normalization condition (3.28) requires that CðYÞ ¼ Y�1, whereupon the

integrating factor is identified uniquely as

f ¼
T

Y
. (3.35)

The corresponding potential now follows from the formula

F½ _u;T ; _N; _Z� ¼ F0 þ

Z 1

0

b½ _uðlÞ;TðlÞ; _NðlÞ; _ZðlÞ�
d _u

dl
;
dT

dl
;
d _N

dl
;
d _Z

dl

� �

dl, (3.36)

where ð _uðlÞ;TðlÞ; _NðlÞ; _ZðlÞÞ is a path joining a referential state ð _u0;T0; _N0; _Z0Þ to

ð _u;T ; _N ; _ZÞ and F0 ¼ F½ _u0;T0; _N0; _Z0� is the referential datum. Eq. (3.36) can be

evaluated simply, with the result

F½ _u;T ; _N; _Z� ¼

Z

B

_E � T _N þ D
T

Y
_F ;
T

Y
_Z;�

1

T
GradT

� �� �

dV

�

Z

B

RB � _udV �

Z

qTB

T̄ � _udS

þ

Z

B

RQ log
T

T0

dV �

Z

qNB

H̄ log
T

T0

dS. ð3:37Þ

It, therefore, follows that the weak statement

b½ _u;T ; _N; _Z�ðv; Z; n;bÞ ¼ 0 (3.38)

of the general rate problem is equivalent to the stationarity principle

dF ¼ 0, (3.39)
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i.e., assuming sufficient differentiability, ð _u;T ; _N; _ZÞ is a solution of the general rate

problem if and only if it is a critical point of F. As in the case of the thermoelastic solid, the

stationarity principle (3.39) may be readily verified by taking variations of the potential

(3.37) directly. This leads to the weak statement bI ¼ 0, with bI as in (3.31), which,

evidently, is equivalent to (3.26a)–(3.26h). In particular, the stationarity principle requires

T ¼ Y at equilibrium.

As in the thermoelastic rate problem, we may wish to restrict attention to the problem of

determining the extrema of F in the expectation that they correspond to the stable states of

the solid. Under this postulate of stability, the thermoelastic variational principle (3.16)

generalizes to

inf
_u; _Z ; _N

sup
T

F½ _u;T ; _N; _Z�. (3.40)

As in the thermoelastic rate problem, we may also define the reduced—albeit nonlocal—

potential

F½ _u; _N ; _Z� ¼ sup
T

F½ _u;T ; _N ; _Z�, (3.41)

whereupon (3.40) reduces to the minimum problem

inf
_u; _Z ; _N

F½ _u; _N; _Z�. (3.42)

As for the thermoelastic rate problem, conditions guaranteeing existence and uniqueness of

the rate fields are supplied by standard theory (cf., e.g., Dal Maso, 1993).

4. Variational principles for the incremental problem

In this section, we proceed to establish a time-discretized version of the variational

problems formulated in the foregoing. Time-discretization is of interest in analysis and in

computation. Thus, in analysis, time-discretization is used to reduce time-dependent

problems to a sequence of incremental problems each characterized by a minimum

principle. For instance, time-discretization has been employed to formulate incremental

minimum principles for plasticity that establish a connection between non-attainment and

the formation of microstructures (Ortiz and Repetto, 1999; Ortiz et al., 2000; Carstensen et

al., 2002; Aubry and Ortiz, 2003). In addition, time-discretization is a key step in the

numerical implementation of constitutive equations, e.g., within a finite-element frame-

work. From this latter perspective, the aim of variational updates is to formulate time-

discretizations of the constitutive relations that lead to an incremental problem having a

variational structure. The variational updates for general dissipative solids presented in

this section generalize the isothermal variational updates of Ortiz and Stainier (1999).

4.1. Minimizing paths

Formally, the time-discretized incremental variational problem can be derived by

recourse to minimizing paths, in the vein of deformation theories of plasticity (cf. Martin

and Ponter, 1966; Maier, 1969; Soechting and Lance, 1969; Carter and Martin, 1976, for

the traditional view on deformation theories; cf. Ortiz and Martin, 1989; Ortiz and

Repetto, 1999 for more recent accounts on minimizing paths). Here we envision a sequence
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of times t0; . . . ; tn; tnþ1; . . ., and seek to characterize the state ðu;T ;N;ZÞ of the solid at

those times. In particular, assume that the state ðun;Tn;Nn;ZnÞ is known. Then, we wish to

consistently approximate the state ðunþ1;Tnþ1;Nnþ1;Znþ1Þ at time tnþ1 as the solution of

an extremum problem. By a consistent approximation we mean that the limits of the

divided differences ½ðunþ1 � unÞ=Dt; ðTnþ1 � TnÞ=Dt; ðNnþ1 �NnÞ=Dt; ðZnþ1 � ZnÞ=DtÞ as

Dt ¼ tnþ1 � tn tends to zero satisfy the rate field equations.

To this end, introduce the incremental functional

Fn½unþ1;Tnþ1;Nnþ1;Znþ1� ¼ inf
paths

Z tnþ1

tn

F½ _u;T ; _N; _Z�dt, (4.1)

where the subscript n signifies that Fn½unþ1;Tnþ1;Nnþ1;Znþ1� depends parametrically on

the initial state ðun;Tn;Nn;ZnÞ at time tn, and the minimum is taken over all admissible

paths joining ðun;Tn;Nn;ZnÞ at time tn to ðunþ1;Tnþ1;Nnþ1;Znþ1Þ at time tnþ1. The

fundamental properties of the incremental potential Fn may be ascertained as follows.

Begin by collecting all forcing terms within the functional

Gð _u;TÞ � �

Z

B

RB � _udV �

Z

qTB

T̄ � _udS þ

Z

B

RQ log
T

T0

dV �

Z

qNB

H̄ log
T

T0

dS

(4.2)

for economy of notation. Then (4.1) can be written as

Fn½unþ1;Tnþ1;Nnþ1;Znþ1� ¼ inf
paths

Z tnþ1

tn

Z

B

ð _E � T _N þ DÞdV þ Gð _u;TÞ

� �

dt, (4.3)

where D is evaluated as in (3.37). Integration of the perfect differential _E gives

Fn½unþ1;Tnþ1;Nnþ1;Znþ1�

¼

Z

B

ðEnþ1 � EnÞdV þ inf
paths

Z tnþ1

tn

Z

B

ð�T _N þ DÞdV þ Gð _u;TÞ

� �

dt. ð4:4Þ

Taking variations with respect to T and enforcing stationarity gives

_N ¼
1

Y
q _F

D � _F þ
1

Y
q _Z

D � _Z �
1

T
DivH þ

1

T
RQ in B, (4.5a)

�qGD �N ¼ H̄ on qNB (4.5b)

in the interval t 2 ½tn; tnþ1�, which shows that the minimizing temperature path satisfies the

heat equation in entropy form. Taking variations with respect to the remaining variables in

turn and enforcing stationarity gives

Z

B

P
e
nþ1 � dFnþ1 dV þ

Z tnþ1

tn

Z

B

T

Y
q _F

D � d _F þ qFD � dF

� �

dV dt

þ

Z tnþ1

tn

Z

B

RB � d _udV þ

Z

qTB

T̄ � d _udS

� �

dt ¼ 0, ð4:6aÞ

Z

B

Ynþ1 � dNnþ1 dV þ

Z tnþ1

tn

Z

B

ð�Td _N þ qNDdNÞdV dt ¼ 0, (4.6b)
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�

Z

B

Ynþ1 � dZnþ1 dV þ

Z tnþ1

tn

Z

B

T

Y
q _Z

D � d _Z þ qZD � dZ

� �

dV dt ¼ 0. (4.6c)

Integration by parts with respect to time and localization of the result finally gives

Div �
d

dt

T

Y
q _F

D

� �

þ qFD

� �

þ R _B ¼ 0 in B, (4.7a)

�
d

dt

T

Y
q _F

D

� �

þ qFD

� �

�N ¼ _̄
T in qTB, (4.7b)

_T þ qND ¼ 0 in B, (4.7c)

�
d

dt

T

Y
q _Z

D

� �

þ qZD ¼ 0 in B (4.7d)

in the interval t 2 ½tn; tnþ1�, and

Div P
e
nþ1 þ

Tnþ1

Ynþ1

q _Fnþ1
Dnþ1

� �

þ RBnþ1 ¼ 0 in B, (4.8a)

P
e
nþ1 þ

Tnþ1

Ynþ1

q _Fnþ1
Dnþ1

� �

�N ¼ T̄nþ1 on qTB, (4.8b)

Ynþ1 � Tnþ1 ¼ 0 in B, (4.8c)

Ynþ1 ¼
Tnþ1

Ynþ1

q _Znþ1
Dnþ1 in B (4.8d)

at time tnþ1. Eqs. (4.7a)–(4.7d), in conjunction with (4.5a) and (4.5b), determine the

minimizing paths. The remaining Eqs. (4.8a)–(4.8d) are then the Euler–Lagrange equations

of the functional Fn. Evidently, these Euler–Lagrange equations are the rate field

equations of the general dissipative material at time tnþ1. Thus, we have shown that the

critical points of Fn satisfy the rate field equations at time tnþ1 with rates computed from

the corresponding minimizing paths.

An additional requirement of stability leads to the incremental extremum problem

inf
unþ1;Nnþ1;Znþ1

sup
Tnþ1

Fn½unþ1;Tnþ1;Nnþ1;Znþ1�, (4.9)

whereby the stable states at time tnþ1 are identified with the extrema of Fn. In particular,

minimization with respect to the internal state Znþ1 yields a reduced potential

Fn½unþ1;Tnþ1;Nnþ1�, and the subsequent extremum problem is indistinguishable from

that of a conducting thermoelastic material. However, it should be carefully noted that the

incremental functional Fn reflects both the energetics as well as the kinetics of the material.

A manifestation of the kinetic character of Fn is its parametric dependence on the initial

conditions at time tn. Alternatively, we may regard the incremental functional Fn as

changing between time steps. This incremental nature of Fn allows for irreversible

behavior, path dependency and hysteresis, as required.
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4.2. A difference scheme

Despite the conceptual appeal of minimizing paths, their explicit determination can only

be effected in simple cases (Ortiz and Martin, 1989). In calculations, it suffices to identify

any convenient incremental potential Fn which is consistent with the field equations. An

example of a family of consistent incremental potentials is furnished by

Fn½unþ1;Tnþ1;Nnþ1;Znþ1�

¼

Z

B

½ðEnþ1 � EnÞ � Tnþ1ðNnþ1 �NnÞ þ DtDnþ1�dV

�

Z

B

RBnþ1 � ðunþ1 � unÞdV �

Z

qTB

T̄nþ1 � ðunþ1 � unÞdS

þ

Z

B

DtRQnþ1 log
Tnþ1

Tn

dV �

Z

qTB

DtH̄nþ1 log
Tnþ1

Tn

dS, ð4:10Þ

where we write

Dnþ1 ¼ D
Tnþ1

Tn

_Fnþ1;
Tnþ1

Tn

_Znþ1;Gnþ1;Fnþ1;Nnþ1;Znþ1

� �

(4.11)

and

_Fnþ1 ¼
Fnþ1 � Fn

Dt
, (4.12a)

_Znþ1 ¼
Znþ1 � Zn

Dt
, (4.12b)

Gnþ1 ¼ �Grad log
Tnþ1

Tn

. (4.12c)

The incremental functional (4.10) may be regarded as a backward-Euler approximation of

(4.3). Other approximations, e.g., based on the trapezoidal or midpoint rules of

integration, may be formulated likewise, but these enhancements will not be pursued here.

The consistency of the scheme can be verified as follows. Taking variations and

enforcing stationarity yields

Div P
e
nþ1 þ

Tnþ1

Tn

q _Fnþ1
Dnþ1

� �

þ RBnþ1 ¼ OðDtÞ in B, (4.13a)

P
e
nþ1 þ

Tnþ1

Tn

q _Fnþ1
Dnþ1

� �

�N � T̄nþ1 ¼ OðDtÞ on qTB, (4.13b)

Nnþ1 �Nn

Dt
¼

1

Tn

q _Fnþ1
D � _Fnþ1 þ

1

Tn

q _Znþ1
D � _Znþ1

�
1

Tnþ1

Div qGnþ1
Dþ

1

Tnþ1

RQnþ1 in B, ð4:13cÞ

�qGnþ1
Dnþ1 �N ¼ H̄nþ1 on qNB, (4.13d)

Ynþ1 � Tnþ1 ¼ OðDtÞ in B, (4.13e)
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�Ynþ1 þ
Tnþ1

Tn

q _Znþ1
Dnþ1 ¼ OðDtÞ in B. (4.13f)

Evidently, all rate field equations at tn are recovered as Dt ! 0, which proves the

consistency of the scheme. The incremental problem defined by potential (4.10) is now

formally identical to (4.9). The corresponding Euler–Lagrange equations may now be

regarded as time discretizations of the rate field equations.

4.3. Variational updates

It bears emphasis that the dependence of the rate functional F on _Z and _N, or of the

incremental functional Fn on Znþ1 and Nnþ1, does not involve their gradients. Therefore,

the minimization with respect to _N and _Z in the rate problem, and with respect to Nnþ1

and Znþ1 in the incremental problem, may be effected pointwise. This is in contrast to the

dependence of the rate functional F on _u and T, or of the incremental functional Fn on

unþ1 and Tnþ1, which involves their gradients. Thus, it follows that the reduced

incremental functional

Fn½unþ1;Tnþ1� ¼ inf
Nnþ1;Znþ1

Fn½unþ1;Tnþ1;Nnþ1;Znþ1� (4.14)

is of the form

Fn½unþ1;Tnþ1� ¼

Z

B

fnðFnþ1;Tnþ1;Gnþ1ÞdV

�

Z

B

RBnþ1 � ðunþ1 � unÞdV �

Z

qNB

T̄nþ1 � ðunþ1 � unÞdS

þ

Z

B

DtRQnþ1 log
Tnþ1

Tn

dV �

Z

qTB

DtH̄nþ1 log
Tnþ1

Tn

dS, ð4:15Þ

where

fnðFnþ1;Tnþ1;Gnþ1Þ ¼ inf
Nnþ1;Znþ1

fðEnþ1 � EnÞ � Tnþ1ðNnþ1 �NnÞ þ DtDnþ1g (4.16)

may be regarded as a non-equilibrium thermoelastic energy density. The reduced minimum

problem is

inf
unþ1

sup
Tnþ1

Fn½unþ1;Tnþ1�. (4.17)

For very slow processes, the temperature gradients become negligibly small and fn reduces

to the incremental strain-energy density proposed by Ortiz and Stainier (1999).

5. Validation: conversion of plastic work to heat

The study on heating from plastic power may be traced back to the pioneering work of

Taylor and Quinney, who performed their seminal experimental work in 1937 (Taylor and

Quinney, 1937). In previous theoretical and numerical analyses, it has often been assumed

that the local rate of heating is a constant fraction of the plastic power (e.g., Simo and

Miehe, 1992; Camacho and Ortiz, 1997; Marusich and Ortiz, 1995). Several experimental

studies have been concerned with the determination of the fraction of plastic work

converted to heat and the evolution of that ratio with plastic deformation, either by
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calorimetric or infrared imaging techniques (e.g., Chrysochoos et al., 1989; Chrysochoos

and Belmahjoub, 1992). Mason et al. (1994) measured temperature in fully dynamic

experiments performed over a wide range of strains and strain rates. Hodowany et al.

(2000) improved the resolution of thermal detectors and the quality of the measurements

by using a high-speed HgCdTe photoconductive technique. For engineering materials,

these experimental results show considerable variation of the heat to plastic-work ratio

with both strain and strain rate. Rosakis et al. (2000) developed expressions for the

relationship between temperature rise and plastic power based on an internal variable

model (see also Chaboche, 1993).

In contrast, within the variational framework the rate of conversion of plastic work into

heat is an outcome of the theory and need not be modelled independently. In this section

we assess the validity of this aspect of the theory for two different materials: a-titanium and

Al2024-T3. In particular, we calculate temperature histories under the conditions of the

Kolsky (split-Hopkinson) pressure bar experiment and compare the predictions with the

measurements of Hodowany et al. (2000).

5.1. The variational form of the heat equation

We begin by taking a closer look at the form of the heat equation that follows from the

variational framework. Using the identity

_N ¼ �qT
_A ¼ �qTP

e � _F � qTTA _T þ qTY � _Z, (5.1)

and introducing the heat capacity per unit undeformed volume at constant deformation

Cv ¼ �TqTTA, (5.2)

energy (2.13) may be recast as

Cv
_T ¼ Y � _Z þ P

v � _F þ TqTP
e � _F � TqTY � _Z þ RQ�DivH . (5.3)

We see from this equation that several factors contribute to raising the temperature of the

body: the dissipation Y � _Z due to internal processes; the viscous dissipation P
v � _F;

thermoelastic effects accounted for by the term TqTP
e � _F; thermal softening accounted for

by the term �TqTY � _Z; and the external heat sources and heat conduction.

Eq. (5.3) should be carefully contrasted with a conventional form of the thermo-

mechanically-coupled heat equation widely used in metal plasticity (cf., e.g., Simo and

Miehe, 1992; Camacho and Ortiz, 1997; Marusich and Ortiz, 1995), namely,

Cv
_T ¼ b ðFeT

PÞ � _F
p
þ RQ�DivH (5.4)

where the multiplicative decomposition (2.16) is assumed to be in force for definiteness,

and where thermoelastic effects are considered negligible. In this equation ðFeT
PÞ � _F

p
is

the plastic power, which reduces to sij _�
p
ij for small strains, and b is a factor, sometimes

referred to as the Taylor–Quinney factor (Taylor and Quinney, 1937), that measures the

fraction of the plastic power that is converted to heat. The conventional practice has been

to regard b as an additional state function and to model it independently of the remaining

state functions. In particular, the model consisting of assuming b to be constant has been

widely used in engineering practice.

A comparison of forms (5.3) and (5.4) of the heat equation warrants several interesting

conclusions. Thus, it is clear that form (5.4) of the heat equation is not variational in
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general. In particular, the linearization of (5.4) is not symmetric in general. Conversely,

within the thermodynamic framework the rate of heating is determined explicitly by the

constitutive equations and, therefore, need not—and cannot—be modelled independently.

5.2. Comparison with experiment

We begin by specializing the general formulation to the conditions of the Kolsky (split-

Hopkinson) pressure bar experiment of Hodowany et al. (2000). For simplicity, we assume

linearized kinematics and approximate stresses and deformations as one-dimensional.

Under these conditions, the strain has the additive decomposition

� ¼ �e þ �p, (5.5)

where �e and �p are the elastic and plastic part of the strain. We further assume that �p is the
sole internal variable. The free energy density is assumed to have the simple form

Að�; y; �pÞ ¼
C

2
½�e � aðy� y0Þ�

2 þ cvy 1� log
y

y0

� �

� cvy0, (5.6)

where C is the elastic modulus, cv is the specific heat at constant volume, a is the thermal

expansion coefficient, y is the absolute temperature and y0 is the reference temperature.

Equilibrium relation (2.15a) gives the entropy as

Z ¼ cv log
y

y0
þ aC½�e � aðy� y0Þ�. (5.7)

Furthermore, we assume a dual kinetic potential of the form

c�ð_�p; yÞ ¼
m

mþ 1
syðyÞ_�

p
0 1þ

_�p

_�p0

� �ðmþ1Þ=m

þ ðs0ð�
p; yÞ � syðyÞÞ_�

p, (5.8)

where syðyÞ is the yield stress, _�p0 is a reference plastic strain rate, m is the rate hardening

exponent,

s0ð�
p; yÞ ¼ syðyÞ 1þ

�p

�p0

� �1=n

, (5.9)

is the flow stress, �p0 is a reference plastic strain and n is the hardening exponent.

Furthermore, we assume a linear thermal softening of the form

syðyÞ ¼ syðy0Þ½1� oðy� y0Þ�, (5.10)

Table 1

Material constants for a-titanium (Matthew, 2000) and Al2024-T3

Material C (GPa) syðy0Þ cvð�106Þ �p0 _�p0 n m o (K�1) að�10�6Þ

(MPa) (Jm�3) (K�1)

a-titanium 116 400 2.33 0.1 0.1 1.45 35 0.0019 1.1

Al2024-T3 69 380 2.43 0.0015 0.5 5.8 10000 0.0007 2.0
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where o is the thermal softening coefficient (cf., e.g., Meyers, 1994). The inverse kinetic

relations follow as

y ¼
qc�

q_�p
¼ syðyÞ 1þ

_�p

_�p0

� �1=m

þ s0ð�
p; yÞ � syðyÞ. (5.11)

We apply the preceding model to two materials: rate-dependent a-titanium and rate-

independent Al2024-T3. The material parameters used in the calculations are collected in

Table 1. These parameters are fitted to the experimental data of Hodowany et al. (2000). In

calculations, we consider two strain rates, _� ¼ 1 s�1 and _� ¼ 3000 s�1.
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Fig. 1. (a) Stress–strain curves of a-titanium at strain rate of 1 s�1 and 3000 s�1. (b) Adiabatic temperature rise as

a function of plastic strain for a-titanium at strain rate of 1 s�1 and 3000 s�1. Experimental data from Hodowany

et al. (2000).
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Fig. 2. (a) Stress–strain curves of Al2024-T3 at strain rate 1 s�1 and 3000 s�1. (b) Adiabatic temperature rise as a

function of plastic strain for Al2024-T3 at strain rate of 1 s�1 and 3000 s�1. Experimental data from Hodowany et

al. (2000).
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The stress–strain curves for a-titanium predicted by the model are plotted in Fig. 1a and

compared with experiment. It is evident from this figure that the stress–strain curve of a-

titanium is ostensibly strain-rate sensitive. Fig. 1b cross-plots the predicted temperature

and plastic strain histories and compares the resulting curves with the experimental data of

Hodowany et al. (2000) for strain rates of 1 s�1 and 3000 s�1. Evidently, the experimental

and theoretical temperature evolution, including its strain-rate dependence, are in close

correspondence. For the lower strain rate case, the slight discrepancy between

experimental and numerical temperatures at high strains could be attributed to heat

conduction effects not taken into account in the present analysis.

The predicted stress–strain curves and temperature rise for Al2024-T3 are plotted in

Figs. 2a and b, respectively, and compared with the experimental data of Hodowany et al.

(2000). In contrast to a-titanium, the stress–strain curve of Al2024-T3 and the attendant

temperature rise are ostensibly rate-insensitive. Again, the experimental and theoretical

temperature evolution, including its strain-rate dependence, are in close correspondence.

This agreement suggests that both a-titanium and Al2024-T3 conform to the variational

framework developed in the foregoing, and that the heating rates of these materials need

not be modelled independently.

6. Summary and concluding remarks

We have developed a variational framework for the coupled thermo-mechanical

boundary-value problem for general dissipative solids. In this framework, the equations of

motion and the energy balance equation follow jointly as Euler–Lagrange equations of a

common potential function. A key element of the present formulation which makes the

variational formulation possible is the distinction between an external temperature and an

equilibrium temperature. The equilibrium constitutive relations and kinetic relations of the

material also follow by taking variations with respect to the internal variables as in

previous variational formulations of the isothermal case (Ortiz and Stainier, 1999).

One consequence of the variational formulation of the problem is that the fraction of plastic

work converted to heat is predicted by the theory and cannot be modelled independently of the

remaining constitutive relations. Therefore, comparison of experimental and theoretical

heating rates provides a test of whether a material conforms to the variational framework. The

good correspondence between the theoretical predictions and the experimental data of

Hodowany et al. (2000) suggests that both a-titanium and Al2024-T are variational.

A fundamental question that immediately suggests itself is why materials that appear to

conform to the variational framework do so. Since the existence of a kinetic potential

requires the satisfaction of Onsager–Casimir’s reciprocity relations, a closely related

question concerns whether such relations follow as a consequence of fundamental

principles. The Onsager–Casimir relations do indeed enjoy some grounding in non-

equilibrium statistical mechanics and appear to be satisfied by many materials. These

considerations notwithstanding, the variational framework furnishes a convenient and

powerful tool for modelling general dissipative materials.
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