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INTRODUCTION

The main characteristic in viscoelastic models is the existence of a rate of deformations in the presence of non-zero (constant) states of stress. Moreover, inelastic strains occur in the presence of stresses, no matter what their intensity. This behaviour is in contrast with other models like plasticity or viscoplasticity, where a certain level of stress must be reached before inelastic deformations appear.

Many different models for viscoelastic materials in finite deformation regime are found in the literature. However, in contrast with what we see in small deformation models, the choice of convenient internal variables and evolution laws is neither trivial nor unique, leading to different formulations. Without claiming to perform a general classification, we would like to distinguish two possible approaches. From one side, we recall the work of Simo [START_REF] Simo | On a fully three dimensional finite-strain viscoelastic damage model: formulation and computational aspects[END_REF] in which an additive decomposition of stresses in equilibrium and non-equilibrium contributions is stated and, more relevant, the evolution law is defined as a linear differential equation based on the non-equilibrium stresses. This approach was later followed, among many others, by Holzapfel and Simo [START_REF] Holzapfel | A new viscoelastic constitutive model for continuous media at finite thermomechanical changes[END_REF][START_REF] Holzapfel | On large viscoelasticity: continuum formulation and finite element applications to elastomeric structures[END_REF] and more recently by Holzapfel, Gasser and Bonet [START_REF] Holzapfel | A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications[END_REF][START_REF] Bonet | Large viscoelastic constitutive models[END_REF]. This last work modifies the original approach by including the well-known multiplicative split of isochoric deformation gradient into elastic and viscous parts and by defining the rate of nonequilibrium stress (i.e. the evolution equation) at constant total Cauchy deformation C, which finally provides an evolution equation in terms of viscous Cauchy strain rate Ċv .

Multiplicative decomposition of strains applied to viscoelastic constitutive equations goes back to the work of Sidoroff [START_REF] Sidoroff | Un modèle viscoélastique non linèaire avec configuration intermédiaire[END_REF] and later to References [START_REF] Lubliner | A model of rubber viscoelasticity[END_REF][START_REF] Kaiss | Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation[END_REF][START_REF]A constitutive model for carbon filled rubber experimental investigation and mathematical representations[END_REF], among others. In Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF] the ability of different models to reproduce non-linear viscous behaviour is discussed and a model is proposed that is not restricted to small perturbations away from thermodynamic equilibrium. Based on a multiplicative decomposition of strain, the model is presented as an extension of the model proposed in Reference [START_REF] Lubliner | A model of rubber viscoelasticity[END_REF] for elastic deformation gradients F e far from the identity tensor.

The goal of this work is to provide a general framework for constitutive viscoelastic models based on the mathematical background proposed in References [START_REF] Ortiz | The variational formulation of viscoplastic constitutive updates[END_REF][START_REF] Radovitzky | Error estimation and adaptive meshing in strongly nonlinear dynamic problems[END_REF][START_REF] Stainier | Une formulation variationelle des algorithmes de calcul des constraintes pour les modèles élastoviscoplastiques et viscoélastiques en grandes transformations[END_REF]. Thus, the approach is qualified as variational since the constitutive updates obey a minimum principle within each load increment. The set of internal variables is strain-based, and thus employs, according to the specific model chosen, multiplicative decomposition of strain into elastic and viscous components. In that sense, the present approach is closer to that of Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF] or the spatial model of Reference [START_REF] Bonet | Large viscoelastic constitutive models[END_REF] than to that of Simo. On the basis of the same theoretical framework, the present approach for viscoelastic models shares the same technical procedures shown in Reference [START_REF] Ortiz | The variational formulation of viscoplastic constitutive updates[END_REF] to deal with the local nonlinear constitutive problem, i.e. the solution of a minimization problem to identify inelastic updates. However, instead of using the classic decomposition of inelastic strains into amplitude and direction, we take profit of a spectral decomposition that provides additional facilities to accommodate, into simple analytical expressions, a wide set of viscous models. The only requirement is the definition of different isotropic potentials in terms of eigenvalues of strain and/or strain rates. As a consequence, general expressions for the stress updates as well as for the (symmetric) material tensor of the tangent matrices are obtained, which can be implemented independently of the particular potential and corresponding derivatives definitions. In addition, appropriate choices of the potentials retrieve other formulations in the literature such as, for example, the isotropic logarithmic-based model of Reference [START_REF] Bonet | Large viscoelastic constitutive models[END_REF].

This article is organized as follows. Section 2 shows the formulation used for the balance problem. The general approach for irreversible constitutive problems is presented in Section 3, focusing later on the problem of viscoelastic materials, which is the main contribution of this paper (Sections 3.2-3.5). In Section 4 a set of numerical examples is shown in order to discuss the characteristics of the present approach. Finally, an Appendix includes technical mathematical operations that, for the purpose of clarity, were omitted in the main text.

VARIATIONAL PRINCIPLE FOR BALANCE EQUATIONS

We use this section to present a possible approach for the equilibrium problem. Using conventional notation, let us call

F =∇ 0 x, C = F T F, B = FF T (1)
the gradient of deformations, the Cauchy strain tensor and the Finger strain tensor, respectively. In order to circumvent locking in isoparametrical finite elements, the equilibrium will be stated using the variational formulation proposed in Reference [START_REF] Simo | Quasi incompressible finite elasticity in principal stretches continuum basis and numerical algorithms[END_REF]. In this approach, the pressure field and volumetric strain field are assumed to be constant over each element. A volumetric/isochoric split is performed and the following kinematic tensors are defined:

F = 1 J 1/3 F,J = det(F), Ĉ = FT F, B = F FT (2) 
F = J 1/3 F = 1/3 F, C = J 2/3 C = 2/3 Ĉ (3) 
Let us assume a hyperelastic material for which the internal free energy allows an additive decomposition in volumetric and isochoric parts:

( C) = W( Ĉ) + U( )
The three-field functional H[x, , ] is defined as

H[x, , ]= E e=1 0 ( C) + (J -) d 0 -TF e (x) (4) 
where TF e (x) is the work of external forces. This functional can also be stated incrementally, i.e. for given values [x n , n , n ] it is possible to write a potential of the type

H[x n+1 , n+1 , n+1 ]= E e=1 0 ( Cn+1 ) + n+1 (J n+1 -n+1 ) d 0 -TF e (x n+1 ) (5) 
whose stationarity conditions define the value of and as well as the balance equation

D n+1 H, x = E e=1 0 Pn+1 •∇ 0 x d 0 -TF e (x n+1 ) = 0 (6) Pn+1 = F n+1 J -2/3 n+1 DEV 2 *W * Ĉn+1 + *U * n+1 J n+1 C -1 n+1 (7) 
where DEV(A) = A -1 3 (A : C)C -1 . The last expression provides stress recovery of the conventional first Piola-Kirchhoff stress tensor. It is worth noting that the expression of Pn+1 is of the hyperelastic type in the sense that the stress is derived from a potential function. In [START_REF] Lubliner | A model of rubber viscoelasticity[END_REF] this relationship is given incrementally. It will be seen in the next sections that incremental dissipative models can be described using incremental potential functions ( Cn+1 ). In other words, dissipative models can be treated as 'hyperelastic' within each increment. In this case, ( Cn+1 ) is usually referred to as a hyperelastic 'pseudo-potential'.

CONSTITUTIVE PROBLEM

Variational formulation for inelastic materials

The following lines describe a general variational formulation for inelastic materials subjected to finite strains. Although these ideas are originally proposed in Reference [START_REF] Ortiz | The variational formulation of viscoplastic constitutive updates[END_REF], their main outlines will be repeated with the aim of keeping this article self-contained. This approach is completely imbedded within the more general framework of internal-variable continuum thermodynamics. Thus, the first step to describe a constitutive behaviour is to define a general set E of external and internal variables:

E ={F, F i , Q} (8) 
where a multiplicative decomposition of the gradient of deformations is assumed and F i is the inelastic part of the (total) deformation F = F e F i . Moreover, Q contains all the remaining internal variables of the model. Consider the existence of a free energy potential W and a dissipative potential ,

W(E) = (F) + e (FF i-1 ) + i (F i , Q), = ( Ḟ, E) (9) 
such that the Piola-Kirchhoff stress tensor and conjugate forces are defined as

P = *W *F (E) +
that, as already remarked, has the following property:

*D eff ( Ḟ; E) * Ḟ = *W(E) *F + * * Ḟ ( Ḟ; E) = P (17) 
Thus, D eff ( Ḟ; E) constitutes a rate potential of Ḟ for P. The next step is to define an incremental constitutive equation within the interval [t n ,t n+1 ] that provides incremental updates F n+1 , Ḟn+1 , Q n+1 consistent with the rate potential [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The main objective is to obtain an incremental potential (F n+1 ) such that due to objectivity constraints [START_REF] Mardesen | Mathematical Foundations of Elasticity[END_REF][START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF],

P n+1 = * (F n+1 ) *F n+1 = 2F n+1 * (C n+1 ) *C n+1 (18) = F n+1 J -2/3 n+1 DEV 2 *W * Ĉn+1 + *U * n+1 J n+1 C -1 n+1 (19) 
This means that the internal variables F i n 1 and Q n+1 can be computed by the incremental constitutive equations once the value of 

(F n+1 ; E n ) = t( F, E n ) + min F i n+1 Q n+1 {W(E n+1 ) -W(E n ) + t ( Fi , Q; E n )} (20) 
where

F(F n+1 , E n ), Fi (F i n+1 , E n ) and Q(Q n+1 , E n )
are suitable incremental approximations of the rate variables Ḟ, Ḟi , and Q, respectively. It is possible to show that if t → 0, this incremental potential reduces to [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF], which is the claimed consistence for the constitutive update. A final comment is necessary to close the gap between constitutive and balance equations. If, due to numerical implementation, the variational principle (5) is used, then [START_REF] Dépt | METAFOR-Software for Thermo-mechanical Analysis of Structures in Large Strain Regime[END_REF] plays the role of incremental potential whose derivative given by [START_REF] Miehe | Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals[END_REF] provides the new value for the stress tensor. This will be seen more clearly in the next sections.

A group of visco-hyperelastic models

A quite general group of viscoelastic materials can be modelled within the present variational framework. Owing to the possibility of obtaining analytical or semi-analytical expressions for the constitutive updates, only isotropic models will be considered now. However, no theoretical limitations to include more general non-isotropic behaviours are found.

The rheological mechanism shown in Figure 1 is taken as a basis to include different potential expressions in [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF] or [START_REF] Dépt | METAFOR-Software for Thermo-mechanical Analysis of Structures in Large Strain Regime[END_REF]. The model is based on the following assumptions:

• The elastic part of the Kelvin branch accounts for a separation of the elastic energy into isochoric and volumetric parts. The isochoric part is an isotropic function of Ĉ = FT F:

( Ĉ) = (c 1 ,c 2 ,c 3 ) (21) 
where c j and E j are the eigenvalues and eigenvectors of Ĉ The volumetric part may be defined using the usual expression

U( ) = K 2 [ln ] 2 ( 22 
)
where K is the bulk modulus of the material.

• Analogously, the viscous part of the Kelvin branch is also an isotropic function of the symmetric part of the rate of deformation:

D = dev[Sym( ḞF -1 )] ( 23 
) (D) = (d 1 ,d 2 ,d 3 ) (24) 
where d j and M j are, respectively, the eigenvalues and eigenvectors of D. • The Maxwell branch, connected in parallel, takes into account the multiplicative separation of elastic and inelastic (viscous) strains. The viscous part is assumed to be isochoric:

F = Fe F v ⇒ Fe = FF v-1 , det F v = 1 (25) 
A viscous rate of deformation (or viscous stretching) D v is defined as

D v = Sym(L v ) = L v = Ḟv F v-1 (26)
which, by construction, is deviatoric. The symmetry of L v comes from the null viscous spin assumption (skew(L v ) = W v = 0). Rearranging (26) a flow rule for the internal variable F v is obtained as

Ḟv = D v F v (27) 
• Additional constraints on D v define specific characteristics of the flow rule. In plastic or viscoplastic von Mises models, the normality rule constrains D v to be of type

D v = d v M v ( 28 
)
d v ∈ R + (29) M v ∈ K M ={N ∈ Sym : N • N = 3 2 , N • I = 0} ( 30 
)
where I is the second-order identity matrix, Sym represents the set of symmetric secondorder tensors and N a traceless symmetric tensor. The scalar d v accounts for the amplitude of D v while M v provides normality and tracelessness properties. A different and convenient decomposition is proposed here:

D v = 3 i=1 d v j M v j ( 31 
)
d v ∈ K Q ={p j ∈ R : p 1 + p 2 + p 3 = 0} (32) M v j ∈ K M ={N j ∈ Sym : N j • N j = 1, N i • N j = 0,i = j } (33) 
where d v j and M v j ,j = 1, 2, 3, are eigenvalues and eigenprojections of D v . The tracelessness condition is enforced by the set K Q while K M constrains eigenprojections to be symmetric orthonormal second-order tensors. Scalars d v j account for the amplitude of viscous (inelastic) stretching and, consequently, they are chosen to be the internal variables contained in the set Q ={d 1 ,d 2 ,d 3 }. In this case, it is important to note that ( 27) is a non-holonomic constraint relating the internal variables F v and Q. The elastic and viscous potentials associated with this branch are assumed to be isotropic functions of the elastic deformation and viscous stretching, and thus they depend on their corresponding eigenvalues:

e ( Ĉe ) = e (c e 1 ,c e 2 ,c e 3 ) (34) 
(D v ) = (d v 1 ,d v 2 ,d v 3 ) (35) 
where c e j and E e j are the eigenvalues and eigenvectors of Ĉe :

Ĉe = FeT Fe = 3 j =1 c e j E e j (36) 
• Viscous deformations are incrementally updated based on exponential mappings:

F = Fn+1 F-1 n = R(exp[ tD]) (37) tD = t(d j M j ) = 3 j =1 q j M j (38) Ĉ = ( F) T F = F-T n Ĉn+1 F-1 n = exp[ tD] 2 (39) 
⇒ D = 3 j =1 q j t M j = 1 2 t ln( Ĉ) (40) 
where R comes from the polar decomposition of F (note that it is later cancelled in the calculation of Ĉ). In analogous form,

F v = F v n+1 F v-1 n = exp[ tD v ] (41) 
tD v = t(d v j M v j ) = 3 j =1 q v j M v j ( 42 
)
C v = ( F v ) T F v = F v-T n C v n+1 F v-1 n = exp[ tD v ] 2 (43) ⇒ D v = 3 j =1 q v j t M v j = 1 2 t ln( C v ) (44) 
Expressions ( 40) and (44) show that D and D v are approximated by incremental expressions of Ĉ and C v , respectively. The exponential mapping has the particularly convenient property of providing an isochoric tensor for any traceless argument [START_REF] Anand | Finite deformations constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids[END_REF][START_REF] Miehe | Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals[END_REF]. Quantities F v and F are represented in Figure 2 that shows the strain decomposition considered in the present approach.

Owing to the inclusion of constraints ( 40) and ( 44) in ( 20), the minimizing variables Q n+1 , F v n+1 are substituted by the new incremental variables q v j , M v j . The minimization problem is thus re-written as

(F n+1 ; E n ) = (C n+1 ; E n ) = ( Ĉn+1 ) + t q v j t + U( n+1 ) + min M v j , q v j e ( Ĉe n+1 ) + t q v j t ( 45 
) ( Ĉn+1 ) = ( Ĉn+1 ) -( Ĉn ) (46) e ( Ĉe n+1 ) = ( Ĉe n+1 ) -( Ĉe n ) (47) 
U( n+1 ) = U( n+1 ) -U( n ) (48) 
such that

q v j ∈ K Q ={p j ∈ R 1 : p 1 + p 2 + p 3 = 0} (49) M v j ∈ K M ={N j ∈ Sym : N j • N j = 1, N i • N j = 0,i = j } (50) 
The set K Q enforces the traceless form of D v , while the set K M accounts for usual properties of eigenprojections. Moreover, it is easy to verify that both sets are convex on their respective variables.

Assuming convenient convexity properties for the terms within braces in (45), first-order optimality conditions are sufficient to obtain the minimizing arguments, i.e. to find q

v j ∈ K Q and M v j ∈ K M such that * ( q v j , M v j ) *M v j [ M]=0 ∀ M ∈ K M (51) * ( q v j , M v j ) * q v j [ q]=0 ∀ q ∈ K Q (52)
Taking into account the isotropy property of the energy functions, the minimization in (45) can be performed analytically. To this aim, an important relation between elastic and inelastic (viscous) deformations must be shown:

Fe n+1 = Fn+1 Fv-1 n+1 = Fpr (exp[ tD v ]) -1 , Fpr = Fn+1 F v-1 n (53) Ĉe n+1 = FeT n+1 Fe n+1 = Ĉpr (exp[ tD v ]) -2 , Ĉpr = F v-T n Ĉn+1 F v-1 n (54) e n+1 = 1 2 ln Ĉe n+1 = pr -tD v , pr = 1 2 ln Ĉpr (55) 
In Equation ( 54), the assumption of co-linearity between Ĉpr and D v was taken into account to allow permutation between both tensors. This means that Ĉe n+1 , Ĉpr and D v share the same eigenvectors E e j = E pr j = M v j (we must remember that co-linearity does not mean proportionality). Substituting generic expressions (34), (35) and result (55) in condition (51), the co-linearity condition is entirely verified (see Appendix for related details). Finally, the satisfaction of (52) provides a set of non-linear equations for q v 1 , q v 2 , q v 3 :

* e * e j - * *d v j + = 0,j = 1, 2, 3 (56) 
q v 1 + q v 2 + q v 3 = 0 (57)
where is a Lagrangian multiplier and e j = ln(c e j )/2 are the eigenvalues of e n+1 . Equivalently, due to the linear relation e j = pr jq v j , optimality conditions (56), (57) can be re-written as a non-linear function of e 1 , e 2 , e 3 (this will later prove to be advantageous to obtain second derivatives of e , see Appendix): The existence of a solution for this system is guaranteed if convexity properties are assumed for both e and .

* e * e j - * *d v j + = 0,j = 1, 2, 3 (58) 
Once the minimization is performed, the derivative of with respect to Ĉn+1 and n+1 should be calculated in order to obtain the Piola-Kirchhoff stress tensor. The deviatoric part is given by (see Appendix for operational details)

* * Ĉn+1 = 3 j =1 * *c j *c j * Ĉn+1 = 3 j =1 * *c j E j (60) 1 2c e j E e j F v-T n+1 (62) = 3 j =1 * e *c pr j *c pr j * Ĉpr * Ĉpr * Ĉn+1 = F v-1 n 3 j =1 * e * e j 1 2c pr j E pr j F v-T n (63)
The choice between expressions (62) or ( 63) is just a matter of implementation convenience. Nevertheless, in this work (63) will be preferred to compute second derivatives due to the fact that F v n does not depend on Ĉn+1 . Three additional remarks are useful to enhance the characteristics of the present framework: i. Potentials and from the Kelvin branch are uncoupled and out of the minimization operations. Thus, their choice does not affect the elastic/viscous decomposition on the Maxwell branch. ii. The four non-linear scalar equations (56), (57) are simple enough to allow any choice of potentials e and . Thus, no restriction is made on the size of perturbations away from the thermodynamic equilibrium up to this point [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF]. Moreover, convenient expressions of e and may simplify system (56), (57) even more, as is shown in the next section. iii. A simple extension to this model can be obtained by considering a set of P Maxwell branches, as seen in Figure 1. In this case, the incremental potential ( 45) is

(C n+1 ; E n ) = ( Ĉn+1 ) + t q j t + U( n+1 ) + P k=1 min M v jk , q v jk e k ( Ĉe kn+1 ) + t k q v jk t (64) 
which means that the minimization should be performed for each k-module, thus obtaining the corresponding pair q v jk , M jk . A final aspect concerns the computation of the incremental dissipation, which is a fundamental point for further extensions to thermomechanical models. Dissipated energy in the present model is associated with the Kelvin and Maxwell contributions from the corresponding dissipation potentials and . The increment of dissipated energy D at each time step is computed as the time integration of the product of conjugated forces times the corresponding stretchings. Taking advantage of the isotropic properties of the potentials,

D = D K + D M , D K = t n+1 t n 3 j =1 * *d j d j dt ≃ 3 j =1 * *d j t d j t = 3 j =1 * *d j t q j D M = t n+1 t n 3 j =1 * *d v j d v j dt ≃ 3 j =1 * *d v j t d v j t = 3 j =1 * *d v j t q v j
where t n t t n+1 and D K , D M are the respective contributions of the Kelvin and Maxwell branches. Due to the assumed properties of and , dissipation is clearly non-negative.

Material tensors

An important aspect from the numerical implementation point of view is the determination of the tangent matrix, consistent with the constitutive incremental update algorithm. The contribution to the tangent matrix from geometric terms is common to any hyperelastic model based on the variational balance equations ( 5)- [START_REF] Lubliner | A model of rubber viscoelasticity[END_REF]. Thus, we focus here on the expression of the second derivative of the present incremental material update. We will use here the notation d(•)/d Ĉn+1 as the total derivative of the argument with respect to Ĉn+1 . We define thus the tensor C:

C = d d Ĉn+1 * * Ĉn+1 = d 2 (d Ĉn+1 ) 2 + d 2 (d Ĉn+1 ) 2 + d d Ĉn+1 * e * Ĉn+1 = C + C + C e ( 65 
)
The first two members are quite easy to compute. Indeed, since is an isotropic function of Ĉn+1 , its second derivative is easily computed in the spectral co-ordinate system (see, for example, Reference [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]). The second term needs a preliminary pull-back operation by tensor F-1 n . In order to facilitate notation, we call

f n = F-1 n and the index n + 1 is dropped. Using the relation Ĉ = F-T n Ĉn+1 F-1 n = f nT
Ĉf n , we obtain the following symmetric fourthorder tensor (see Appendix):

C ij kl = * * Ĉkl * * Ĉij = 3 m,t,p,q=1 f n im f n jt * * Ĉmt * Ĉpq f n kp f n lq = C klij = C jikl (66) 
Since is an isotropic function of Ĉ, its second derivative is easily obtained using spectral co-ordinates in a way analogous to the one for . ) is defined by the derivation of the non-linear system (58), (59) (see Appendix): where we use the notation

*r i * pr j = K ii d e i d pr j - ,ii ij t - d d pr j = 0,i = 1, 2, 3 (70) 
,i = * *d v i , ,i = * * e i ,K ii = ,ii + 1 t ,ii (72) 
Isolating d e i /d pr j from (70), substituting in (71), and returning back to (70) we obtain the explicit expression

d e i d pr j = ,ii tK ii ij - ,jj tK jj K ii 3 s=1 1 K ss -1 (73) 

Hencky-based model

In this section we analyse the case when potentials are based on quadratic forms of logarithmic strain tensors (Hencky-type potentials [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF])

= 3 j =1 j 2 , = 3 j =1 (d j ) 2 (74) e = e 3 j =1 ( e j ) 2 , = v 3 j =1 (d v j ) 2 (75) 
From (55) we have that e j = pr jtd v j = pr jq v j . Using (75), the optimality conditions (56), (57) take the particular form

-2 e ( pr j -q v j ) + 2 v q v j t + = 0,j = 1, 2, 3 (76) 
q v j + q v j + q v j = 0 ( 77 
)
It is easy to see that, summing up all three linear equations (76), the constraint (77) and the fact that pr 1 + pr 2 + pr 3 = 0, provides = 0. This fact decouples the system and we finally have

q v j = e v t + e pr j (78) 
for each principal direction j , which is the classical expression of the corresponding infinitesimal linear viscoelastic model. The particular derivatives * /* j , */*d j , * e /* e j , * /*d v j and higher orders needed to substitute into (60), ( 63) and ( 73) are easily obtained from the potentials definition.

Ogden-based model

In the previous case, the quadratic function of the logarithmic strains is particularly convenient to obtain the simple uncoupled linear expression (78) for the minimizing argument q v j .I n spite of this advantage, it is well known that this type of hyperelastic potentials do not fit very well the behaviour of rubber-like materials, which are the ones that most commonly exhibit viscoelastic properties. For that, a more adequate choice may be the Ogden model [START_REF] Holzapfel | Nonlinear Solid Mechanics[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF] which also has the property of generalizing other models like neo-Hookean and Mooney-Rivlin.

Different combinations are possible. A first attempt may be to associate the main spring of the Kelvin branch with an Ogden model, leaving the Maxwell branch with a Hencky-type definition, as was done in the previous section. This option seems to provide small viscous stress contributions for large strain ranges, when compared with the stress obtained by the Ogden model in the main spring. This fact will be more easily understood with a corresponding numerical example in the next section. Another possibility is defining both springs of the Ogden type. Consider then the following potentials (the same symbol p was used in all expressions for the purpose of simplicity, but it can be different for each function): 

= 3 j =1 N p=1 p p ([exp( j )] p -1) (79) = 3 j =1 N p=1 p p ([exp(d j )] p -1) (80) 
= 3 j =1 N p=1 v p p ([exp(d v j )] p -1) (82) 
Substituting ( 81) and ( 82) in ( 56), (57) we obtain the non-linear set 

d v 1 + d v 2 + d v 3 = 0 (84) (83) 
Variables d v j , can be solved by, for example, the Newton procedure (see Appendix). Again, particular derivatives * /* j , */*d j , * e /* e j , * /*d v j and higher orders needed to substitute in (60), ( 63) and (73) are easily obtained from the potentials definition.

NUMERICAL EXAMPLES

This section shows some numerical examples with the aim of discussing performance and particular characteristics of the chosen models (potentials) within the present formulation. Finite element calculations were performed using the C ++ version of the finite element program METAFOR [START_REF] Dépt | METAFOR-Software for Thermo-mechanical Analysis of Structures in Large Strain Regime[END_REF].

Cyclic shear test

Consider a pure shear test of a single 3D element (Figure 3). This example was extracted from Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF] and its goal is to illustrate some characteristics of the present approach. Moreover, if appropriate potentials are chosen, we show that results equivalent to those of Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF] are obtained. The rheological model chosen for this example corresponds to the one of Figure 3 (potentials = 0). This example consists of a pure shear test of a single 3D element (Figure 3). Material parameters and load characteristics were taken from the same example in Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF],i n order to perform numerical comparisons of results when possible. The rheological model chosen for this example corresponds to the one of Figure 3 (potentials = 0).

The lateral displacement follows a sinusoidal law u x = U x sin wt, where w = 0.3s -1 . The quotient u x /h is numerically equal to the shear component C xy (or B xy ) in the Cartesian coordinate system. The material was assumed to be almost incompressible through a convenient penalization value of K.

In addition, Ogden and Hencky models were used for , e and . For Ogden models we used N = 3, i.e. p = 1, 2, 3. Also, to reduce the number of free parameters, we assume e p = 2.57 p and viscous coefficients v p such that = v p / e p = 17.5. Moreover, the same Ogden exponents p were used for all potentials: 1 = 1.8; 2 =-2; 3 = 7 (see Table I).

For the Hencky cases, the value = p 1 2 p p was used, which is the consistent equivalent parameter for small strains. The four combinations shown in Table II were tested.

The following graphics show the behaviour of Cauchy stresses xy as a function of shear strain C xy in time, for different shear amplitudes: 0.01, 1, 2 and 5. The total time is such that 3(three) load cycles are completed. In the case of small strains shown in Figure 4, all models give identical results, as expected. For larger amplitudes, quite different results are found. The results of cases 2-4 shown in Figures 5678910, present a close correlation of maximum values of stress with the corresponding results found in Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF]. However, hysteresis loops of case 2, are clearly 'thinner' as the deformation grows along the cycle. This behaviour is in agreement with the fact that the Hencky model used in the Maxwell branch provides a contribution in stress much lower than a corresponding Ogden model for large strains. Cases 3 and 4 graphically fit the non-linear case of Reference [START_REF] Reese | A theory for finite viscoelasticity and numerical aspects[END_REF]. Moreover, they provide almost the same results in this example, where a proportionality among elastic and viscous parameters was used. The viscous potential modifies the minimization condition (56), (57) and, thus, the amount of viscous deformation. In order to put in evidence its influence we ran two more cases in which the main spring is eliminated and the Maxwell spring keeps its previous values. The potential changes from the Hencky model (with the same viscosity v already used) to the Ogden model, III). Again, in the small strain case, all models provide the same behaviour (Figure 11). On the other side, finite deformations clearly exhibit differences on the hysteresis loop, as shown in Figures 12 and13 

Pinched cylinder

The goal of the next examples is to show the applicability of the present model to typical large-scale FEM computations. Figure 14(a) shows a thick viscoelastic cylinder and a rigid hemispherical tool following the path shown in Figure 14(b): first, it pinches the cylinder down to a cursor-end position where it remains during a relaxing period. Finally, it is removed at high velocity, which produces different final piece shapes and different times of separation, depending on the initial tool velocity defined by the time t (see Figure 14(b)). Five cases are tested with t = 0.25, 0.5, 1, 2 and 3 s. This example is inspired from a similar one found in Reference [START_REF] Holzapfel | On large viscoelasticity: continuum formulation and finite element applications to elastomeric structures[END_REF].

Cylinder dimensions are R i = 12 mm, R e = 16 mm and L = 20 mm. The tool has a radius of 2.5 mm and its displacement is equal to R i . An Ogden model with the same parameters as in the previous example was used for both spring potentials and e : 1 = 2.758; 2 =-1.725; Hencky type, with v = 1.1394 ( = 2 s). Potential is null. Lateral faces of the cylinder are free and symmetry of the model was taken into account for the analysis.

Figure 15(a) shows the deformed configuration for the maximum tool displacement, while 15(b) illustrates the final configuration after tool removal. The history of the Cauchy stress x and displacement of the point located on the cylinder interior surface just below the punch tip is plotted in Figure 16. The history of the former point displacement is shown in Figure 17. As expected, the faster the punch is applied, the higher the stresses that are developed and the higher the dissipated energy at the tool removal time t = 3 s. Consequently, owing to a higher relaxation in the system, we see a faster separation from the tool during its backward motion.

Viscoelastic support

This example simulates a viscoelastic cylindrical support clamped on its exterior surface and with a rigid edge connected to a vibrating device (see Figure 18). The harmonic vibration u = U sin wt , with w = 10 s -1 occurs along different directions. The first one is a lateral translation along x direction with maximum displacement U x = 3 8 (R e -R i ). The second one is composed by an axial translation (U y = R i ) and rotation ( y = 45 • ). The dimensions of the viscoelastic support are R i = 15 mm, R e = 30 mm and L = 50 mm. Figure 19 shows the maximum amplitude of deformations for a lateral motion while Figure 20 illustrates the case of axial (rotation plus translation) motion. The isochoric nature of the material shows up in Figure 19 where the compressed and tractioned sides of the cylinder deform accordingly to preserve this constraint. Two material models were run, both sharing the same constitutive characteristics in the small strain regime.

Case 1: Ogden model for both spring potentials and e ( e i = 4 i ): 1 = 3.5; 2 = 0.011; 3 = 0.0015 and 1 = 0.1; 2 = 2.0; 3 = 9 ( eq = i Figures 2122show the hysteretical loops in force/displacement for the lateral and axial motions, respectively. These graphics clearly show the differences induced by the model, which are accentuated in large strain regimes.

CONCLUDING REMARKS

This paper presents a general set of viscoelastic constitutive models based on a variational framework that provides an appropriate mathematical structure for further applications like, for example, error estimation (see a detailed study on this issue in Reference [START_REF] Radovitzky | Error estimation and adaptive meshing in strongly nonlinear dynamic problems[END_REF]). Among others, the following characteristics of this approach should be noted:

• It is capable of reproducing other models in literature according to the specific viscoelastic law chosen; • No theoretical restrictions are put on the size of perturbations away from the equilibrium positions and they can be properly treated with appropriate choices of dissipative functionals; • The theoretical and operational (implementation) background is stated for general isotropic constitutive functions depending on eigenvalues of strains and strain rates. As a consequence, most of the implementation effort, including stress updates and tangent matrix is carried out at a generic level with no relation to a specific isotropic law (potential). This last definition can be performed practically at user level by the choice of the corresponding potential and derivatives expressions (see, for example, (74), ( 75) or ( 79)-( 82)). • Stress and strain updates require (in the general case) the solution of a three-equation non-linear system to determine the eigenvalues of viscoelastic increments (eigenprojections are defined by the predictor state). This non-linear system is analytically invertible and, thus, computationally inexpensive. Moreover, the material tensor is calculated by means of a simple closed form expression. From this remark and from the behaviour shown by the numerical experiments, we observed that the performance of the constitutive update based on the present expressions is, in general, comparable to that of a classic radial-return plastic von Mises-based problem (with non-linear hardening). • More than a single Maxwell branch are frequently employed to describe real experimental viscoelastic curves. The proposed model is, as already shown, able to include those branches with the corresponding cost of new parameters to be identified. We also note that the present formulation allows the use of different non-linear models for each component of the Maxwell branch, starting from classical two-parameter models to more sophisticated ones. A question that deserves further studies is related to the number of Maxwell branches needed to describe real viscoelastic curves depending on the features of the models defined in each of them. • Extension to non-isotropic materials presents, a priori, no mathematical difficulties and is the subject of future developments.

APPENDIX A

Minimization of with respect to M v a

The argument of the minimum of potential ( q v j , M v j ) must satisfy the usual constraints for eigenprojections and the traceless property provided by the eigenvalues:

q v j ∈ K Q ={p j ∈ R 1 : p 1 + p 2 + p 3 = 0} M v j ∈ K M ={N j ∈ Sym : N j • N j = 1, N i • N j = 0,i = j }
In order to enforce them, the optimality condition (51) is computed with the aid of a Lagrangian function that adds to the original potential all the considered equality constraints multiplied by corresponding Lagrangian multipliers:

L( e j ,d v j , ) = e ( e j ) + t (d e j )

+ 1 (M v a • M v a -1) + 2 (M v a • M v b ) + 3 (M v a • M v c ) + 4 (M v b • M v b -1) + 5 (M v b • M v c ) + 6 (M v c • M v c -1) + (d v a + d v b + d v c ) (A1)
We also recall the relations

D v = 3 j =1 d v j M v j ,d j = q v j t , *d v a *D v = M v a e = 3 j =1 e j E e j = pr -tD v , * e a * e = E e a
The optimality condition with respect to direction M a is

*L *M v a [ M]= * e *M v a + t * *M v a [ M]+2 1 (M v a • M) + 2 (M v b • M) + 3 (M v c • M) + *d v a *D v *D v *M v a [ M]=0 ∀ M ∈ Sym (A2)
where

* e *M v a = 3 j =1 * e * e j * e j * e * e *M v a =- 3 j =1 * e * e j E e j q v a * *M v a = 3 j =1 * *d v j *d v j *D v *D v *M v a = 3 j =1 * *d v j M v j q v a t *d v a *D v *D v *M v a = d v a M v a (no sum on index a) * e *M v a + t * *M v a = q v a 3 j =1 * *d v j M v j - 3 j =1 * e * e j E e j A = q v a A
Substituting these results in (A2), and taking M equal to M v a , M v b , M v c respectively, we obtain the conditions

2 1 + d v a =-q v a A • M v a 2 =-q v a A • M v b 3 =-q v a A • M v c Substituting them in (A2), q v a [A • M -(A • M v a )(M v a • M) -(A • M v b )(M v b • M) -(A • M v c )(M v c • M)]=0 ∀ M∈Sym or, equivalently, B [I -(M v a ⊗ M v a ) -(M v b ⊗ M v b ) -(M v c ⊗ M v c )] A = 0 Substituting the tensor A in this last equation it is simple to verify that B 3 j =1 * *d v j M v j = 0 B 3 j =1 * e * e j E e j = 3 j =1 * e * e j E e j - 3 j =1 * e * e j (E e j • M v a )M v a - 3 j =1 * e * e j (E e j • M v b )M v b - 3 j =1 * e * e j (E e j • M v c )M v c
The last equation is zero if we take E e j = M v j .

Minimization of with respect to q v a Once the directions M v i are computed, the minimization with respect to q v i or equivalently to d v i = q v i / t should be performed. Considering that e i = pr iq v i , and the fact that constraints 

r i =- *L * q v i = *L * e i = * e * e i + t * *d v i *d v i * e i + = * e * e i - * *d v i + = 0,i = 1, 2, 3 r 4 = e 1 + e 2 + e 3 = 0 (A3)
Using the Newton method to find the roots x ={ e 1 , e 2 , e 3 , }, we have the recursive formula

x k+1 = x k -K k-1 r k or K k x =-r k , x k+1 = x k + x
Further simplifications can be made if we assume that e ( e i ) =

3 i=1 w e ( e i ), (d v i ) = 3 i=1 w v (d v i )
as is the case of the Hencky or Ogden model proposed. Thus, we have

K = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ K 11 00 1 0 K 22 01 00 K 33 1 111 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ K ii = * 2 e * e i * e i + 1 t * *d v i *d v i ,i = 1, 2, 3.( no index sum)
In this case, after some algebra, we have the following explicit expression for the Newton update:

e i =-(r i + )/K ii = r 4 - 3 j =1 r j K jj 3 s=1 1 K ss -1
Derivatives of , and e with respect to Ĉn+1

The derivative of is straightforward: 

Ĉn+1 = 3 j =1 c j E j * * Ĉn+1 = 3 j =1 * *c j *c j * Ĉn+1 = 3 j =1 * *c j E j Considering that Ĉ = ( F) T F = F-T n Ĉn+1 F-1 n D = 3 j =1 d j M j = 1 2 t ln ( Ĉ) = 1 

Figure 1 .

 1 Figure 1. Generalized Kelvin-Maxwell model.

Figure 2 .

 2 Figure 2. Multiplicative strain decomposition.

  The third term is treated in an equivalent fashion. Considering Ĉpr = Fv-T is the obtainment of the derivatives of e with respect to Ĉpr = c pr j E pr j .I n spectral co-ordinates this requires the computation of the following functions (see Appendix for details): terms * e /* e k and * 2 e /* e k * e l are straightforward. On the other hand, the relation e

Figure 3 .

 3 Figure 3. Cyclic shear test.

Figure 4 .

 4 Figure 4. Cyclic shear test. Shear amplitude: 0.01.

Figure 5 .

 5 Figure 5. Cyclic shear test. Shear amplitude: 1.

Figure 6 .

 6 Figure 6. Cyclic shear test. Shear amplitude: 1.

Figure 7 .

 7 Figure 7. Cyclic shear test. Shear amplitude: 2.

Figure 8 .

 8 Figure 8. Cyclic shear test. Shear amplitude: 2.

Figure 9 .

 9 Figure 9. Cyclic shear test. Shear amplitude: 5. using parameters with the same equivalent viscosity v = p 1 2 v p p (see TableIII). Again, in the small strain case, all models provide the same behaviour (Figure11). On the other side, finite deformations clearly exhibit differences on the hysteresis loop, as shown inFigures 12 and 13. 

  .

19

 19 

Figure 10 .

 10 Figure 10. Cyclic shear test. Shear amplitude: 5.

Figure 11 .

 11 Figure 11. Cyclic shear test. Influence of viscous potential. Shear amplitude: 0.01.

Figure 12 .

 12 Figure 12. Cyclic shear test. Influence of viscous potential. Shear amplitude: 2.

Figure 13 .

 13 Figure 13. Cyclic shear test. Influence of viscous potential. Shear amplitude: 2.

Figure 14 .

 14 Figure 14. (a) Pinched cylinder; and (b) tool path.

Figure 15 .Figure 16 .

 1516 Figure 15. Pinched cylinder: (a) intermediate; and (b) final configurations.

Figure 17 .

 17 Figure 17. Displacement u z of interior point below punch tip.

Figure 18 .

 18 Figure 18. Support. Undeformed configuration.

1 2

 1 i i = 0.19275 MPa). The viscous potential is of the Hencky type with v = 7.69 ( = 0.4s). Potential is null.

Figure 19 .

 19 Figure 19. Support. Case 1: deformed configuration for lateral edge motion.

Figure 20 .Case 2 :

 202 Figure 20. Support. Case 2: deformed configuration for axial edge motion.

Figure 21 .Figure 22 .

 2122 Figure 21. Support. Case 1: lateral force F x versus displacement u x .

e 1 + e 2 + e 3 = d v 1 + d v 2 + d v 3 =

 13 0, we have the following optimality conditions:

Ĉn+1 F v- 1 n 2 ( 2 ( 2 (*d v j ) 2 = 2 v( uvkl f n vq f nT mr ( rsij f n st = f n rm f n st **

 122222st order to compute the derivative e we use the relationsĈe n+1 = FeT n+1 Fe n+1 = F v-T n+1 Ĉn+1 F v-1 n+1 Ĉpr = FprT Fpr = F v-Tn and by operating in an analogous form as in (A4) we obtain * j ) 2 = 2 , * *d j ) 2 = 2 , * 2 e (* e j ) 2 = 2 e , * Ogden model: derivatives of , and eRecalling that c j = exp(2 j ), c e j = exp(2 e j ),e x p (d j ) = ( c j ) 1/2 t , we have for the Ogden model= Using the relation Ĉ = F-T n Ĉn+1 F-1 n = f nTĈf n , we have that (in this particular expression we use Einstein's notation for summation on indices p, q, m, t, u, v, r, s):Ĉmt * Ĉpq f n up f n vq ( uvkl ( rsij il jkThe total derivative of e with respect to pr j comes from the derivative of the non-linear optimality conditions: i , j = 1, 2, 3 (no index sum)

Table I .

 I Material parameters for cyclic shear test.

	Potential		Ogden		Hencky		
	( i )	20	-7	1.5	= 30.25 = i	1 2 i i
	e ( e i )	51.4	-18	3.86	e = 77.77 = i	1 2	e i i
	( i )	899.5	-315	67.55	v = 1361 = i	1 2	v i i

Table II .

 II Material model combinations.

	Case		e	
	1	Hencky	Hencky	Hencky
	2	Ogden	Hencky	Hencky
	3	Ogden	Ogden	Hencky
	4	Ogden	Ogden	Ogden

= 0.704 (MPa) and 1 = 1.33; 2 =-3.05; 3 = 3.89. The viscous potential is of the
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