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This work addresses the micro–macro modeling of composites having elasto-plastic
constituents. A new model is proposed to compute the effective stress–strain relation
along arbitrary loading paths. The proposed model is based on an incremental
variational principle (Ortiz, M., Stainier, L., 1999. The variational formulation of
viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444)
according to which the local stress–strain relation derives from a single incremental
potential at each time step. The effective incremental potential of the composite is then
estimated based on a linear comparison composite (LCC) with an effective behavior
computed using available schemes in linear elasticity. Algorithmic elegance of the time-
integration of J2 elasto-plasticity is exploited in order to define the LCC. In particular,
the elastic predictor strain is used explicitly. The method yields a homogenized yield
criterion and radial return equation for each phase, as well as a homogenized plastic
flow rule. The predictive capabilities of the proposed method are assessed against
reference full-field finite element results for several particle-reinforced composites.

1. Introduction

The prediction of the effective behavior of composite materials with elasto-plastic components is efficiently addressed
by micromechanical approaches. According to the latter, the macroscopic mechanical response is defined as the relation
between volume averages of stress and strain fields at the lower scale. Such modeling explicitly accounts for internal
stresses which in turn affect the overall (anisotropic) yield surface and hardening. This paper focuses on the development
of a semi-analytical homogenization model suitable for large-scale simulations of composite parts and structures.

In the linear elastic regime, the effective stress–strain relation is fully characterized by the overall stiffness tensor, to be
computed once and for all from the elastic constants of the components given a statistical description of the
microstructure. The problem can be equivalently restated into that of determining per-phase averages of the stress
(or equivalently strain) field. Among well-known schemes one may cite Hashin–Shtrikman bounds (Hashin and Shtrikman,
1963; Willis, 1977), or the self-consistent (Kröner, 1958; Hill, 1965b) and Mori–Tanaka (Mori and Tanaka, 1973;
Benveniste, 1987) approximations.
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In contrast, when plastic deformation develops, mechanical properties do not remain homogeneous within phases, and
the local behavior becomes stress-dependent and history-dependent. Consequently, localization models valid in linear
elasticity can no longer be applied. A workaround consists in considering a uniform plastic strain for each phase. The
problem can then be handled within the framework of the transformation field analysis (TFA) (Dvorak and Benveniste,
1992; Dvorak, 1992) and elastic localization rules are applicable, considering the plastic strain as a (given) eigenstrain.
Updates of the plastic strain are computed at each time step from the constitutive equations of the phase using the first
moment of the stress within the phase. However, the method yields too stiff predictions (Suquet, 1997; Chaboche et al.,
2001, 2005) unless each plastic region is subdivided into sub-domains in order to capture plastic strain heterogeneities,
which obviously increases the model complexity. Still treating the plastic strain as an eigenstrain, Buryachenko (1999)
developed alternative elastic interaction laws based on a statistical approach, and used second moments of the stress to
evaluate the yield condition in each phase.

An alternative strategy consists in linearizing the local stress–strain relation around some reference state (usually
chosen as the average deformation in the phase). This defines instantaneous, uniform properties for each phase. In the
incremental method of Hill (1965a), tangent operators are used for the localization step in order to account for plastic
accommodation in the redistribution of the stress and strain (increments) among the phases (see also Hutchinson, 1970;
Turner and Tomé, 1994). Following Hill, other formulations based on linearized stress–strain relations were proposed, such
as secant methods (Berveiller and Zaoui, 1979; Tandon and Weng, 1988) and non-incremental tangent formulations for
viscoplasticity (Hutchinson, 1976; Molinari et al., 1987; Lebensohn and Tomé, 1993). An affine formulation for rate-
independent elasto-plasticity was also proposed by Masson et al. (2000). Hill’s incremental formulation is particularly well
suited for elasto-plasticity, as it preserves the incremental structure of the constitutive equations at both phase and
macroscopic levels. On the contrary, secant methods apply to plastic behavior only within a total deformation formalism.

It is well-recognized that both classical tangent and secant formulations yield too stiff responses (Gilormini, 1995;
Suquet, 1996, 1997), and may even violate rigorous bounds obtained in the context of nonlinear elasticity by variational
approaches, like those of Ponte Castañeda (1991). The reason for the overestimation might be attributed to the use of
uniform linearized properties for each plastic phase. This observation motivated the development of methods which use
second moments of the stress (or strain) to account for field fluctuations within the phases. A modified secant theory was
proposed by Suquet (1995), which actually coincides with the variational procedure of Ponte Castañeda (1991) (Suquet,
1995; Ponte Castañeda and Suquet, 1998). In the context of incremental tangent methods, overly stiff predictions may be
avoided by defining the linearized properties using isotropic tangent moduli, instead of anisotropic ones (González and
LLorca, 2000; Doghri and Ouaar, 2003). This heuristic approach provides accurate predictions in many cases (Doghri and
Friebel, 2005; Chaboche et al., 2005; Pierard et al., 2007). Some theoretical justifications for the use of isotropized tangent
operators are found in Chaboche and Kanouté (2003), Chaboche et al. (2005), and Pierard and Doghri (2006).

Recently, Lahellec and Suquet (2007a,b) proposed an incremental variational formulation for materials with a hereditary
behavior described by two potentials: a free energy and a dissipation function. It exploits an incremental variational
formulation for the local behavior (Ortiz and Stainier, 1999) according to which the stress can be derived from a single
incremental pseudo-potential. The effective behavior of the heterogeneous medium is then estimated following a
variational formulation of the homogenization problem at each time step. A linear comparison composite (LCC) is defined
based on a linearization of the dissipation potential and the introduction of piecewise uniform, reference internal variables.
The proposed linearizations inspire respectively from the variational procedure of Ponte Castañeda (1991) (Lahellec and
Suquet, 2007a) and the second-order method of Ponte Castañeda (1996) (Lahellec and Suquet, 2007b). The approach seems
very promising, although estimates were so far presented within the context of nonlinear viscoelasticity only.

The present work is also based on the incremental variational principle of Ortiz and Stainier (1999), but the adopted
strategy to introduce the LCC is different from Lahellec and Suquet. The new procedure exploits the concept of trial strain
involved in the return mapping algorithm of J2 elasto-plasticity. The paper is organized as follows. Section 2 is a short,
original presentation of the incremental variational principle of Ortiz and Stainier (1999) applied to small strain elasto-
plasticity. In Section 3, the homogenization problem is formulated by adopting a variational formalism in a time-
discretized setting. Section 4 proposes an alternative and yet equivalent formulation of the problem based on a LCC. The
formulation suggests an original localization rule based on the trial state. Based on this representation, a simple estimate is
proposed in Section 5. Applications to two-phase particulate composites with highly contrasted phase properties are
presented in Section 6. The model provides satisfying predictions of the effective response in most cases, and is able to
sustain cyclic loads.

Throughout the paper, Einstein’s convention is used, with indices ranging from 1 to 3, unless otherwise indicated. The
products of tensors are expressed as ðA : rÞij ¼ Aijklslk, ðr : rÞ ¼ sijsji, and ðr% rÞijkl ¼ sijskl. The symbols 1 and I stand for
the second and symmetric fourth order identity tensors, respectively. The spherical and deviatoric operators Ivol and Idev

are given by

Ivol & 1
31% 1, Idev & I'Ivol: ð1Þ

The von Mises measures of stress and strain are respectively given by

seq ¼ ð32 s : sÞ
1=2 and eeq ¼ ð23e : eÞ1=2, ð2Þ
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where s and e denote the deviatoric parts of r and e:

s¼ Idev : r, e¼ Idev : e: ð3Þ

2. Local constitutive equations

We focus on materials whose local response can be described by classical J2 elasto-plastic theory with isotropic
hardening. The behavior is assumed to be rate-independent and thermal effects are not considered. The constitutive
equations are written within the framework of Generalized Standard Media (Halphen and Nguyen, 1975; Germain et al.,
1983), according to which state laws and complementary laws for the evolution of the internal variables respectively
derive from a free energy and a dissipation function.

Time integration of the constitutive equations along a given path of applied deformation is performed according to an
incremental variational principle. Numerous authors contributed to the development of variational principles equivalent
to the incremental formulation of elasto-plasticity (e.g. Mialon, 1986; Comi et al., 1991; Martin et al., 1996; Carini, 1996;
Ortiz and Stainier, 1999; Miehe, 2002). In particular, Ortiz and Stainier (1999) proposed a unified formulation providing
updates for the internal variables in the general context of elasto-(visco)plasticity at finite strains. On a time interval,
updates of internal variables are obtained from the minimization of a suitably chosen functional, involving the free energy
and the dissipation function. A remarkable advantage of the formulation is that the minimized functional constitutes a
unique potential for the stress. This feature is the cornerstone of the homogenization procedure proposed in the sequel.

This section gives an extensive description of the incremental variational principle of Ortiz and Stainier (1999) in the
case of small strain elasto-plasticity. In particular, the classical radial return scheme is shown to derive from this principle.

2.1. Thermodynamic framework

Under the small displacement hypothesis, the (symmetric) total strain tensor e is classically decomposed into an elastic
and a plastic part:

e¼ eeþep: ð4Þ

The chosen set of state variables comprises the total strain e, the plastic strain ep and an additional scalar variable p
describing isotropic hardening and related to the accumulation of plastic deformation.

Contrarily to classical formulations (as described for instance in Lemaı̂tre and Chaboche, 1990; Maugin, 1992), no yield
function is explicitly introduced. Instead, kinematic restrictions related to the plastic flow are postulated a priori. Based on
the expected plastic flow kinematics in von Mises plasticity, the rate of plastic strain is split into a direction N and
amplitude _p:

_ep ¼ _pN, ð5Þ

where N is a kinematic variable1 satisfying the following constraints:

trðNÞ ¼ 0 and N : N ¼ 3
2: ð6Þ

The constraints on N ensure incompressibility of the plastic flow and uniqueness of decomposition (5). With such norm of
N, it is easy to check that: _p ¼ ðð2=3Þ_ep : _epÞ1=2, so that the scalar variable p is the classical accumulated plastic strain. The
kinematic variable N will be specified later.

Supposing that the elastic response is independent of irreversible processes, the Helmholtz free energy (per unit
volume) admits the following additive decomposition:

cðe,ep,pÞ ¼ceðe'epÞþcpðpÞ: ð7Þ

The elastic part ce represents the energy stored within the material and recoverable through elastic relaxation. A linear
response in the elastic regime is obtained by taking ce quadratic in the elastic strain:

ceðe'epÞ ¼ 1
2ðe'e

pÞ : Ce : ðe'epÞ, ð8Þ

where Ce is the elastic stiffness operator. The plastic part cp describing (isotropic) hardening is written as

cpðpÞ ¼
Z p

0
RðqÞ dq, ð9Þ

where R(q) represents the hardening stress (the function R is supposed to be given). Kinematic hardening can be modeled
by including a dependence of the plastic potential on the plastic strain ep. However, kinematic hardening is not considered
in the homogenization model proposed here.

1 The kinematic variable N represents the direction of plastic flow. It should not be confused with some kinematic variable for the description of
kinematic hardening. The latter is not considered in the present work.
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The state law for the stress is obtained from the free energy as

r¼
@c
@e

ðe,ep,pÞ ¼ '
@c
@ep

ðe,ep,pÞ ¼
@ce

@ee
ðe'epÞ: ð10Þ

Hence, the stress is the force associated with both the total strain and the plastic strain. Similarly, the so-called hardening
stress is the thermodynamic force associated with the internal variable p:

R¼
@c
@p

ðe,ep,pÞ ¼
@cp

@p
ðpÞ: ð11Þ

State laws (10) and (11) must be supplemented by a kinetic relation prescribing the evolution of the internal variable p
(the evolution of ep being given by the flow rule (5)). The complementary law must ensure that the mechanical dissipation
D is non-negative. Here, the dissipation expresses as (e.g. Lemaı̂tre and Chaboche, 1990):

D¼ r : _ep'R _pZ0: ð12Þ

The dissipation may conveniently be rewritten in a condensed form that accounts for the flow rule (5):

D¼ YðNÞ _p, ð13Þ

where the function Y is defined, for a given state fe,ep,pg, as
YðNÞ ¼ r : N'R: ð14Þ

Expression (13) of the dissipation indicates that the new scalar quantity Y is the force conjugated to p, when it is computed
for the actual flow direction N. Then, the evolution law for p can be expressed as a kinetic relation between Y and _p. Based
on the theory of Generalized Standard Media, it is supposed to derive from a dissipation function fð _pÞ:

Y ¼
@f
@ _p

ð _pÞ or, equivalently _p ¼
@fn

@Y
ðYÞ, ð15Þ

where fn is the convex dual of f by Legendre transform:

fnðYÞ ¼ sup
_p
f _pY'fð _pÞg: ð16Þ

By choosing fð _pÞ non-negative, convex and such that fð0Þ ¼ 0, the mechanical dissipation (13) is necessarily positive.

Remark 1. The comparison between Y and a thermodynamic force can be further justified on energy basis. Consider
virtual (and independent) perturbations p-pþdp and ep-epþdep, with dep & ~Ndp, ~N being an arbitrary flow direction.
The total deformation is kept constant. The corresponding variation of the free energy is then

dc¼
@ce

@ee
:
@ee

@ep
: depþ

@cp

@p
dp

! "
&'Yð ~N Þdp: ð17Þ

Thus, the quantity Yð ~N Þdp measures the variation of free energy at constant total deformation, for a given variation of p
and an arbitrary direction of plastic flow ~N .

The classical equations of rate-independent elasto-plasticity are retrieved by taking the dissipation function homo-
geneous of degree one with respect to (w.r.t.) _p:

fð _pÞ ¼
sY _p, _pZ0,

þ1 otherwise:

(

ð18Þ

Since f is not differentiable at _p ¼ 0, the partial derivative in (15) must be understood in the sense of sub-differential
(Rockafellar, 1970; Moreau, 1976). The kinetic relation (15) yields

YosY 3 _p ¼ 0,

Y ¼ sY 3 _pZ0: ð19Þ

In other words, deformations are purely elastic when the forces are inside an elasticity domain ½0,sY ½. Plastic flow occurs
when the force Y reaches the yield stress sY . In addition, Y cannot leave the yield surface when plastic deformation occurs
( _p40). On the other hand, negative values of _p are prohibited, as they would imply infinite dissipation. The function fð _pÞ
defines a convex set whose indicator function is precisely the dual fn of f (see e.g. Maugin, 1992), which is here given by

fnðYÞ ¼
0, YrsY ,

þ1 otherwise:

(
ð20Þ

This convex set precisely coincides with the elasticity domain just introduced. Thus, the existence of an elasticity domain
follows from the definition of the dissipation function.

The kinematic variable N was not specified up to now. Actually, it can be shown that N is found by maximizing the
dissipation at fixed p and _p. This follows from a continuous variational principle introduced by Ortiz and Stainier (1999),
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which is not presented here for brevity. The kinematic variable will be specified within the discretized formulation
presenter hereafter.

2.2. Incremental variational principle

We now consider the problem of integrating the constitutive relations over a time increment ½tn,tnþ1). The state at tn is
supposed to be given: fen,e

p
n,png, so as the total deformation at tnþ1 : enþ1. We aim to compute the stress rnþ1, the plastic

strain epnþ1 and the accumulated plastic strain pnþ1 at tnþ1. We first assume that the rate of accumulated plastic strain _p is
constant over the time step and given by the ratio Dp=Dt, with Dð*Þ ¼ ð*Þnþ1'ð*Þn. Similarly, the plastic flow rule (5) is
discretized as

Dep ¼DpN, ð21Þ

where N is an (a priori unknown) constant plastic flow direction for the time step. Ortiz and Stainier (1999) proposed the
following incremental variational principle:

WDðenþ1Þ ¼ inf
Dp,N

JDðenþ1,Dp,NÞ, ð22Þ

where the minimization w.r.t. N is performed under constraints (6) and

JDðenþ1,Dp,NÞ ¼cðenþ1,e
p
nþ1,pnþ1Þ'cnþDtf Dp

Dt

! "
, ð23Þ

where epnþ1 is obtained from the discretized flow rule (21) and cn is the free energy computed for the (given) state
variables at tn. Then, considering the stationarity conditions w.r.t. Dp and N in (22), the stress tensor at tnþ1 is given by

rnþ1 ¼
dWD

denþ1
ðenþ1Þ ¼

@JD
@enþ1

ðenþ1,Dp,NÞ, ð24Þ

where Dp and N are the solutions of the minimization problem (22). Thus, the functionWD plays the role of an incremental
potential for the stress. In the following we show that the optimality conditions w.r.t. Dp and N yield the classical
incremental relations of J2 plasticity. In particular, the well-known radial return scheme with its predictor and corrector
steps (Wilkins, 1964, see also Simo and Hughes, 1998 or Doghri, 2000) is retrieved.

Taking into account the discretized flow rule (21), the stationarity condition of JD w.r.t. Dp gives the discretized kinetic
relation (15):

Ynþ1ðN,pnþ1Þ ¼
@f
@ _p

Dp
Dt

! "
, ð25Þ

where the function Ynþ1 is defined similarly as in the continuous case (14):
Ynþ1ðN,pnþ1Þ & rnþ1 : N'Rðpnþ1Þ: ð26Þ

Note that rnþ1 now depends on N, since:

rnþ1 ¼
@ce

@ee
ðeenþ1Þ with eenþ1 ¼ enþ1'epn'DpN: ð27Þ

Therefore, it is conveniently rewritten as

rnþ1 ¼ Ce : ðetrnþ1'DpNÞ ¼ rtr
nþ1'DpðC

e : NÞ, ð28Þ

introducing the trial (or predictor) elastic strain etrnþ1 and the corresponding trial stress:

etrnþ1 & enþ1'epn, ð29Þ

rtr
nþ1 & Ce : etrnþ1: ð30Þ

The minimization of JD w.r.t. N under constraints (6) is performed using Lagrange multipliers and it yields (see
Appendix A)

N ¼
3
2

strnþ1

str
eq,nþ1

¼
etr

etreq
: ð31Þ

Expression (31) of the kinematic variable is obtained assuming isotropic elasticity, in which case the elastic stiffness tensor
admits the following decomposition:

Ce ¼ 3kIvolþ2mIdev, ð32Þ

where k and m are the elastic bulk and shear moduli, respectively.
Substituting (31) into (26), the stationarity condition (25) for Dp becomes

'3metreq,nþ1þ3mDpþRðpnþ1Þþ
@f
@ _p

Dp
Dt

! "
¼ 0: ð33Þ
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The problem of the non-smoothness of the dissipation function for Dp¼ 0 can be circumvented by first evaluating the
slope of the functional JD for Dp¼ 0þ . If it is negative, that is

'3metreq,nþ1þRðpnÞþsY o0, ð34Þ

then the optimal Dp is positive, and satisfies the following equation:

'3metreq,nþ1þ3mDpþRðpnþDpÞþsY ¼ 0: ð35Þ

Otherwise, the optimal Dp is zero, as negative values are prohibited (they would lead to infinite dissipation), and the increment
is elastic. Therefore, the minimization problem associated with the incremental variational principle involves the evaluation of a
yield criterion in terms of an elastic predictor, and a plastic correction step, exactly like in the classical return mapping.

Remark 2. The incremental functionals WD and JD are related to a time increment and they depend on the past loading
history. Therefore, they are not state functions. For this reason, WD should preferably be referred to as a pseudo-potential
for the stress.

3. Homogenization

3.1. Local potential

We consider a representative volume element (RVE) V of a composite with N elasto-plastic phases r¼1,y,N. Each phase
occupies a domain Vr of the RVE with volume fraction cr ¼ Vr=V and characteristic function wðrÞ, with wðrÞðxÞ ¼ 1 if x is in
phase r, and 0 elsewhere. The local constitutive behavior is characterized by a free energy and a dissipation function:

cðx,e,ep,pÞ ¼
XN

r ¼ 1

wðrÞðxÞcðrÞðe,ep,pÞ, fðx, _pÞ ¼
XN

r ¼ 1

wðrÞðxÞfðrÞð _pÞ, ð36Þ

where

cðrÞðe,ep,pÞ ¼ceðrÞðe'epÞþcpðrÞðpÞ, ð37Þ

ceðrÞðe'epÞ ¼ 1
2ðe'e

pÞ : CeðrÞ : ðe'epÞ, ð38Þ

CeðrÞ ¼ 3kðrÞIvolþ2mðrÞIdev, ð39Þ

cpðrÞðpÞ ¼
Z p

0
RðrÞðqÞ dq, ð40Þ

fðrÞð _pÞ ¼ _psðrÞ
Y if _pZ0, þ1 otherwise: ð41Þ

Adopting the incremental setting of Section 2.2, and assuming the local state at tn to be given, the internal variables epnþ1
and pnþ1, as well as the kinematic variable N are determined from the solution of the following local minimization
problem at a given material point:

WDðx,enþ1Þ ¼ inf
Dp,N

JDðx,enþ1,Dp,NÞ, ð42Þ

where the minimization w.r.t. N is performed under constraints (6). The functional JD is given by

JDðx,enþ1,Dp,NÞ ¼cðx,enþ1,e
p
nþ1,pnþ1Þ'cnðxÞþDtf x,

Dp
Dt

! "
, ð43Þ

where epnþ1 depends on Dp and N through the incremental flow rule (21). Note that JD (and thus WD) depend on x not only
through the characteristic functions wðrÞ in (36), but also through the fields epnðxÞ and pnðxÞ. The function (42) acts as a
potential for the stress:

rnþ1 ¼
@WD

@enþ1
ðenþ1Þ: ð44Þ

3.2. Effective behavior

Let / *S and / *Sr denote a volume average over the RVE and phase r, respectively, with / *S¼
PN

r ¼ 1 cr/ *Sr . We
aim to compute the effective stress response of the composite rðtÞ &/rðtÞS for a given history of prescribed deformation
eðtÞ &/eðtÞS. In the time-discretized setting, the effective behavior of the composite at time tnþ1 can be determined from
the effective incremental energy function (Miehe, 2002; Lahellec and Suquet, 2007a):

WDðenþ1Þ & inf
enþ 12Kðenþ 1Þ

/WDðx,enþ1ÞS, ð45Þ
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where the set Kðenþ1Þ of admissible strain fields is defined as

Kðenþ1Þ ¼ fenþ1 ¼ 1
2ðð=uÞnþ1þð=uÞTnþ1Þ,/enþ1S¼ enþ1g, ð46Þ

where u denotes the displacement field within the RVE. For definiteness of problem (45), boundary conditions satisfying
the constraint on the average of the strain field in (46) must be imposed on the boundary of the RVE. Linear displacement
boundary conditions such that unþ1 ¼ enþ1 * x on @V may be adopted. Periodic boundary conditions or surface traction
boundary conditions could alternatively be considered, see for instance Miehe (2002).

Eq. (45) defines an effective incremental potential for the composite WD from which the macroscopic stress is derived:

rnþ1 ¼/rnþ1S¼
@WD

@enþ1
ðenþ1Þ: ð47Þ

A proof of the latter equality is given by Lahellec and Suquet (2007a) and reads as follows. First, the derivative of WD w.r.t.
enþ1 is computed:

@WD

@enþ1
ðenþ1Þ ¼

@JD
@enþ1

ðx,enþ1,anþ1Þ :
@enþ1

@enþ1

# $
þ

@JD
@anþ1

ðx,enþ1,anþ1Þ :
@anþ1

@enþ1

# $
, ð48Þ

where anþ1 collectively denotes Dp and N, solutions of the minimization problem (42) at tnþ1. The second term on the
right vanishes due to the stationarity of JD w.r.t. anþ1 (implicitly taking the kinematic constraints on N into account) and
the first one gives, thanks to Hill’s Lemma (Hill, 1967):

rnþ1 :
@enþ1

@enþ1

# $
¼/rnþ1S :

@enþ1

@enþ1

# $
¼/rnþ1S¼ rnþ1: ð49Þ

Making use of expressions (36), (42) and (43), the effective incremental potential (45) is rewritten as

WDðenþ1Þ ¼ inf
enþ 12Kðenþ 1Þ

inf
Dp,N

XN

r ¼ 1

wðrÞðxÞ cðrÞðenþ1,e
p
nþ1,pnþ1Þ'cðrÞ

n ðxÞþDtfðrÞ Dp
Dt

! "% &( )* +
: ð50Þ

The solution fields Dp and N fluctuate within the composite, depending on the local strain enþ1 and state variables at tn, e
p
n

and pn. Obviously, an exact semi-analytical solution for problem (50) is out of range and approximations are required.
A straightforward simplification to problem (50) consists in considering piecewise uniform internal variables. As shown

in Appendix B, such simplification leads to the transformation field analysis (TFA): the strain field is computed on a
comparison composite characterized by the elastic moduli, with the plastic strain acting as an eigenstrain. Updates of the
internal variables result from the incremental variational principle and obey a radial return scheme for each phase.
However, it is well known that the predictions of the TFA are too stiff when it is applied to two-phase systems, because it is
based on purely elastic accommodation.

The homogenization model presented in the sequel is based on different linearized interaction relations. Inspiring from
the variational technique of Ponte Castañeda (1991, 1992), an original linearization strategy is presented, according to
which the effective potential (50) is reexpressed in terms of the effective potential of a linear comparison composite (LCC)
characterized by secant operators for the trial strain–stress relation. Based on this formulation, estimates of the effective
behavior are proposed. In the remainder of the paper, all quantities are evaluated at tnþ1 (subscripts (nþ1) omitted for
simplicity), unless otherwise indicated.

4. Variational procedure: definition of a linear comparison composite

4.1. Phase potential

As a starting point, we consider that the infimum over the kinematic variable N in (50) is satisfied at each material
point in the composite, so that expression (31) may be used. Then, the elastic strain can be expressed as a function of the
trial strain and Dp as

ee ¼ etr'Dep ¼ etr'DpN with N ¼
etr

etreq
: ð51Þ

It follows that the hydrostatic and equivalent elastic strains can be rewritten as

eem ¼ etrm and eeeq ¼ 1'
Dp
etreq

 !
etreq, ð52Þ

where the hydrostatic strain is defined as: em & 1
3 trðeÞ. Now, consider the following expression for the elastic free energy (38):

ceðrÞðeeÞ ¼ 9
2 k

ðrÞðeemÞ2þ3
2m

ðrÞðeeeqÞ2: ð53Þ
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Introducing relations (52) into the latter expression, the elastic free energy can be reexpressed in terms of the trial strain.
It yields

ceðrÞðeeÞ &CeðrÞðetr ,DpÞ ¼ 9
2k

ðrÞðetrmÞ2þ f ðrÞððetreqÞ2,DpÞ, ð54Þ

where the function f(r) is given by

f ðrÞððetreqÞ2,DpÞ ¼
3
2
mðrÞ 1'

Dpffiffiffiffiffiffiffiffiffiffiffiffi
ðetreqÞ2

q

0

B@

1

CA

2

ðetreqÞ2 ¼
3
2
mðrÞð

ffiffiffiffiffiffiffiffiffiffiffiffi
ðetreqÞ2

q
'DpÞ2, ð55Þ

which is a non-negative function of ðetreqÞ2, with f ð0,DpÞ ¼ 3
2mðrÞðDpÞ2 and f ðrÞ-þ1 as ðetreqÞ2-1 (Fig. 1(a)). The function is

formally extended on ðetreqÞ2o0 as f ðrÞððetreqÞ2,DpÞ & þ1. Therefore, f(r) is convex w.r.t. ðetreqÞ2 (and lower semi-continuous).
In order to introduce linear comparison properties, and inspiring from the procedure of Ponte Castañeda (1991), the

Legendre transform of f ðrÞ is computed:

f ðrÞ+
3
2
mðrÞ
0 ,Dp

! "
¼ sup

ðetreqÞ2 Z0

3
2
mðrÞ
0 ðetreqÞ2'f ðrÞ ðetreqÞ2,Dp

( )% &
, ð56Þ

where the non-negativeness of ðetreqÞ2 is ensured by the definition of f(r) for negative ðetreqÞ2. The expression between curly
brackets in Eq. (56) is maximized by setting its derivative w.r.t. ðetreqÞ2 equal to zero, which yields the following expression
for the dual variable:

mðrÞ
0 ¼ mðrÞ 1'

Dp
etreq

 !
: ð57Þ

Solving for ðetreqÞ2 gives

ðetreqÞ2 ¼
mðrÞ

mðrÞ'mðrÞ
0

 !2

ðDpÞ2: ð58Þ

An explicit expression of the dual convex of f(r) is obtained by substituting (58) into (56) (Fig. 1(b)):

f ðrÞn
3
2
mðrÞ
0 ,Dp

! "
¼

3
2
mðrÞ
0 mðrÞ ðDpÞ2

ðmðrÞ'mðrÞ
0 Þ

mðrÞ
0 omðrÞ, DpZ0,

0, Dp¼ 0,

þ1 otherwise:

8
>>>><

>>>>:

ð59Þ

As f ðrÞ is convex (and lower semi-continuous), the bidual f ðrÞnn & ðf ðrÞnÞn of f(r) is f(r) itself:

f ðrÞððetreqÞ2,DpÞ ¼ f ðrÞnnððetreqÞ2,DpÞ ¼ sup
mðrÞ
0

rmðrÞ

3
2
mðrÞ
0 ðetreqÞ2'f ðrÞn

3
2
mðrÞ
0 ,Dp

! "% &
: ð60Þ

Expression (60) of f ðrÞ is now introduced into expression (54) of the elastic free energy, leading to

CeðrÞðetr ,DpÞ ¼ sup
mðrÞ
0

rmðrÞ

W ðrÞ
0 ðetr ,mðrÞ

0 Þ'f ðrÞn
3
2
mðrÞ
0 ,Dp

! "% &
, ð61Þ

Fig. 1. The function f ððetreqÞ2 ,DpÞ (a) and its convex dual by the Legendre transform, f nð32m0 ,DpÞ (b). Dp acts as a parameter, which is taken positive in the
figures.
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where W ðrÞ
0 is similar in form to the elastic energy of a linear, isotropic material:

W ðrÞ
0 ðetr ,mðrÞ

0 Þ ¼ 9
2 k

ðrÞðetrmÞ2þ3
2 m

ðrÞ
0 ðetreqÞ2 ¼ 1

2 e
tr : CðrÞ

0 : etr ¼ 1
2ðe'e

p
nÞ : C

ðrÞ
0 : ðe'epnÞ, ð62Þ

with CðrÞ
0 given by

CðrÞ
0 ¼ 3kðrÞIvolþ2mðrÞ

0 Idev: ð63Þ

Therefore, the dual variable mðrÞ
0 introduced by the Legendre transform plays the role of a shear modulus in a fictitious

linear elastic material with potential (62). Accordingly, it should be positive everywhere. It will be shown that it is indeed
the case according to the model proposed in the next section. Note that mðrÞ

0 fluctuates within phase r, according to its
expression (57). On the other hand, the plastic strain epn plays the role of an eigenstrain field applied to the linear
comparison material.

The linearization suggested by the variational procedure can be interpreted as follows. Using expression (61) for the
elastic part of the free energy, the local stress in the composite is given by

r¼
@CeðrÞ

@etr
:
@etr

@ee
¼ CðrÞ

0 : etr : ð64Þ

Thus, the comparison moduli CðrÞ
0 play the role of secant moduli in the stress–trial strain relation (Fig. 2). The linearization

technique involved in the present approach can therefore be referred to as a trial, secant method.

Remark 3. Interestingly, the comparison shear modulus m0 (57) coincides with coefficient k2 in the following spectral
decomposition of the algorithmic tangent operator of J2 plasticity:

Calg ¼ 3k1C
ð1Þ þ2k2C

ð2Þ þ2k3C
ð3Þ, ð65Þ

where tensors CðiÞ are given by

Cð1Þ ¼ Ivol, Cð3Þ ¼ 2
3 N % N, Cð2Þ ¼ Idev'2

3N % N, ð66Þ

and satisfy: CðiÞ : CðjÞ ¼ dijCðiÞ (no sum over i). The decomposition (65) was introduced by Ponte Castañeda (1996) for
tangent operators in nonlinear elasticity. When applied to the algorithmic tangent operator of J2 elasto-plasticity, the
coefficients ki read (Doghri and Ouaar, 2003, recall that str

eq ¼ 3metreqÞ

k1 ¼ k, k2 ¼ m 1'3m Dp
str
eq

 !
, k3 ¼ m 1'

3m
3mþR0ðpÞ

! "
: ð67Þ

4.2. Overall potential

We now use the linearization technique presented in the previous section to express the overall potential of the
composite in terms of the effective potential of a LCC. Substituting expression (61) together with (62) into that of the
effective potential (50) leads to

WDðeÞ ¼ inf
e2KðeÞ

inf
DpZ0

sup
0omðsÞ

0
rmðsÞ

Xn

r ¼ 1

wðrÞðxÞ W ðrÞ
0 ðe'epn,m

ðrÞ
0 Þ'f ðrÞn

3
2
mðrÞ
0 ,Dp

! "
þcpðrÞðpnþDpÞ'cðrÞ

n ðxÞþDtfðrÞ Dp
Dt

! "! "( )* +

,

ð68Þ

in which the condition DpZ0 follows from the specific form (41) of the dissipation function. The expression between curly
brackets is convex in e (under the ansatz that mðrÞ

0 is positive) and concave w.r.t. mðrÞ
0 . According to the saddle-point theorem

(Rockafellar, 1970), the order of the infimum w.r.t. e and supremum w.r.t. mðrÞ
0 can be interchanged, and an alternative

Fig. 2. The proposed variational formulation can be interpreted as a secant method based on the elastic trial strain: etrnþ1 ¼ enþ1'e
p
n .
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representation is obtained:

WDðeÞ ¼ inf
DpZ0

sup
0omðsÞ

0
rmðsÞ

W 0ðe,mðsÞ
0 Þþ

Xn

r ¼ 1

wðrÞðxÞ 'f ðrÞn
3
2
mðrÞ
0 ,Dp

! "
þcpðrÞðpnþDpÞ'cðrÞ

n ðxÞþDtfðrÞ Dp
Dt

! "! "* +( )

, ð69Þ

where W 0 is the effective potential of a LCC characterized by phase potentials W ðrÞ
0 :

W 0ðe,mðsÞ
0 Þ ¼ inf

e2KðeÞ

Xn

r ¼ 1

wðrÞðxÞW ðrÞ
0 ðe'epn,m

ðrÞ
0 Þ

* +

: ð70Þ

The expression between curly brackets in (69) is not convex w.r.t. Dp, so that the order of the infimum and supremum
operations may not be inverted. Accounting for the stationarity w.r.t. the fields mðrÞ

0 and Dp, the overall stress of the
composite is given by

r ¼
@WD

@e
ðeÞ ¼

@W 0

@e
ðe,mðsÞ

0 Þ: ð71Þ

The formulation (69) of the homogenization problem, supplemented by the local flow rule (21), is completely equivalent to
the original one (50), and is therefore as complicated to solve. However, it involves the effective energy of a LCC, which
constitutes the first step towards the derivation of estimates.

4.3. Approximation by piecewise uniform shear moduli

A straightforward (and probably unavoidable) approximation to formulation (69) consists in considering piecewise
uniform shear moduli within the LCC:

m0ðxÞ ¼
XN

r ¼ 1

wðrÞðxÞmðrÞ
0 , ð72Þ

where mðrÞ
0 is now uniform in phase r. This corresponds to a restriction of the solutions space in the variational problem

(69). In (72), it is assumed that the spatial distribution of the phases in the LCC coincides with the one in the actual
composite.2

Approximation (72) also implies piecewise uniformity of the optimal field DpðxÞ, solution of the variational problem
(69). Indeed, consider the composite in a strain- and stress-free configuration at t¼t0, so that pn is initially piecewise
uniform (and zero). As all terms involving p and/or Dp in the functional between curly brackets in Eq. (69) are piecewise
uniform, it follows that DpðxÞ solution of the infimum problem at t1 is also piecewise uniform. Applying the same
reasoning at each subsequent time step, the fields DpðxÞ, as well as pðxÞ at any time tnþ1 are necessarily piecewise uniform.

5. An estimate based on uniform eigenstrain

The piecewise uniformity of the shear moduli and the internal variable p (as a consequence) dramatically reduces the
difficulty of problem (69). However, the eigenstrain field epn in (70) fluctuates within each plastic phase, preventing a direct
application of linear estimates for thermoelastic composites. Therefore, an additional approximation is required, which
might consist in considering a uniform, reference plastic strain at tn for each phase in expression (70). A rather intuitive
choice is to set the reference plastic strain equal to the average of the plastic strain in the phase. Unfortunately, results
obtained so far under this assumption turned out to be inconsistent in most examples of particulate composites reinforced
by elastic inclusions (Brassart, 2011).

The estimate proposed and validated in the sequel is based on a different, and yet simpler modeling assumption of a
uniform reference plastic strain for the whole composite. The effective potential (70) of the LCC is then approximated as

W 0ðe,mðsÞ
0 Þ , ~W 0ðe,mðsÞ

0 Þ ¼ inf
e2KðeÞ

Xn

r ¼ 1

wðrÞðxÞW ðrÞ
0 ðe'êpn,m

ðrÞ
0 Þ

* +
, ð73Þ

where êpn is the reference plastic strain, given by

êpn &/epnS: ð74Þ

Then, the effective potential of the LCC is simply given by
~W 0ðe,mðsÞ

0 Þ ¼ 1
2ðe'/epnSÞ : C0 : ðe'/epnSÞ, ð75Þ

where C0 is the overall elastic stiffness of the LCC, to be computed from any linear scheme suited for the microstructure
under consideration.

2 This prescription is not absolutely necessary, nor necessarily optimal, as noted by Suquet (1993). However, the question of considering a LCC with a
microstructure different from the actual one is not investigated in the present work.
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The proposed simplified model considers the LCC to be subjected to a uniform pre-deformation corresponding to the
average plastic deformation at the previous time step. With such simplification, inter-phase (as well as intra-phase) plastic
strain heterogeneities are overlooked when solving the LCC problem. Note however that the actual plastic strain field is not
supposed to be uniform: the uniform reference plastic strain is used for the localization step only. Updates for the per-
phase averages of the plastic strain will be described later. Despite the apparent crudeness of prescription (74), valuable
predictions are obtained when the model is applied to two-phase particulate composites, as shown in Section 6.

Remark 4. Adopting the following change of variable: e0ðxÞ & eðxÞ'êpn, where eðxÞ is the strain field solution of problem
(73), the latter is equivalently reexpressed as

~W 0ðe,mðsÞ
0 Þ ¼ inf

e02Kðe tr Þ

XN

r ¼ 1

wðrÞðxÞW ðrÞ
0 ðe0,mðrÞ

0 Þ

* +
, ð76Þ

where etr & e'/epnS. Note that the field e0 is compatible.

According to (71), the macroscopic stress in the nonlinear composite is given by the macroscopic stress in the LCC:

r ¼ C 0 : ðe'/epnSÞ: ð77Þ

Relation (77) also implies that the volume average of the stress in the nonlinear composite and in the LCC coincide.
Therefore, it seems natural to approximate per-phase averages of the stress in the nonlinear composite by corresponding
ones in the LCC:

/rSr ¼/r0Sr , ð78Þ

where r0 denotes the stress field in the LCC with uniform eigenstrain. We will further assume that moments of the trial
strain field in the nonlinear composite are approximated by corresponding moments of the field e0 computed in the LCC:

/etrSr ¼/e0Sr , /ðetreqÞ2Sr ¼/ðe0eqÞ2Sr : ð79Þ

5.1. Optimization w.r.t. mðrÞ
0 and DpðrÞ

Adopting expression (76) for the effective potential of the LCC, we now address the optimization w.r.t. mðrÞ
0 and DpðrÞ in

(69). The stationarity condition w.r.t. mðrÞ
0 writes

@ ~W 0

@mðrÞ
0

'cr
@f ðrÞn

@mðrÞ
0

mðrÞ
0 ,DpðrÞ

( )* +

r

¼ 0: ð80Þ

A classical result in the homogenization of linear composites indicates that the first term in the left-hand side member can
be rewritten in terms of the second moment of the strain field in the LCC as (Bobeth and Diener, 1986; Kreher, 1990; Ponte
Castañeda and Suquet, 1998)

@ ~W 0

@mðrÞ
0

¼
3
2
cr/ðe0eqÞ2Sr ¼

3
2
cr/ðetreqÞ2Sr , ð81Þ

where the last equality follows from assumption (79). On the other hand, the derivative of f ðrÞn w.r.t. mðrÞ
0 gives

@f ðrÞn

@mðrÞ
0

ðmðrÞ
0 ,DpðrÞÞ ¼

3
2

mðrÞDpðrÞ

mðrÞ'mðrÞ
0

!2

: ð82Þ

Combining the last three equations and accounting for the homogeneity of DpðrÞ, one obtains an explicit expression of the
effective shear moduli which is similar in form to (57):

mðrÞ
0 ¼ mðrÞ 1'

DpðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q

0

B@

1

CA: ð83Þ

Taking the stationarity w.r.t. mðrÞ
0 into account, the minimization w.r.t. DpðrÞ yields the following condition in phase r:

'3mðrÞ mðrÞ
0

mðrÞ'mðrÞ
0

DpðrÞ þRðrÞðpðrÞn þDpðrÞÞþ
@fðrÞ

@ _p
DpðrÞ

Dt

! "
¼ 0, ð84Þ

or, making use of (83):

'3mðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
þ3mðrÞDpðrÞ þRðrÞðpðrÞn þDpðrÞÞþ

@fðrÞ

@ _p
DpðrÞ

Dt

! "
¼ 0: ð85Þ

Recalling Eq. (33), Eq. (85) can be interpreted as a homogenized radial return equation for phase r. A positive DpðrÞ solution
of (85) is found if the slope of the functional to minimize, computed for DpðrÞ-0, is negative. The slope actually is the
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left-hand side of (85). The unique yield criterion for phase r reads

'3mðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
þRðrÞðpðrÞn ÞþsðrÞ

Y o0: ð86Þ

In the yield criterion (86) the second moment /ðetreqÞ2Sr is computed on the LCC characterized by the elastic shear moduli
mðrÞ. Indeed, mðrÞ

0 -mðrÞ as DpðrÞ-0, according to expression (83). If the yield criterion (86) is not satisfied, the increment is
elastic in phase r, and the minimum is achieved for DpðrÞ ¼ 0. Otherwise, the radial return condition (85) takes the familiar
form (35):

'3mðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
þ3mðrÞDpðrÞ þRðrÞðpðrÞn þDpðrÞÞþsðrÞ

Y ¼ 0: ð87Þ

Since Eq. (87) may be rewritten as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
¼DpðrÞ þ

1
3mðrÞ ðR

ðrÞðpðrÞn þDpðrÞÞþsðrÞ
Y Þ, ð88Þ

the second term of the right hand side is always positive. Hence,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
4DpðrÞ and mðrÞ

0 is always positive, as
announced.

5.2. Homogenized flow rule

The proposed estimate of the composite mechanical response also requires computation of the phase average of the
plastic strain (or plastic strain increment) at each time step:

/DepS¼
XN

r ¼ 1

cr/DepSr ¼
XN

r ¼ 1

crDpðrÞ
etr

etreq

* +

r

: ð89Þ

The average plastic strain update is computed by making use of the following observations. On the one hand, the phase
average of the stress is given by

/rSr ¼ CeðrÞ : /etr'DepSr ¼ CeðrÞ : /etrSr'2mðrÞ/DepSr : ð90Þ

On the other hand, according to (78), we also have

/rSr ¼/r0Sr ¼ CðrÞ
0 : /e0Sr ¼ CeðrÞ : /e0Sr'2mðrÞDpðrÞ

/e0Srffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðe0eqÞ2Sr

q : ð91Þ

The last equality is obtained using expression (83) of the shear modulus mðrÞ
0 . Making use of assumption (79), a direct

comparison of the last two expressions yields

/DepSr ¼DpðrÞ
etr

etreq

* +

r

¼DpðrÞ
/etrSrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q , ð92Þ

which defines an effective flow direction NðrÞ for phase r:

NðrÞ &
/etrSrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q : ð93Þ

Eq. (92) can be viewed as a homogenized plastic flow rule for the average plastic strain.

Remark 5. In general, NðrÞ : NðrÞa3=2. Instead:

NðrÞ : NðrÞ ¼
3
2

ð/etrSrÞ
2
eq

/ðetreqÞ2Sr

, ð94Þ

where the second-order moment of etr is necessarily greater than the first-order moment, except in very specific situations
where fields are homogeneous in each phase.

5.3. Summary of the homogenization procedure

Taking advantage of formulation (76) for the effective behavior of the LCC, algorithmic implementation is rather
straightforward. We consider a composite in a strain- and stress-free configuration at t¼t0. On a time interval ½tn,tnþ1), history
variables at tn are given for each phase r: /epnSr and /pnSr . Given e, the macroscopic strain at tnþ1, the problem is to compute
the macroscopic stress r. In the proposed numerical procedure, we iterate on the value of the reference shear moduli mðrÞ

0 .

- Elastic predictor step. Taking mðrÞ
0 ¼ mðrÞ:

1. Compute the effective stiffness C 0 according to the chosen homogenization scheme for a linear elastic composite.
Next, compute /ðetreqÞ2Sr according to Eq. (81).
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2. Evaluate the yield criterion (86) in each phase:

kðrÞðrÞ &'3mðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
þRðrÞðpðrÞn ÞþsðrÞ

Y :

3. If kðrÞZ0: the increment is elastic in phase r, and mðrÞ
0 ¼ mðrÞ and DpðrÞ ¼ 0.

4. Otherwise, mðrÞ
0 is smaller than mðrÞ and it must be found iteratively.

- Plastic correction step. Iteration (i) (upper index (i) omitted for simplicity). Compute the effective stiffness C 0 according
to the chosen homogenization scheme for a linear elastic composite. For each phase r in which plastic yielding occurs:
1. Compute /ðetreqÞ2Sr according to Eq. (81).
2. Compute DpðrÞ according to Eq. (83):

DpðrÞ ¼
mðrÞ'mðrÞ

0

mðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
:

3. Compute the residual (radial return Eq. (87)):

FðrÞ & '3mðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q
þ3mðrÞDpðrÞ þRðrÞðpðrÞn þDpðrÞÞþsðrÞ

Y :

Iterate on mðrÞ
0 until the absolute value of the residual in each phase becomes lower than a given tolerance.

- After convergence. Compute the increment of average plastic strain:

/DepSr ¼DpðrÞ
/etrSrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðetreqÞ2Sr

q ,

and update the internal variables:

/epSr ¼/epnSrþ/DepSr ,

pðrÞ ¼ pðrÞn þDpðrÞ:

Finally, the macroscopic stress is obtained from the effective stiffness of the LCC as

r ¼ C 0 : ðe'/epnSÞ ¼/rS:

In cases where an expression for the effective stiffness C0 is available in closed form, the procedure is implemented using
the Newton–Raphson method. In the examples of the next section, three iterations are typically sufficient to reach
convergence.

6. Application to two particle-reinforced composites

In this section we compare the predictions of the simplified model proposed in Section 5 to reference results obtained
from full-field finite element (FE) simulations for several two-phase composites. We consider composites made of a square
array of spherical inclusions, which are frequently approximated by axisymmetric unit cells (Fig. 3(a)) allowing full-field
computations at low cost. The geometry is meshed using the GMSH software (Geuzaine and Remacle, 2009), and a typical
mesh comprises approximately 1000 elements and 2700 nodes (Fig. 3(b)). A convergence study was successfully
conducted by comparing the predictions to those obtained with finer meshes (about 2500 elements). FE computations
are performed using ABAQUS 6.9 (2009) using quadratic CAX6 and CAX8 elements. Reference, FE predictions are labeled
‘‘FE’’ in the figures.

Regarding the simplified model, two approaches have been pursued to solve the localization problem over the LCC. On
the one hand, the LCC is homogenized ‘‘exactly’’ using the FE method. In this case, first- and second-order moments of
stress and strain fields involved in the procedure are computed from direct volume averaging of the local fields in the LCC.

Fig. 3. (a) Reference predictions for composites with periodic microstructure are obtained considering cylindrical unit cells. (b) FE computations are
performed using axisymmetric elements.
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In this way, the linearization procedure, together with the other approximation introduced in Section 5, are assessed while
avoiding additional errors related to the use of an approximate linear homogenization scheme. This methodology was
already used in order to evaluate the capabilities of linearization methods by Rekik et al. (2007) and Lahellec and Suquet
(2007a). Corresponding results are labeled ‘‘VARþFE’’ in the figures.

Alternatively, (hopefully) reliable estimates of the effective response of inclusion-reinforced linear elastic composites
are provided by Hashin–Shtrikman (HS) lower bound (Hashin and Shtrikman, 1963; Willis, 1977). An advantage of the HS
bounds is the relative simplicity of implementation: an expression of the effective stiffness of the LCC is then available in
closed-form. The predictions of the variational method combined with the HS lower bound are labeled ‘‘VARþHS-’’ in the
figures.

The composites are subjected to uniaxial tension in the z-direction. The boundary conditions applied to the unit cell are
the following:

u3ðr,z¼H=2Þ ¼ u3, 0oroR,

u3ðr,z¼ 0Þ ¼ 0, 0oroR,

u1ðr¼ 0,zÞ ¼ 0, 0ozoH=2,

u1ðr¼ R,zÞ ¼ u1, 0ozoH=2,

with H¼2R. The displacement u3 is prescribed, while u1 is a priori unknown as the r¼R boundary is traction-free. Loading
involves 50 time increments unless otherwise indicated.

6.1. Elastic inclusions, elasto-plastic matrix

The material under consideration is a metal matrix composite (MMC) with the following properties:

- Inclusions (phase 1): E¼400 GPa, n¼ 0:2.
- Matrix (phase 2): E¼75 GPa, n¼ 0:3, sY ¼ 75 MPa, RðpÞ ¼ hpn, h¼400 MPa, n¼0.4 or n¼0.05.

Two volume fractions of inclusions are considered: c1¼0.15 and c1¼0.30. MMC’s with similar material properties were
previously considered by several authors aiming to assess homogenization models (Segurado et al., 2002; Michel and
Suquet, 2003; Doghri and Ouaar, 2003; González et al., 2004; Chaboche et al., 2005; Pierard et al., 2007) so that the
predictive capabilities of the present approach can easily be evaluated w.r.t. those schemes.

The effective response for both hardening exponents and volume fractions is presented in Fig. 4. The VARþFE model
gives satisfying predictions for both volume fractions in the case n¼0.4, while it overestimates the reference response
when n¼0.05. In the latter case, better predictions are obtained using HS lower bound to homogenize the LCC (VARþHS-
model), due to the compensation of errors between the underestimation brought by the HS lower bound and the
overestimation due to the present choice of LCC. On the other hand, the prediction of the VARþHS-model are too soft in
the case c1¼0.30 and n¼0.4.

The accuracy of the model regarding the phase response is assessed in Fig. 5 taking c1¼0.15. For both hardening
exponents, the proposed estimate correctly predicts the matrix response, even without the additional underestimation
brought by the HS model. The evolution of the accumulated plastic strain in the matrix is also very well captured by the
homogenization models (not shown). The method is less accurate regarding the inclusion response. There is a large
discrepancy between VARþFE and VARþHS-results observed in the inclusions, while they are remarkably close in the
matrix.

Previous examples showed that the model is less accurate when the matrix presents weak hardening. A limit case is
obtained considering a perfectly plastic matrix: R(p)¼0 (other material properties left unchanged). As expected from
previous observations, the VARþFE model overestimates the effective response (Fig. 6(a)), due to an unsuccessful
prediction of the inclusion response (Fig. 6(b)). Predictions are more accurate using HS lower bound to homogenize
the LCC.

Convergence of the model is analyzed in Fig. 7 for c1¼0.15 and n¼0.4, by successively considering 20, 50 and 100
increments to achieve the total elongation. It has been checked against results obtained using a very large number of
increments (up to 10 000) that the curve with 100 increments can be considered as a converged result. The scatter
between the stress–strain curves presented in the figure is very low, as required. Obviously, sufficiently small loading steps
are needed to capture the elastic–plastic transition accurately. Similar conclusions hold for n¼0.05 and the case of a
perfectly plastic matrix.

The variational procedure is able to simulate non-monotonic loadings. Examples of uniaxial tension/compression tests
for c1¼0.15 and c1¼0.30 are presented in Fig. 8, taking n¼0.4. The figure shows comparable accuracy of the proposed
models in tension and compression. For c1¼0.30, the full-field simulation demonstrates a Baushinger effect (early and
progressive plastification in the unloading branches of the cycle). Such effect is related to the heterogeneity of the plastic
strain field which developed during the initial step of uniaxial tension. The proposed model predicts a sharp elastic–plastic
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transition in compression, as the homogenized yield criterion (86) for the matrix phase accounts for isotropic hardening
only. Nevertheless, the stress level after the effective elastic–plastic transition is correctly predicted by the VARþFE model.

6.2. Elasto-plastic inclusions, elasto-plastic matrix

We continue with a composite made of two elasto-plastic phases:

- Inclusions (phase 1): E¼400 GPa, n¼ 0:2, sY ¼ 75 MPa, Rð1ÞðpÞ ¼ hð1Þpn
ð1Þ
, hð1Þ ¼ 1 GPa, nð1Þ ¼ 0:4 or nð1Þ ¼ 0:05.

- Matrix (phase 2): E¼75 GPa, n¼ 0:3, sY ¼ 75 MPa, Rð2ÞðpÞ ¼ hð2Þpn
ð2Þ
, hð2Þ ¼ 400 MPa, nð2Þ ¼ 0:4 or nð2Þ ¼ 0:05.

The volume fraction of inclusions is c1¼0.15.
The effective response of the composite is presented in Fig. 9 for all combinations of inclusion and matrix hardening

exponents. The responses for nð1Þ ¼ 0:05 in Fig. 9(a) are very close to those presented in Fig. 4(a) for composites reinforced
by elastic inclusions. Indeed, it can be checked that plastic deformations in the inclusions are negligible (although non-
zero). On the contrary, when nð1Þ ¼ 0:4 (Fig. 9(b)), plastic deformations are important in both phases. Interestingly, the
VARþFE and VARþHS-models predict almost identical effective response, whereas this is not necessarily true at the
phase level.
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6.3. Perfectly plastic inclusions and matrix

Finally, we consider the case of two perfectly plastic phases: Rð1ÞðpÞ ¼ Rð2ÞðpÞ ¼ 0 with identical yield stresses but distinct
elastic properties, identical to those considered before. The overall yield stress of the composite is obviously
sY ¼ sð1Þ

Y ¼ sð2Þ
Y , and the heterogeneous elastic properties should affect only the macroscopic yield strain. Unfortunately,

the variational procedure fails to predict the exact overall yield stress (Fig. 10(a)). Worse: a strong dependence on the
number of loadsteps is observed, with the overall yield stress decreasing when the load increment is reduced (Fig. 10(b)). A
look at the phase response (not shown) shows that the matrix stress never reaches the yield point, while the inclusion
plastic strain is overestimated.

These results illustrate the limits of the proposed model in which plastic strain incompatibilities are neglected for the
localization step. In the present example, inclusions are stiffer than the matrix and reach their yield point first. After
several load increments, the average plastic strain update is observed to tend towards the macroscopic strain increment:

/DepS¼ c1/DepS1-De: ð95Þ

As the (uniform) eigenstrain increases at the same rate as the macroscopic strain, moments of the trial strain in the phases
(estimated by corresponding moments of the field e0 ¼ e'/epnS in the LCC, see relations (79)) reach a constant value, so as
DpðrÞ and mðrÞ

0 . Consequently, when this ‘‘regime’’ stage is reached, the phase and macroscopic stress tend to a constant
value. Such behavior can be intuitively understood comparing (95) with a similar relation in homogeneous perfect
plasticity, where

_ep-_e or, incrementally Dep-De, ð96Þ

from which it also follows that Detr-0. Only one load step in homogeneous, perfect plasticity suffices to reach the regime.
In the composite, this number is higher (here, about 8), and does not seem to depend on the level of macroscopic strain.
Consequently, the regime is reached at lower macroscopic strain when the load increment is reduced, causing the load
step sensitivity shown in Fig. 10(b).

7. Concluding remarks

Section 4 presented an original equivalent formulation of the homogenization problem involving the potential of a
thermoelastic composite in which the plastic strain field at the previous time step plays the role of an eigenstrain field. In
Section 5, the composite mechanical response was estimated based on the following approximations: (i) piecewise
uniform comparison moduli (and accumulated plastic strain as a consequence) and (ii) uniform reference plastic strain for
tn for the whole composite. The first approximation is commonly adopted in variational procedures (like the variational
procedure of Ponte Castañeda, 1991) and seems unavoidable. The second one amounts to neglect both intra- and
inter-phase plastic strain incompatibilities when solving the localization problem on the LCC. Previous plastic strain is
accounted for on average only. Despite this rough approximation, the estimate provides fairly good predictions in most
examples tested so far in the context of two-phase particulate composites. A notable exception is the case of a composite
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with two perfectly plastic phases having the same yield stress (Section 6.3). In this case, neglecting inter-phase plastic
incompatibilities leads to inconsistent results.

Important aspects of the proposed method are summarized:

- The model is designed for true elasto-plasticity, and does not require the approximation of visco-plasticity or perfect
plasticity. One explicitly accounts for the existence of an elasticity domain, nonlinear hardening, and the hereditary
behavior. In particular, arbitrary loading paths are handled.

- The formulation suggests an original localization rule for elasto-plastic composites based on ‘‘trial secant’’ operators
computed for the second moments of the trial strain field. These operators are softer than the corresponding
elastic ones.

- The algorithmic structure of the incremental equations of elasto-plasticity is preserved in the homogenization scheme.
The model yields a homogenized yield criterion for each elasto-plastic phase, and a homogenized radial return equation
for the internal variable. Both the homogenized yield criterion and the return mapping equation are based on the
second-order moment of the trial strain field as a result from the variational procedure. A homogenized flow rule for
per-phase averages of the plastic strain was also derived.

Future developments of the approach should focus on the account of inter-phase plastic strain incompatibilities in the
localization problem. This can be achieved considering piecewise uniform reference plastic strain in the thermoelastic
problem (70), instead of a uniform one. However, the definition of a proper uniform reference plastic strain for the phase is
not straightforward (Lahellec and Suquet, 2007a; Brassart, 2011), and is left for future work.
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Appendix A. Computation of the kinematic variable using Lagrange multipliers

The kinematic variable N must minimize the functional JD (23) under constraints (6). The corresponding Lagrangian
functional reads

Lðenþ1,pnþ1,N,l1,l2Þ ¼
1
2
ðetrnþ1'DpNÞ : Ce : ðetrnþ1'DpNÞþcpðpnþ1Þ'cnþDtf Dp

Dt

! "
þl1 trðNÞþl2 N : N'

3
2

! "
:

ð97Þ

The kinematic variable N must satisfy the following condition:
@L
@N

ðenþ1,pnþ1,N,l1,l2Þ ¼ 0, ð98Þ

that is,

0¼'DpCe : ðetrnþ1'DpNÞþl11þ2l2N ¼'Dpðrtr
nþ1'DpðC

e : NÞÞþl11þ2l2N: ð99Þ

Additional hypotheses about the free-energy function are required in order to determine N. Here, isotropic elasticity is
assumed, so that the elastic stiffness tensor may be decomposed into volumetric and deviatoric parts, see expression (32).
In this case, condition (99) becomes

'Dp rtr
nþ1'2mDpN

* +
þl11þ2l2N ¼ 0: ð100Þ

The trace of the above expression is computed, leading to

l1 ¼ 1
3Dp trðrtr

nþ1Þ, ð101Þ

which, introduced in (100) yields

'Dpðrtr
nþ1'

1
3 trðr

tr
nþ1ÞÞ1þ2mðDpÞ2Nþ2l2N ¼ 0, ð102Þ

which can be rewritten as

'Dpðstrnþ1Þ ¼'2mðDpÞ2N'2l2N: ð103Þ

This equation shows that the direction N is ‘‘aligned’’ with the tensor strnþ1. The normalizing condition in (6) finally gives

N ¼
3
2

strnþ1

str
eq,nþ1

: ð104Þ
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Appendix B. Link with the transformation field analysis (TFA)

A straightforward simplification to problem (50) would be to restrict the space of solutions for the internal and
kinematic variables to piecewise uniform fields:

DpðxÞ ¼
XN

r ¼ 1

wðrÞðxÞDpðrÞ, NðxÞ ¼
XN

r ¼ 1

wðrÞðxÞNðrÞ, ð105Þ

with trðNðrÞÞ ¼ 0 and NðrÞ : NðrÞ ¼ 3=2. Consequently, the plastic strain tensor is also piecewise uniform:

epðxÞ ¼
XN

r ¼ 1

wðrÞðxÞepðrÞ, ð106Þ

its update being given by the following discretized flow rule:

DepðrÞ ¼DpðrÞNðrÞ: ð107Þ

Using the trial fields (105) in (50) leads to an upper bound for the effective incremental potential (indices nþ1 are omitted
for simplicity):

WDðeÞr inf
e2KðeÞ

inf
DpðsÞ ,NðsÞ

XN

r ¼ 1

wðrÞðxÞ cðrÞðe,epðrÞ,pðrÞÞ'cðrÞ
n ðxÞþDtfðrÞ DpðrÞ

Dt

! "% &( )* +
: ð108Þ

Permuting the order of the infimum operations over the strain field and the internal variables, the following alternative
expression is obtained:

WDðeÞr inf
DpðsÞ ,NðsÞ

W 0ðe,epðsÞÞþ
XN

r ¼ 1

wðrÞðxÞ cpðrÞðpðrÞÞ'cðrÞ
n ðxÞþDtfðrÞ DpðrÞ

Dt

! "! "* +( )

, ð109Þ

where

W 0ðe,epðsÞÞ ¼ inf
e2KðeÞ

XN

r ¼ 1

wðrÞðxÞ
1
2
ðe'epðrÞÞ : Ce : ðe'epðrÞÞ

* +
: ð110Þ

Consequently, the local stress and strain fields may be determined from an elastic analysis on a thermoelastic composite in
which the piecewise uniform plastic strain acts as an eigenstrain. This is exactly the assumption sustaining the TFA.

The stationarity condition w.r.t. DpðrÞ in (109) yields the condition:

/YðNðrÞ,pðrÞÞSr ¼/rSr : N
ðrÞ'RðrÞðpðrÞÞ ¼

@fðrÞ

@ _p
Dp
Dt

! "* +

r

: ð111Þ

The constrained minimization w.r.t. NðrÞ is performed using Lagrange multipliers (see Appendix A), leading to

NðrÞ ¼
/e'epðrÞn Sr

ð/e'epðrÞn SrÞeq
: ð112Þ

Combining the last two equations, it is readily seen that DpðrÞ obeys the radial return scheme driven by the first moment of
the stress in phase r of the thermoelastic composite.
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