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A variational constitutive update algorithm for a set of isotropic
hyperelastic–viscoplastic material models

Eduardo Fancello a,*, Jakson M. Vassoler a,1, Laurent Stainier b,2

aDepartmento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
bDépartement Aérospatiale and Mécanique, Université de Liège, B-4000 Liège, Belgium

In three-dimensional formulations of plasticity, the rate of plastic deformation is usually decomposed in direction and amplitude. In the most simple cases 
of von Mises type flows, this allows to assume a known radial flow direction and computations are reduced to the determination of the amplitude of the 
plastif-ication. In the context of a variational formulation of finite plasticity, it is verified that this decomposition between constitutive and kinematic 
aspects is accomplished by the choice of a quadratic elastic potential (Hencky model). The aim of this paper is to show that a wide set of simple 
hyperelastic–plastic isotropic models not restricted to quadratic elastic behavior can be constructed by relaxing the classical decompo-sition amplitude/

direction by the sum of spectral quantities. In addition, this approach allows for a uni-fied and efficient numerical implementation in which a particular 
hyperelastic–viscoplastic behavior is obtained by a specific choice of the elastic, plastic and dissipative (pseudo)potentials.

1. Introduction

Variational principles for dissipative mechanical systems, such

as in presence of elasto-viscoplastic behavior, have been known

for a while, but have received renewed attention in recent years.

These principles can be written in a continuous or in an incremen-

tal framework (a non-exhaustive list would among others include

[1–3], and references therein). In particular, a variational formula-

tion of constitutive models for standard generalized materials [4],

including irreversible, dissipative, and possibly rate-dependent

behaviors, was proposed in [5,6], initially in an isothermal context,

and later extended to a fully coupled thermo-mechanical context

in [7]. One of the most relevant aspects of variational approaches

is that they provide appropriate mathematical basis for error esti-

mation and mesh adaption [6,8]. This framework has also been

used for developing models of non-cohesive granular media [9],

porous plasticity [10], and nonlinear finite viscoelasticity [11]. In

this latter work in particular, a spectral decomposition of elastic/

inelastic strain/strain-rate quantities was proposed in order to

facilitate the inclusion of arbitrary elastic and inelastic (isotropic)

potentials within the same formalism.

In elasto-plasticity and elasto-viscoplasticity, the rate tensor of

plastic deformation (or its incremental equivalent), is usually

decomposed in direction, related to the gradient of a yield poten-

tial, and magnitude. In the case of von Mises (J2) type flows and

small strain ranges, this decomposition provides a complete sep-

aration between kinematic and constitutive aspects which re-

duces the problem to the determination of the plastification in

a radial known direction. This approach is known as the radial re-

turn algorithm [12,3]. Analogous results are obtained with classi-

cal hyperelastic-based models by using appropriate logarithmic

strain measures and exponential integration algorithm [13–16].

In the variational approach, both internal quantities are deter-

mined by a local minimization process. Moreover, it is shown in

[5] that the kinematic and constitutive decoupling is, once again,

achieved by the choice of logarithmic strain measures, exponen-

tial integration algorithm and quadratic elastic potential (Hencky

model).

The Hencky model is usually appropriate for the representation

of the elastic behavior of metals in which the elastic strains are

small compared the plastic ones. However, this is not the case

for many polymers, whose behavior is frequently classified as vis-

coelastic or viscoplastic depending on the regime of strains and

strain rates to which they are submitted.

The aimof this paper is to show that, embedded in the variational

framework, decoupling properties similar to those mentioned

above may be extended to a wide set of simple hyperelastic–visco-

plastic isotropic models not restricted to quadratic elastic behav-

ior. This is performed by relaxing the classical decomposition

* Corresponding author. Tel.: +55 48 37219899.

E-mail addresses: fancello@grante.ufsc.br (E. Fancello), jaksonmv@hotmail.com

(J.M. Vassoler), L.Stainier@ulg.ac.be (L. Stainier).
1 Present address: Dipartimento di Meccanica, Politecnico di Torino – Corso Duca

degli Abruzzi, 24 10129 Torino, Italy.
2 Research Associate at the Belgian F.R.S.-FNRS.

1

mailto:fancello@grante.ufsc.br
mailto:jaksonmv@hotmail.com
mailto:L.Stainier@ulg.ac.be
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


amplitude/direction in a similar way as done in [11], by using spec-

tral quantities.

This approach was adopted to potentially allow for a natural

combination of viscoelastic and viscoplastic dissipative mecha-

nisms appropriate for a group of thermoplastic polymers, which

is the longer-term motivation of this work.

The paper is organized as follows: Section 2 briefly presents the

variational approach for irreversible constitutive problems. The

application of this approach to elasto-viscoplastic materials is sta-

ted in Section 3 where important results of this work are shown.

Section 4 is dedicated to discuss how the characterization of the

yield limit comes out as a natural consequence of the present ap-

proach. Section 5 shows two particular material models within

the present context while Section 6 presents some numerical

examples showing the behavior of the constitutive problem itself

and its performance in a general finite element code. Final remarks

are shown in Section 7.

2. Incremental formulation for inelastic constitutive behavior

The main assumption in hyperelasticity is the existence of a po-

tential function W which depends on the value of strains only and

whose derivative provides the state of stress at a material point, i.e.,

P ¼
oWðFÞ

oF
¼ 2F

oWðCÞ

oC
: ð1Þ

In (1) F ¼ r0x denotes the deformation gradient, C ¼ FTF is the right

Cauchy–Green tensor and P the first Piola Kirchhoff stress tensor.

Assuming the satisfaction of compatibility and constitutive equa-

tions, the equilibrium problem may be defined by the minimization

of the potential energy

min
x2K

HðxÞ

HðxÞ ¼

Z

X0

WðFðxÞÞdX0 �

Z

X0

b0 � xdX0 þ

Z

C0

f0 � xdC0

� �
;

ð2Þ

where K is the set of admissible deformations.

On the other hand, the state of stress of an inelastic path-depen-

dent dissipative solid cannot be obtained just from the value of fi-

nal strains and it is not any longer possible to define a potential

function with the property (1). The history of the process is usually

described incrementally with the aid of internal (dissipative) vari-

ables. However it is shown in [5,6] that a wide set of dissipative

materials can be modeled by the aid of pseudo-potentials that be-

have like hyperelastic (in the sense that they satisfy (1)) within the

interval of a load increment, i.e.,

Pnþ1 ¼
oWðFnþ1;EnÞ

oFnþ1
¼ 2Fnþ1

oWðCnþ1;EnÞ

oCnþ1
; ð3Þ

where E denotes a set of external and internal variables:

E ¼ fF; Fi;Qg F ¼ FeFi: ð4Þ

The tensors Fe and Fi are the elastic and inelastic parts of the defor-

mation gradient while the quantity Q contains all the remaining

internal variables used to describe the process. The subindices n

and nþ 1 indicate the beginning and end of the load increment

and it is assumed that all quantities at time n are known.

For a quite general set of inelastic problems the potential

WðFnþ1;EnÞ takes the form (see [5,6] for a detailed construction):

WðFnþ1;EnÞ ¼ min
Finþ1
Qnþ1

fWðEnþ1Þ �WðEnÞ þ DtwðF
�
i;Q

�

;EnÞg; ð5Þ

WðEÞ ¼ UðFÞ þ ueðFFi�1Þ þ uiðFi;Q Þ; ð6Þ

where F
�
iðFi

nþ1;EnÞ and Q
�

ðQ nþ1;EnÞ are suitable incremental approx-

imations of the rate variables _F; _Fi and _Q respectively. The free en-

ergy potential W and dissipation pseudo-potential w inside (5) may

take different expressions depending on the particular model

needed. The expression of WðEÞ in (6) assumes that the free energy

can be additively decomposed in potentials U;ue and u depending

on F;Fi and Q respectively. Their specific expressions and depen-

dencies are related to the characteristics of each material model.

In Section 3 these potentials will be particularized for a group of

hyperelastic–viscoplastic models. The minimization in (5) with re-

spect to the internal variables Fi
nþ1 and Q nþ1 provides an evolution

path of these variables within the time step and eliminates them

from the potentialW enforcing it to be dependent only on the defor-

mation gradient Fnþ1.

3. A set of hyperelastic–viscoplastic isotropic models

3.1. Definitions and hypotheses

In this section, we focus on elastic–viscoplastic models.3 In or-

der to introduce some useful notation, consider the classic multipli-

cative decomposition of F in isochoric and volumetric contributions:

J ¼ det F; bF ¼
1

J1=3
F: ð7Þ

In addition, the isochoric portion bF allows for a multiplicative

decomposition in elastic and plastic parts, such that

bF ¼ bFeFp ) bFe ¼ bFFp�1; ð8Þ

bCe ¼ bFeT bFe ¼
X3

i¼1

cei E
e
i ; det Fp ¼ 1; ð9Þ

where bCe is the isochoric elastic right Cauchy–Green tensor that is

decomposed in spectral quantities: eigenvalues cei and eigenprojec-

tions Ee
i . The rate of plastic deformation (or plastic stretching) Dp is

defined as

Dp ¼ symðLpÞ ¼ Lp ¼ _FpFp�1; ð10Þ

where Lp is assumed to be symmetric, which means that no plastic

spin Wp ¼ ðLp � LpT Þ=2 is considered. If a von Mises flow type is as-

sumed, the tensor Dp may be decomposed as follows:

Dp ¼ _qM; ð11Þ

_q 2 Rþ; ð12Þ

M 2 KM ¼ N 2 Sym : N � N ¼
3

2
; N � I ¼ 0

� �
; ð13Þ

where the non-negative scalar _q accounts for the amplitude of Dp

while the normalized traceless tensor M provides the direction of

Dp. It is shown in [5] that, when this separation is combined with

logarithmic strains and quadratic hyperelastic (Hencky type) poten-

tials, a complete separation of kinematic aspects (provided by M)

and constitutive aspects (provided by _q) is reached and constitutive

expressions similar to those of infinitesimal plasticity theory are ob-

tained. This result is also verified in more classical hyperelastic–

plastic and viscoplastic approaches [16]. In order to extend these

facilities to more general hyperelastic laws other than Hencky, a

spectral decomposition of Dp is used here, following the ideas pro-

posed in [11]:

Dp ¼ M ¼ _q
X3

i¼1

qiMi; ð14Þ

_q 2 Rþ; qi 2 KQ ¼ pi 2 R :
X3

i¼1

pi ¼ 0;
X3

i¼1

p2
i ¼ 3=2

( )
; ð15Þ

Mi 2 KM ¼ fNi 2 Sym : Ni � Ni ¼ 1; Ni � Nj ¼ 0; i 6¼ jg: ð16Þ

3 Just for facility of notation we change the superscript i (inelastic) for p (plastic).
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The set KQ enforces the traceless form of M with fixed norm, while

the set KM accounts for usual properties of eigenprojections. It

must be noted that _q (or its incremental counterpart Dq ¼ Dt _q)

is a signed scalar factor to the qj. In other words, this decomposi-

tion can be seen as a reparameterisation of M in a more conve-

nient way, since it will be seen in the next section that it can be

used ‘‘as is” in the plastic potential up and the dissipation pseu-

do-potential w.

Eq. (10) has a special meaning: it defines a flow rule for _Fp and

establishes a constraint between Fp and q through the flow direc-

tions qiMi. Due to this constraint, Fp becomes a internal variable

dependent of the (independent) internal variables fq; qi;Mig. It is

worth noting that the flow direction is now described by Mi and

qi quantities.

3.2. Incremental potential and updates

Consider the decoupled form of the free energy in volumetric

and isochoric contributions

WðEÞ ¼ UðJÞ þ ueðbCeÞ þ upðFp;Q Þ

and consider a time discretization with generic time intervals

½tn; tnþ1�. At the end of a time increment the free energy writes

WðEnþ1Þ ¼ UðJnþ1Þ þ ueðbCe
nþ1Þ þ upðFp

nþ1;Q nþ1Þ:

The first term takes into account pure elastic volumetric deforma-

tions depending on JðFÞ. A classical (but not unique) expression is

UðJÞ ¼
K

2
½ln J�2: ð17Þ

The elastic potential ue is assumed to be an isotropic function of the

elastic deformation depending on its eigenvalues:

ueðbCeÞ ¼ ueðce1; c
e
2; c

e
3Þ: ð18Þ

This function is also described in terms of the natural strain

�
e ¼ 1

2
ln bCe which has the same eigenprojections of bCe and eigen-

values given by �ei ¼
1
2
ln cei :

ueð�eÞ ¼ ueð�e1; �
e
2; �

e
3Þ: ð19Þ

Due to Eqs. (8) and (9), the value of bCe
nþ1 depends on Fp

nþ1 at the end

of the time increment. Since at the beginning of the interval Fp
n is as-

sumed to be known, the incremental update Fp
nþ1 is calculated from

the exponential mapping [17]

Fp
nþ1F

p�1
n ¼ DFp ¼ exp½DtDp� ) Fp

nþ1 ¼ exp½DtDp�Fp
n: ð20Þ

Using decomposition (14), Fp
nþ1 can be written in term of the inter-

nal variables Dq; qi;Mi:

Fp
nþ1 ¼ exp Dq

X3

i¼1

qiMi

" #
Fp
n: ð21Þ

The plastic potential up accounts for hardening phenomena. Just for

simplicity, we consider an isotropic hardening and this potential

depends solely on the internal variable q:

up ¼ upðqÞ; ð22Þ

qðtÞ ¼

Z t

0

_qdt qnþ1 ¼ qn þ Dt _q ¼ qn þ Dq: ð23Þ

The dissipative potential is defined to be dependent on the temporal

derivative of q and its definition provides an exact penalization for

negative values of _q

wðDpÞ ¼ w
Dq

Dt

� �
¼ wð _qÞ ¼

�wð _qÞ if _qP 0;

þ1 if _q < 0;

(
ð24Þ

where �wð _qÞ may take different expressions for positive values of _q.

Due to these choices, the generic set of state (internal and exter-

nal) variables fF; Fp;Qg within the time interval is reduced to the

set fF;Dq; qi;Mig. The incremental potential (5) is thus re-written

as

WðFnþ1;EnÞ ¼ WðCnþ1;EnÞ ¼ DUðJnþ1Þ

þ min
Dq;Mi ;qi

DueðbCe
nþ1Þ þ Dupðqnþ1Þ þ Dt�w

Dq

Dt

� �� �
; ð25Þ

DueðbCe
nþ1Þ ¼ ueðbCe

nþ1Þ � ueðbCe
nÞ; ð26Þ

Dupðqnþ1Þ ¼ upðqnþ1Þ � upðqnÞ ð27Þ

DUðJnþ1Þ ¼ UðJnþ1Þ � UðJnÞ; ð28Þ

where the minimization operation is constrained by the conditions

qi 2 KQ ¼ pi 2 R :
X3

i¼1

pi ¼ 0;
X3

i¼1

p2
i ¼ 3=2

( )
; ð29Þ

Mi 2 KM ¼ fNi 2 Sym : Ni � Ni ¼ 1; Ni � Nj ¼ 0; i 6¼ jg; ð30Þ

DqP 0: ð31Þ

First order necessary optimality conditions of the minimization

problem (25) take into account the derivatives of potential W as

well as the derivatives of constraints (29)–(31). The minimization

along the eigenprojectionsMi can be performed analytically. To this

aim, a relevant relation between elastic and plastic deformations is

shown:

bFe
nþ1 ¼ bFnþ1

bFp�1
nþ1 ¼ bFprðexp½DtDp�Þ�1; bFpr ¼ bFnþ1F

p�1
n ; ð32Þ

bCe
nþ1 ¼ bFeT

nþ1
bFe
nþ1 ¼ bCprðexp½DtDp�Þ�2; bCpr ¼ Fp�T

n
bCnþ1F

p�1
n ; ð33Þ

�
e
nþ1 ¼

1

2
ln bCe

nþ1 ¼ �
pr � DtDp; �

pr ¼
1

2
ln bCpr ; ð34Þ

where the superscript ‘‘pr” is the usual notation for a predictor quan-

tity, relating values known at time tnþ1 (i.e., bFnþ1; bCnþ1) with values

known at time tn (i.e., Fp
n). Eq. (33) is only valid if co-linearity be-

tween bCpr and Dp is assumed in order to allow permutation between

both tensors. Using this ansatz, it is shown in the Appendix that the

minimization with respect to Mi is achieved when the tensors bCe
nþ1;bCpr and Dp share the same eigenprojections: Ee

i ¼ Epr
i ¼ Mi. This

means collinearity between bCpr and Dp which corroborates the per-

mutability assumption made in (33).

On the other hand, the necessary optimality conditions for qi

and Dq take the form

ri ¼ �
oDue

o�ei
Dqþ kþ 2bqi ¼ 0; i ¼ 1;2;3; ð35Þ

r4 ¼ �
X3

i¼1

oDue

o�ei
qi þ

oDup

oDq
þ
ow

o _q
P 0; ð36Þ

r5 ¼
X3

i¼1

qi ¼ 0; ð37Þ

r6 ¼
X3

i¼1

q2
i ¼ 3=2; ð38Þ

DqP 0; ð39Þ

r4 Dq ¼ 0: ð40Þ

Once the minimization is performed, the derivative of W with re-

spect to bCnþ1 and Jnþ1 should be calculated in order to obtain the

Piola-Kirchhoff stress tensor. Due to the separation of potential W

in isochoric and volumic contributions, the stress tensor P is re-

written as

Pnþ1 ¼2Fnþ1
oWðCnþ1;EnÞ

oCnþ1
ð41Þ

¼Fnþ1 J�2=3
nþ1 DEV 2

oue

obCnþ1

 !
þ

oU

oJnþ1

Jnþ1C
�1
nþ1

" #
; ð42Þ

3



where (see Appendix for operational details):

oue

obCnþ1

¼
X3

i¼1

oue

ocpri

ocpri

obCpr

 !
obCpr

obCnþ1

¼ Fp�1
n

X3

i¼1

oue

o�ei

1

2cpri
Epr
i

!
Fp�T
n : ð43Þ

3.3. Material tangents

An important aspect from the numerical implementation point

of view is the determination of the tangent matrix, consistent with

the constitutive incremental update algorithm. The contribution to

the tangent matrix from geometric terms is common to any hyper-

elastic model. Thus, we focus here on the expression of the second

derivative of the present incremental material update. We will use

here the notation dð�Þ

dbCnþ1

as the total derivative of the argument with

respect bCnþ1. We define thus the tensor C:

C ¼
d

dbCnþ1

dW

dbCnþ1

 !
¼

d

dbCnþ1

oue

obCnþ1

 !
: ð44Þ

Considering bCpr ¼ ðbFpÞ�T
n
bCnþ1ðbFpÞ�1

n , calling f
pn

¼ ðbFpÞ�1
n and drop-

ping index nþ 1, we have: (see Appendix):

Cijkl ¼
X3

m;t;p;q¼1

f
pn
imf

pn
jt

d

dbCpr
pq

oue

obCpr
mt

 !
f
pn
kpf

pn
lq ¼ C

ue

klij ¼ C
ue

jikl:

The critical point is the obtention of the derivatives of ue with re-

spect to bCpr ¼ cpri E
pr
i . In spectral coordinates this requires the com-

putation of the following functions (see Appendix for details)

yi ¼
oue

ocpri
¼

oue

o�ei

1

2cpri
; ð45Þ

yi;j ¼
d

dcprj

oue

o�ei

1

2cpri

� �
¼

o
2ue

o�ei o�
e
i

d�ei
d�prj

1

4cpri c
pr
j

�
oue

o�ei

dij

2ðcpri Þ
2
: ð46Þ

The terms oue

o�e
k

and o
2ue

o�e
k
o�e

l

are straightforward. On other hand, the

relation �ekð�
pr
1 ; �

pr
2 ; �

pr
3 Þ is defined by the derivation of the nonlinear

system ((35) and (38), see Appendix) which provides the terms
d�e

i

d�
pr

j

.

4. Minimization strategy

The first information to be obtained from the minimization

operation is the characterization of the plastic or elastic nature of

the incremental step. The proposed decomposition of the plastic

stretching Dp allows for a clear visualization of this issue. Indeed,

while Eq. (35) provide the variations of the potential function with

respect to the eigenvalues qi along a circle of radius
ffiffiffiffiffiffiffiffi
3=2

p
(condi-

tion (38)) on the deviatoric plane (condition (37)), Eq. (36) com-

putes the derivative of this potential due to the plastic increment

Dq. A plastic increment occur when the minimum is achieved for

a Dq > 0. Conversely if the minimizer is such that Dq ¼ 0 then,

the incremental step is elastic. A null minimizer Dq is obtained if

the derivative. r4jDq¼0 P 0 for all possible values of qi. In other

words, an elastic step occur if the minimum value of r4 at Dq ¼ 0

is non-negative. Mathematically, it is necessary to solve the

problem

min
qi

�
X3

j¼1

oDue

o�ei
qi þ

oDup

oDq
þ
ow

o _q

!
;

qi 2 KQ ¼ pi 2 R :
X3

i¼1

pi ¼ 0;
X3

i¼1

p2
i ¼ 3=2

( )
:

ð47Þ

Using a Lagrangian function

fLðDq; qiÞ ¼ �
X3

i¼1

oDue

o�ei
qi þ

oDup

oDq
þ
ow

o _q

!
þ ~k

X3

i¼1

qi

 !

þ ~b
X3

i¼1

q2
i � 3=2

!
; ð48Þ

the necessary first order optimality conditions are easily written:

�
oDue

o�ei
þ ~kþ 2~bqi ¼ 0 ði ¼ 1;2;3Þ; ð49Þ

X3

i¼1

qi ¼ 0; ð50Þ

X3

i¼1

q2
i � 3=2 ¼ 0: ð51Þ

This problem is easily solved analytically. Summing up the three

equations in (49) and using (50) it comes that ~k ¼ 1=3
P3

i¼1
oDue

o�e
i

¼ 1=3tr oDue

o�e

	 

. Introducing this expression in (49) and calling

doDue

o�e
i

¼ oDue

o�e
i

� 1=3tr oDue

o�e

	 

we obtain, after algebraic operations, that

qi ¼

ffiffiffi
3

2

r doDue

o�e
i

doDue

o�e

����
����
; where

doDue

o�e

�����

�����

2

¼
X3

i¼1

doDue

o�ei

 !2

: ð52Þ

Substituting this value on Eq. (36) we arrive to the expected condi-

tion for a plastic step: the minimum value of the derivative of W

with respect to Dq evaluated at Dq ¼ 0 must be negative, i.e.

�rM þ
oDup

oDq

����
Dq¼0

þ
ow

o _q

����
Dq¼0

< 0: ð53Þ

where the following definition for the equivalent stress rM was

used:

rM ¼

ffiffiffi
3

2

r doDue

o�e

�����

�����: ð54Þ

It is important to note that if criterion (53) qualifies the minimizing

step to be ‘‘plastic” ðDq > 0Þ then conditions (39) and (40) may be

dropped and the minimization is to be carried out just by Eqs.

(35)–(38). Moreover, further simplifications may be used; since

Dq > 0; a new set of variables f~q1; ~q2; ~q3g may be defined using

the expression ~qi ¼ Dq qi. This eliminates Dq as a independent var-

iable, and also the constraint on the size of the qi in (29). Details on

this technical simplification will be shown in further article.

It is also interesting to note that the equivalent stress rM , as de-

fined in (54), also corresponds to a classical equivalent stress com-

puted from Mandel stress tensor:

rM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
dev S � dev S

r
; ð55Þ

where

S ¼ FeTPFpT: ð56Þ

The Mandel stress tensor is defined in the intermediate configura-

tion, and is symmetric in the case of isotropic elasticity. The above

derivation thus shows that the above minimization strategy

amounts to computing an elastic predictor Mandel stress, evaluate

the classical von Mises criterion in terms of this stress tensor, and, if

the criterion is verified, apply a plastic corrector step. This process

parallels the classical predictor–corrector scheme used in small

strains. In general, it may not correspond to a radial return, though,

since the predictor qi may be different from the overall optimal

ones.

5. Particular viscoplastic models

In this section, some expressions for the potentials are specified

in order to obtain two particular behaviors: Hencky-based and Og-

den-based models.
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As already said, the dissipation pseudo-potential w defined by

(24) plays the important role of enforcing the positiveness of _q.

In addition, the function �wð _qÞ defines the rate dependence or inde-

pendence of the plastic deformation. In the case of rate-indepen-

dent plasticity we have

�wð _qÞ ¼ Y0 _q ð57Þ

–1.5 –1 –0.5 0 0.5 1 1.5
–20

–15

–10

–5

0

5

10

15

20

Natural Strain

C
a
u
c
h
y
 S

tr
e
s
s

Strain Rate = 1/s

Strain Rate = 0.5/s

Strain Rate = 0.1/s

Fig. 1. Traction test in Hencky model. Axial stress rx .

–1.5 –1 –0.5 0 0.5 1 1.5
0

2

4

6

8

10

12

14

16

18

Natural Strain

E
q
u
iv

a
le

n
t 
S

tr
e
s
s

Strain Rate = 1/s

Strain Rate = 0.5/s

Strain Rate = 0.1/s

Fig. 2. Traction test in Hencky model. Equivalent stress rM .

Table 1

Material parameters for cyclic traction and shear tests

Potential Ogden Hencky

li 0.7 �0.7 l ¼ 20

ai 5 �5
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or, in a Perzyna rate-dependent law,

�wð _qÞ ¼
mY0 _q0

mþ 1

_q
_q0

� �mþ1
m

: ð58Þ

The (isotropic) hardening rule is provided by up. A quite generic

expression for this potential may be given by

upðqÞ ¼ R0qþ
1

2
Hq2 þ lp qþ

1

ap
expð�apqÞ

� �
þ
XN

j¼1

l
p
j

a
p
j þ 1

ðqÞ
a
p

j
þ1
;

ð59Þ

where R0;H;lp; ap;lp
j and a

p
j , are material parameters. Linear hard-

ening is given by the first two terms, depending on R0 and H. The
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third term provides a saturation behavior, controlled by ap and lp.

Finally, the fourth term is an extension of the Ramber-Osgood

law, which considers just a single term within the sum, i.e., N ¼ 1,

and parameters a
p
1 and l

p
1.

Note that hardening can also be introduced in the dissipation

pseudo-potential, e.g. through a dependence Y0ðqÞ in (57). But

since the partition of hardening between dissipation pseudo-po-

tential and plastic free energy only becomes relevant in a ther-

mo-mechanical setting, we will limit hardening terms to the

latter.

5.1. Hencky-based model

In this section we analyze the case when the elastic potential is

based on a quadratic form of the logarithmic strain tensor (Hen-

cky-type potentials [18,16]):
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ue ¼ le
X3

i¼1

ð�ei Þ
2:

For simplicity reasons, we assume that �w and up take the forms (57)

and the first two terms of (59) respectively (rate-independent linear

isotropic hardening). Thus,

oue

o�ei
¼ 2le�ei ¼ 2leð�pri � DqqiÞ;

o�w

o _q
¼ Y0;

oup

oDq
¼ R0 þ Hqnþ1:

It is easily seen that in this case the qualifying conditions (53) re-

duces to

� rM þ ðY0 þ R0Þ < 0; ð60Þ

rM ¼

ffiffiffi
3

2

r
ksprk; ksprk2 ¼

X3

j¼1

ðsprj Þ
2; sprj ¼ 2le�prj ; ð61Þ

while conditions (35) and (36) take the particular form

ri ¼ �2leð�pri � DqqiÞDqþ kþ 2bqi ¼ 0; i ¼ 1;2;3; ð62Þ

r4 ¼ �
X3

i¼1

2leð�pri � DqqiÞqi þ R0 þ Hqnþ1 þ Y0 ¼ 0: ð63Þ

After some algebra, it is shown that (see Appendix)

Dq ¼

ffiffi
3
2

q
ksprk � ðY0 þ R0 þ HqnÞ

3le þ H
if DqP 0; ð64Þ

qi ¼
3le�pri
aDqþ b

; a ¼ 3le þ H; b ¼ R0 þ Hqn þ Y0; ð65Þ

which is the usual expression for elastoplastic radial return von-

Mises model. Finally, (65) allow the computation of

�ei ¼ 2leð�pri � DqqiÞ needed for the elastic potential.

5.2. Ogden-based model

In the previous case, the quadratic function of the logarithmic

strains is particularly convenient to obtain an explicit expression

for the minimizing argument Dqp
j . In spite of this advantage, it is

well known that this type of hyperelastic potential do not fit very

well other materials like polymers. For that case, a more adequate

choice may be the Ogden model ([18,16])

ue ¼
X3

i¼1

XN

p¼1

le
p

ap
ð½expð�ei Þ�

ap � 1Þ; ð66Þ

oue

o�ei
¼
XN

p¼1

le
p½expð�iÞ�

ap : ð67Þ

This model has the property of generalizing others well-known

models. For example, Mooney–Rivlin model is achieved taking

N ¼ 2;l1 ¼ 2C1; l2 ¼ �2C2 and a1 ¼ 2; a2 ¼ �2.
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In the present case, conditions (35) and (36) take the expression

ri ¼ �
XN

p¼1

le
p½expð�iÞ�

ap
Dqþ kþ 2bqi ¼ 0; i ¼ 1;2;3; ð68Þ

r4 ¼ �
XN

p¼1

le
p½expð�iÞ�

apqi þ R0 þ Hqnþ1 þ Y0 ¼ 0; ð69Þ

whose solution provides Dq; qi; k and b.

6. Numerical examples

6.1. Uniaxial traction test

This simple example illustrates the behavior of this approach

for the case of a traction sample submitted to a constant strain rate.

Two material models were tested: Hencky and Ogden. Both

materials were considered incompressible through a convenient
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penalization value of K. The Ogden model used N ¼ 2, i.e., p ¼ 1;2.

The corresponding values are listed in Table 1.4 For both cases,

potentials (58) and (59) were used with parameters R0 ¼ 7;

m ¼ 1:2; _q0 ¼ 1:1;Y0 ¼ 7;H ¼ 1. It is important to remark that these

values are merely illustrative, with no relation to a specific material.

Both specimens were elongated and compressed up to

e ¼ ln k ¼ ½�1:0;1:0� with constant logarithmic strain rates of

1=s;0:5=s and 0:1=s. Fig. 1 shows the axial Cauchy stress rx, while

Fig. 2 shows the equivalent stress rM defined in (54) for the Hencky

model. Fig. 3 also shows the evolution of the equivalent plastic strain

Dq for this case. These figures allow to see the expected dependence

of the strain rate in the plastic regime as well as the evolution of the

4 It is worth to noting that the parameters of 1 do not correspond exactly to the

Mooney–Rivlin case, since the exponent a1 and a2 are different from the number 2.
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yield limit. Figs. 4–6 show analogous results for the Ogden model.

It is possible to see a clear difference of behavior in the elastic

range.

6.2. Shear test

The same materials as in the previous example are submitted to

a shear test. The top surface of a cube of unit length (Fig. 7, h ¼ 1) is

submitted to a lateral displacement ux ¼ ½�1:5;1:5�, with constant

velocities _ux ¼ 1=s;0:5=s, and 0:1=s. The evolution of the Cauchy

Table 2

Material parameters

Potential ue Ogden

li �942.25 1404.2 352.1

ai 3.0559 1.3328 3.8812

Potential up Polynomial Potential w Perzyna

R0 10 Y0 5

l
p
1 20 m 3

a
p
1 4.5 _q0 5
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shear stress rxy equivalent stress rM and equivalent strain Dq is

shown in Figs. 8–10 for the Hencky model and Figs. 11–13 for

the Ogdenmodel. As expected, a behavior similar to that of traction

test is observed, with a clear nonlinear response for the elastic re-

gion in the Ogden case.

6.3. Normalized traction test

The proposed formulation was implemented in the academic fi-

nite element code METAFOR [19]. The following example shows

the simulation of an experimental traction test. The specimen

geometry follows the ASTM D638-03 norm for thermoplastics

Fig. 15. Sequence of deformed configurations for displacement rate 30 mm/s.

Fig. 16. Sequence of deformed configurations for displacement rate 300 mm/s.
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[20]. The material parameters are given in Table 2, values that pro-

vide the strain–stress curves found in Fig. 14. It is possible to see in

these curves the usual behavior of some thermoplastics i.e. an elas-

tic behavior followed by a large plateau of plastic deformation and

a final hardening. The simulation of the traction test is performed

by controlling the relative velocity of the specimen extremities,

emulating a displacement-controlled real test. The specimen is

elongated by 30 mm at rates of 30 mm/s and 300 mm/s. The results

of each case is shown in Figs. 15 and 16. The comparison between

these two cases shows clear differences in the deformation shape

due to differences in deformation rates of the material. In the slow-

est test, a clear necking nucleates5 and ‘‘grows” following the defor-

mation of the specimen. Conversely, in the fastest test, the

viscoplastic behavior inhibits a clear necking formation, producing

a more homogeneous strain along the specimen, behavior usually

found in these kind of materials.

6.4. Inflated membrane

This example shows the case of a membrane being inflated by a

growing pressure. Used as a benchmark for rubbery materials, this

example usually presents a snap-through behavior requiring an

arc-length technique for a quasi-static solution. This snap-trough

behavior is a result of an adequate combination of material behav-

ior and geometrical characteristics. In the present case a squared

viscoplastic membrane of 20 mm of length and thickness of

0.1 mm is submitted to a pressure rates of 1� 10�1 N=mm2 s;

1� 10�3 N=mm2 s and 1� 10�5 N=mm2 s. The material is the

same as the one used in the previous example.

Fig. 17 shows a sequence of deformed configurations of the

membrane during loading. Fig. 18 show the diagram of classical

von Mises stress at the bottom middle point. It is possible to see

the dependence of stresses on pressure rate, as expected. Figs. 19

and 20 show in detail the behavior of stress and transversal dis-

placement for a pressure up to 0:16 N=mm2.

It is interesting to note that the expected snap-through phe-

nomenon is not present here. This seems to happen due to the

choice of a constitutive law with a low viscoplastic plateau. The

hardening behavior of the material shown in Fig. 14 allows the

5 For both cases, the neck starts at the middle of the specimen due to a local small

perturbation of its geometry.

Fig. 17. Sequence of deformed configurations for pressure rate 0:1 N=mm2 s.
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membrane to reach high stress values. An instable configuration is

found at pressure of approximately 0:4 N=mm2 which is the upper-

limit before failure.6 In the present case, a dynamic analysis with an

artificial low density value was used instead of a quasi-static arc-

length technique.

7. Concluding remarks

A general set of hyperelastic–viscoplastic material models was

presented in this paper. Based on the variational approach of inelas-

tic constitutive models [5], this work proposes as a main contribu-

tion, a spectral decomposition of viscoplastic strains which allows

the use of generic hyperelastic and viscoplastic isotropic potential

functions. Different material models may be obtained simply by

changing the expression of these potentials and their derivatives.
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6 The material response shown in Fig. 14 is similar to that of some thermoplastics.

The high stress values found at the end of present simulation are just numerical since

a real thermoplastic would fail before that.
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It is also shown that the incremental yield criterion comes out nat-

urally from the minimization approach adopted here. In the isotro-

pic case, this yield criterion amounts to evaluating the classical von

Mises equivalent stress in terms of the Mandel stress tensor, in the

intermediate configuration.

The stress and internal variables updates require (in the general

case) the solution of a small set of nonlinear equations to deter-

mine the eigenvalues of viscoplastic increments. The solution of

the nonlinear constitutive problem is based on the Newtonmethod

by using analytically invertible tangent matrices which provide

computationally inexpensive material tensors for the global bal-

ance problem.

All these characteristics will allow us to combine this formula-

tion with that already obtained for nonlinear viscoelastic behavior

[11] in order to propose consistent models for polymeric materials

subject to combined viscoelastic and viscoplastic strains, which is

the subject of future works.
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Appendix

Minimization of W with respect to Ma

The arguments that minimize the potential WðDq; qi;MiÞ

must be such that DtDp ¼ Dq
P3

i¼1qiMi is traceless and its decom-

position is a sum of orthonormal symmetric tensors. This means

that

qi 2 KQ ¼ fpi 2 R :
X3

i¼1

pi ¼ 0;
X3

i¼1

p2
i ¼ 3=2g; ð70Þ

Mi 2 KM ¼ fMi 2 Sym : Mi �Mi ¼ 1; Mi �Mj ¼ 0; i 6¼ jg: ð71Þ

In order to enforce these constraints, the optimality condition is

computed with the aid of a Lagrangian function that adds to the ori-

ginal potential all the considered equality constraints (the con-

straint on Dq, due to its simplicity is taken into account a

posteriori):

LðDq;qi;Mi;kj;k;bÞ¼WðDq;qi;MiÞþk1ðMa �Ma�1Þþk2ðMa �MbÞ

þk3ðMa �McÞþk4ðMb �Mb�1Þþk5ðMb �McÞ

þk6ðMc �Mc �1ÞþkðqaþqbþqcÞþbðq2
a þq2

b

þq2
c �3=2Þ: ð72Þ

Since qi do not depend on Mi, the optimality condition with respect

to the eigenprojection Ma is:

oL

oMa

½dM� ¼
oW

oMa

� dMþ 2k1ðMa � dMÞ þ k2ðMb � dMÞ

þ k3ðMc � dMÞ ¼ 0 8dM 2 Sym: ð73Þ

Taking dM equal to Ma;Mb;Mc respectively, we obtain the relations

2k1 ¼
oW

oMa
�Ma;

k2 ¼ �
oW

oMa
�Mb;

k3 ¼ �
oW

oMa

�Mc:

Substituting them in (73),

oW

oMa

�
oW

oMa

�Ma

� �
Ma �

oW

oMa

�Mb

� �
Mb

�

�
oW

oMa

�Mc

� �
Mc

�
� dM ¼ 0 8dM 2 Sym; ð74Þ
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The only term of W that depends on Mi is the elastic potential ueð�ei Þ

through the elastic tensor �e, i.e,

�
e ¼

X3

i¼1

�ei E
e
i ¼ �

pr � DtDp ¼ �
pr � Dq

X3

i¼1

qiMi;
o�ea
o�e

¼ Ee
a; ð75Þ

oW

oMa
¼

oDue

oMa
¼
X3

i¼1

oDue

o�ei

o�ei
o�e

o�
e

oMa
¼ �

X3

i¼1

oDue

o�ei
Ee
i

 !
Dqqa: ð76Þ

Substituting these result in (74), we have

X3

j¼1

oDue

o�ei
Ee
i �

X3

i¼1

oDue

o�ei
ðEe

i �M
v
aÞM

v
a �

X3

i¼1

oDue

o�ei
ðEe

i �M
v
bÞM

v
b

"

�
X3

i¼1

oDue

o�ei
ðEe

i �M
v
cÞM

v
c

#
� dM ¼ 0 8dM 2 Sym: ð77Þ

The last equation is satisfied if we take Ee
i ¼ Mv

i .

Minimizing operations for Dq; qi

Assuming that the material point performs a plastic increment

Dq > 0, the nonlinear system (35)–(38) must be solved. Using

Newton method we find the roots x ¼ fq1; q2; q3;Dq; k; bg using

the recursive formula

xkþ1 ¼ xk � Kk�1rk; ð78Þ

where k is the iteration number. In case that the potential ue can be

additively written as ueð�ei Þ ¼
P3

i¼1w
e
i ð�

e
i Þ, the material tangent ma-

trix K takes the simplified form

K ¼

K11 0 0 H1 1 2q1

0 K22 0 H2 1 2q2

0 0 K33 H3 1 2q3

H1 H2 H3 H4 0 0

1 1 1 0 0 0

2q1 2q2 2q3 0 0 0

2
66666666664

3
77777777775

; ð79Þ

K ii ¼
o
2ue

o�ei o�
e
i

Dq2 þ 2b; i ¼ 1;2;3 ðno index sumÞ;

Hi ¼
o
2
Due

o�ei o�
e
i

qiDq�
oDue

o�ei
; i ¼ 1;2;3 ðno index sumÞ; ð80Þ

H4 ¼
X3

i¼1

o
2ue

o�ei o�
e
i

q2
i þ

o
2
Dup

oDq2
þ

1

Dt

o
2w

o _q2
: ð81Þ

Derivatives of ue with respect to bCnþ1

In order to compute the derivative ue we use the relation

bCpr ¼ bFprT bFpr ¼ Fp�T
n
bCnþ1F

p�1
n

the derivative of ue comes

oue

obCnþ1

½dC� ¼
oue

obCpr
�
obCpr

obCnþ1

½dC� ¼
oue

obCpr
� Fp�T

n

obCnþ1

obCnþ1

½dC�

!
Fp�1
n

¼
oue

obCpr
� Fp�T

n

1

2
ðdCþ dCTÞFp�1

n ¼ Fp�1
n

oue

obCpr
Fp�T
n � dC ð82Þ

and then,

oue

obCnþ1

¼ Fp�1
n

oue

obCpr
Fp�T
n ; ð83Þ

where

oue

obCpr
¼
X3

i¼1

oue

ocpri

ocpri

obCpr
nþ1

¼
X3

j¼1

oue

ocpri
Epr
i : ð84Þ

Material tensors

Considering bCpr ¼ ðbFpÞ�T
n
bCnþ1ðbFpÞ�1

n , calling f
pn

¼ ðbFpÞ�1
n and

dropping index nþ 1, we have (in this particular expression we

use Einstein’s notation for summation on indices

p; q;m; t;u; v; r; and s):

d

dbCkl

oue

obCij

 !
¼

d

dbCpr
pq

oue

obCpr
mt

obCpr
mt

obCij

 !
obCpr

pq

obCkl

;

¼
d

dbCpr
pq

oue

obCpr
mt

oðf
pnT

pu
bCuvf

pn
vqÞ

obCkl

o f
pnT

mr
bCrsf

pn
st

	 


obCij

;

¼
d

dbCpr
pq

oue

obCpr
mt

f
pnT

pu Iuvklf
pn
vqf

pnT

mr Irsijf
pn
st ;

¼f
pn
rmf

pn
st

d

dbCpr
pq

oue

obCpr
mt

f
pn
upf

pn
vqIuvklIrsij;

¼f
pn
imf

pn
jt

d

dbCpr
pq

oue

obCpr
mt

f
pn
kpf

pn
lq ¼ C

ue

jikl;

C
ue

ijkl ¼C
ue

klij; C
ue

ijkl ¼ C
ue

jikl:

The total derivative of ue with respect to �prj comes from the deriv-

ative of the nonlinear optimality conditions. Assuming for simplic-

ity purposes ueð�ei Þ ¼
P3

i¼1w
e
i ð�

e
i Þ and considering that

�ei ¼ �pri � Dqqi )
d�ei
d�prj

¼ dij �
dDq

d�prj
qi � Dq

dqi

d�prj
; ð85Þ

we have

dri
d�prj

¼�
o
2
Due

o�ei o�
e
i

d�ei
d�prj

Dq�
oDue

o�ei

dDq

d�prj
þ

dk

d�prj
þ 2b

dqi

d�prj
þ 2qi

db

d�prj
¼ 0

¼�
o
2
Due

o�ei o�
e
i

dij �
dDq

d�prj
qi � Dq

dqi

d�prj

!
Dq

�
oDue

o�ei

dDq

d�prj
þ

dk

d�prj
þ 2b

dqi

d�prj
þ 2qi

db

d�prj
¼ 0

¼ðue
;iiDq

2 þ 2bÞ
dqi

d�prj
þ ðue

;iiqiDq� ue
;iÞ
dDq

d�prj

þ
dk

d�prj
þ 2qi

db

d�prj
� ue

;iidijDq ¼ 0 ð86Þ

)K ii
dqi

d�prj
þ Hi

dDq

d�prj
þ

dk

d�prj
þ 2qi

db

d�prj
¼ ue

;iidijDq;

i; j ¼ 1;2;3 ðno index sumÞ;

dr4
d�prj

¼�
X3

i¼1

ue
;iiqi

d�ei
d�prj

�
X3

i¼1

ue
;i

dqi

d�prj
þ

o
2
Dup

oDq2
þ

1

Dt

o
2w

o _q2

!
dDq

d�prj
¼ 0

¼
X3

i¼1

ðue
;iiqiDq� ue

;iÞ
dqi

d�prj

þ
X3

i¼1

ue
;iiq

2
i þ

o
2
Dup

oDq2
þ

1

Dt

o
2w

o _q2

!
dDq

d�prj
� ue

;jjqj ¼ 0

)
X3

i¼1

Hi

dqi

d�prj
þ H4

dDq

d�prj
¼ ue

;jjqj;

i; j ¼ 1;2;3 ðno index sumÞ; ð87Þ

dr5
d�prj

¼
X3

i¼1

dqi

d�prj
¼ 0; ð88Þ

dr6
d�prj

¼
X3

i¼1

2qi

dqi

d�prj
¼ 0: ð89Þ

Or, in a compact notation,

Kxj ¼ Zyj; ð90Þ
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xj ¼
dqe

1

d�prj

dqe
2

d�prj

dqe
3

d�prj

dDq

d�prj

dk

d�prj

db

d�prj

" #T
; ð91Þ

yj ¼ ½ue
;11d1jDq ue

;22d2jDq ue
;33d3jDq ue

;jjqj 0 0�T: ð92Þ

Matrix K is the converged tangent matrix (79). The solution of the

system (90) provides the vector xj that, together with (85) provides
d�e

1

d�pr
j

. Further simplifications may be done according to the chosen

potentials.

Hencky-based model

The residual for Hencky potentials take the form

ri ¼ �2leð�pri � DqqiÞDqþ kþ 2bqi ¼ 0; i ¼ 1;2;3; ð93Þ

r4 ¼ �
X3

i¼1

2leð�pri � DqqiÞqi þ R0 þ hqnþ1 þ Y0 ¼ 0; ð94Þ

r5 ¼
X3

i¼1

qi ¼ 0; r6 ¼
X3

i¼1

q2
i ¼ 3=2: ð95Þ

Summing up all three equations (93) and considering (95) we have

k ¼ 0. From (94) and (95) we then obtain the compact expression

aDqþ b ¼ 2le
X3

i¼1

�pri qi; ð96Þ

where

a ¼ 3le þ H; b ¼ R0 þ Hqn þ Y0:

Summing up all three equations (93) multiplied by qi, and subtract-

ing (94) multiplied by Dq we have

b ¼
1

3
DqðR0 þ Hqn þ HDqþ Y0Þ; ð97Þ

which is substituted in (93) to obtain

qi ¼
3le�pri
aDqþ b

: ð98Þ

Substituting (98) in (96) and noting

spri ¼ 2le�pri ; ksprk2 ¼
X3

j¼1

ðsprj Þ
2;

we arrive, after simple manipulations, to the classic expression for

the equivalent plastic increment

Dq ¼

ffiffi
3
2

q
ksprk � ðY0 þ R0 þ hqnÞ

3le þ h
: ð99Þ
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