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hyperelastic-viscoplastic material models
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In three-dimensional formulations of plasticity, the rate of plastic deformation is usually decomposed in direction and amplitude. In the most simple cases
of von Mises type flows, this allows to assume a known radial flow direction and computations are reduced to the determination of the amplitude of the
plastif-ication. In the context of a variational formulation of finite plasticity, it is verified that this decomposition between constitutive and kinematic
aspects is accomplished by the choice of a quadratic elastic potential (Hencky model). The aim of this paper is to show that a wide set of simple
hyperelastic-plastic isotropic models not restricted to quadratic elastic behavior can be constructed by relaxing the classical decompo-sition amplitude/
direction by the sum of spectral quantities. In addition, this approach allows for a uni-fied and efficient numerical implementation in which a particular
hyperelastic-viscoplastic behavior is obtained by a specific choice of the elastic, plastic and dissipative (pseudo)potentials.

1. Introduction

Variational principles for dissipative mechanical systems, such
as in presence of elasto-viscoplastic behavior, have been known
for a while, but have received renewed attention in recent years.
These principles can be written in a continuous or in an incremen-
tal framework (a non-exhaustive list would among others include
[1-3], and references therein). In particular, a variational formula-
tion of constitutive models for standard generalized materials [4],
including irreversible, dissipative, and possibly rate-dependent
behaviors, was proposed in [5,6], initially in an isothermal context,
and later extended to a fully coupled thermo-mechanical context
in [7]. One of the most relevant aspects of variational approaches
is that they provide appropriate mathematical basis for error esti-
mation and mesh adaption [6,8]. This framework has also been
used for developing models of non-cohesive granular media [9],
porous plasticity [10], and nonlinear finite viscoelasticity [11]. In
this latter work in particular, a spectral decomposition of elastic/
inelastic strain/strain-rate quantities was proposed in order to
facilitate the inclusion of arbitrary elastic and inelastic (isotropic)
potentials within the same formalism.
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1 Present address: Dipartimento di Meccanica, Politecnico di Torino - Corso Duca
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In elasto-plasticity and elasto-viscoplasticity, the rate tensor of
plastic deformation (or its incremental equivalent), is usually
decomposed in direction, related to the gradient of a yield poten-
tial, and magnitude. In the case of von Mises (J2) type flows and
small strain ranges, this decomposition provides a complete sep-
aration between kinematic and constitutive aspects which re-
duces the problem to the determination of the plastification in
a radial known direction. This approach is known as the radial re-
turn algorithm [12,3]. Analogous results are obtained with classi-
cal hyperelastic-based models by using appropriate logarithmic
strain measures and exponential integration algorithm [13-16].
In the variational approach, both internal quantities are deter-
mined by a local minimization process. Moreover, it is shown in
[5] that the kinematic and constitutive decoupling is, once again,
achieved by the choice of logarithmic strain measures, exponen-
tial integration algorithm and quadratic elastic potential (Hencky
model).

The Hencky model is usually appropriate for the representation
of the elastic behavior of metals in which the elastic strains are
small compared the plastic ones. However, this is not the case
for many polymers, whose behavior is frequently classified as vis-
coelastic or viscoplastic depending on the regime of strains and
strain rates to which they are submitted.

The aim of this paper is to show that, embedded in the variational
framework, decoupling properties similar to those mentioned
above may be extended to a wide set of simple hyperelastic-visco-
plastic isotropic models not restricted to quadratic elastic behav-
ior. This is performed by relaxing the classical decomposition
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amplitude/direction in a similar way as done in [11], by using spec-
tral quantities.

This approach was adopted to potentially allow for a natural
combination of viscoelastic and viscoplastic dissipative mecha-
nisms appropriate for a group of thermoplastic polymers, which
is the longer-term motivation of this work.

The paper is organized as follows: Section 2 briefly presents the
variational approach for irreversible constitutive problems. The
application of this approach to elasto-viscoplastic materials is sta-
ted in Section 3 where important results of this work are shown.
Section 4 is dedicated to discuss how the characterization of the
yield limit comes out as a natural consequence of the present ap-
proach. Section 5 shows two particular material models within
the present context while Section 6 presents some numerical
examples showing the behavior of the constitutive problem itself
and its performance in a general finite element code. Final remarks
are shown in Section 7.

2. Incremental formulation for inelastic constitutive behavior

The main assumption in hyperelasticity is the existence of a po-
tential function ¥ which depends on the value of strains only and
whose derivative provides the state of stress at a material point, i.e.,

_0¥Y(F) _0¥%(C)
p= 0 _ 0 (1)
In (1) F = Vox denotes the deformation gradient, C = F'F is the right
Cauchy-Green tensor and P the first Piola Kirchhoff stress tensor.
Assuming the satisfaction of compatibility and constitutive equa-
tions, the equilibrium problem may be defined by the minimization
of the potential energy

min # (X)
xeK

)

%(x):é W (F(x)) dQq — { ' bo-deOJr/li fo - xdro

Qo

where K is the set of admissible deformations.

On the other hand, the state of stress of an inelastic path-depen-
dent dissipative solid cannot be obtained just from the value of fi-
nal strains and it is not any longer possible to define a potential
function with the property (1). The history of the process is usually
described incrementally with the aid of internal (dissipative) vari-
ables. However it is shown in [5,6] that a wide set of dissipative
materials can be modeled by the aid of pseudo-potentials that be-
have like hyperelastic (in the sense that they satisfy (1)) within the
interval of a load increment, i.e.,

a‘P(FnH;é”n) 6'[’(Cn+1;éﬂn)

aFnH B 2Fn+l aan ’ (3)

Pn+1 =

where & denotes a set of external and internal variables:
&={F,F,Q} F=FF. (4)

The tensors F¢ and F' are the elastic and inelastic parts of the defor-
mation gradient while the quantity Q contains all the remaining
internal variables used to describe the process. The subindices n
and n+ 1 indicate the beginning and end of the load increment
and it is assumed that all quantities at time n are known.

For a quite general set of inelastic problems the potential
¥ (Fni1; &n) takes the form (see [5,6] for a detailed construction):

W(Fui1; 6n) = MIN{W(8ni1) — W(E) + ALY(F,Q: 61), (5)
)

W(&) = U(F) + ¢*(FF ") + ¢/(F,Q), (6)

where lo:i(Fi1 41,6n) and (ol(Qn +1: 6n) are suitable incremental approx-

imations of the rate variables F, F' and Q respectively. The free en-

ergy potential W and dissipation pseudo-potential y inside (5) may
take different expressions depending on the particular model
needed. The expression of W(¢) in (6) assumes that the free energy
can be additively decomposed in potentials U, ¢ and ¢ depending
on F,F and Q respectively. Their specific expressions and depen-
dencies are related to the characteristics of each material model.
In Section 3 these potentials will be particularized for a group of
hyperelastic-viscoplastic models. The minimization in (5) with re-
spect to the internal variables Fim and Q,,, provides an evolution
path of these variables within the time step and eliminates them
from the potential ¥ enforcing it to be dependent only on the defor-
mation gradient F,, ;.

3. A set of hyperelastic-viscoplastic isotropic models
3.1. Definitions and hypotheses

In this section, we focus on elastic-viscoplastic models.? In or-
der to introduce some useful notation, consider the classic multipli-
cative decomposition of F in isochoric and volumetric contributions:

d = 1
J =detF, F:]WF. (7)
In addition, the isochoric portion F allows for a multiplicative
decomposition in elastic and plastic parts, such that

F=FF = F =FF, (8)
I

[}
i=1

detF’ =1, 9)

where C¢ is the isochoric elastic right Cauchy-Green tensor that is
decomposed in spectral quantities: eigenvalues c¢f and eigenprojec-
tions E;. The rate of plastic deformation (or plastic stretching) D” is
defined as

D’ = sym(L) = L’ = PF" !, (10)

where L? is assumTed to be symmetric, which means that no plastic
spin WP = (L” — L” )/2 is considered. If a von Mises flow type is as-
sumed, the tensor D’ may be decomposed as follows:

D’ = gM, (11)
qeR*, (12)
MeKM:{NeSym:N~N:%, N‘I:O}, (13)

where the non-negative scalar ¢ accounts for the amplitude of D?
while the normalized traceless tensor M provides the direction of
D?. It is shown in [5] that, when this separation is combined with
logarithmic strains and quadratic hyperelastic (Hencky type) poten-
tials, a complete separation of kinematic aspects (provided by M)
and constitutive aspects (provided by q) is reached and constitutive
expressions similar to those of infinitesimal plasticity theory are ob-
tained. This result is also verified in more classical hyperelastic-
plastic and viscoplastic approaches [16]. In order to extend these
facilities to more general hyperelastic laws other than Hencky, a
spectral decomposition of D is used here, following the ideas pro-
posed in [11]:

3
D’=M=q > gM, (14)
i=1
3 3
ger’, qieKQ{pieR:ZpiO;Zp?WZ}, (15)
i=1 i=1

M; € Ky ={N;eSym:N;-N;=1, N;-N;=0, i#j}. (16)

3 Just for facility of notation we change the superscript i (inelastic) for p (plastic).



The set K, enforces the traceless form of M with fixed norm, while
the set Ky accounts for usual properties of eigenprojections. It
must be noted that ¢ (or its incremental counterpart Aq = Atq)
is a signed scalar factor to the g;. In other words, this decomposi-
tion can be seen as a reparameterisation of M in a more conve-
nient way, since it will be seen in the next section that it can be
used “as is” in the plastic potential ¢? and the dissipation pseu-
do-potential .

Eq. (10) has a special meaning: it defines a flow rule for F* and
establishes a constraint between F’ and q through the flow direc-
tions ¢;M;. Due to this constraint, F* becomes a internal variable
dependent of the (independent) internal variables {q,q;, M;}. It is
worth noting that the flow direction is now described by M; and
g; quantities.

3.2. Incremental potential and updates

Consider the decoupled form of the free energy in volumetric
and isochoric contributions

U() + ¢°(€°) + 0" (F,Q)

and consider a time discretization with generic time intervals
[tn, tay1]- At the end of a time increment the free energy writes

UUni1) +0°(Ci) + 0P (B Q).

The first term takes into account pure elastic volumetric deforma-
tions depending on J(F). A classical (but not unique) expression is

W(&) =

W(‘gnﬂ)

ug) =Sy (17)

The elastic potential ¢° is assumed to be an isotropic function of the
elastic deformation depending on its eigenvalues:

9°(C%) = 0°(c5, ¢5. ¢5). (18)
This function is also described in terms of the natural strain

e€=11In Ce which has the same eigenprojections of Ce and eigen-
values given by ¢ =1 Inc¢:

@°(€°) = ¢°(e, 65, €5). (19)

Due to Egs. (8) and (9), the value of Cn+1 depends on F;_, at the end
of the time increment. Since at the beginning of the interval F, is as-
sumed to be known, the incremental update F/, is calculated from
the exponential mapping [17]

F_ P = AF = exp[AtD?] = F,, = exp[AtD|F" (20)

n+1%n

Using decomposition (14), F?,, can be written in term of the inter-
nal variables Ag, g;, M

3
AgY q,-M,} F,. (21)

i=1

P
l:n+1 = exp

The plastic potential ¢? accounts for hardening phenomena. Just for
simplicity, we consider an isotropic hardening and this potential
depends solely on the internal variable q:

0P = oP(q), (22)
t
q(t) = /0 qdt Gy, =g, + Atg = g, + Aq. (23)

The dissipative potential is defined to be dependent on the temporal
derivative of q and its definition provides an exact penalization for
negative values of g

_ (A _ oy 2 S V@ ifa=0,
wD")u/(At)w(q){m faoo 24

where (§) may take different expressions for positive values of .

Due to these choices, the generic set of state (internal and exter-
nal) variables {F,F’ Q} within the time interval is reduced to the
set {F,Aq, q;,M;}. The incremental potential (5) is thus re-written
as

P(Fni1;6n) = ¥(Cos1;6n) = AUUnH)

+min {800+ A (31 | @9)
Ap*(CE,y) = 0°(CE,y) — 0f(CE), (26)
A(/Jp(qmrl) = ‘pp(qn+1) - qap(qn) (27)
AU(Js1) = U(Jpyr) = U(,), (28)

where the minimization operation is constrained by the conditions

3 3
q,-eKQ—{pieR:Zp,-—O;Zp?—WZ}, (29)

i=1 i=1
MiGKM:{N,-GSym:N,--N,-:l, Ni-Nj:O, 175]}, (30)
Aq > 0. 31

First order necessary optimality conditions of the minimization
problem (25) take into account the derivatives of potential ¥ as
well as the derivatives of constraints (29)-(31). The minimization
along the eigenprojections M; can be performed analytically. To this
aim, a relevant relation between elastic and plastic deformations is
shown:

F" =F, F (32)
=FCGaE, (33

., = FaF) ] = F(exp[aD]) !
Ce., = FT F°,, = C"(exp[AtDP])~2, C”

n+ n+1 n+1 —

InCe,, = — AtD?, & = % InCP, (34)

Efwl = j
where the superscript “pr” is the usual notation for a predictor quan-
tity, relating values known at time t,,; (i.e., Fp.1, E,H]) with values
known at time t, (i.e,, F}). Eq. (33) is only valid if co-linearity be-
tween CP and D” is assumed in order to allow permutation between
both tensors. Using this ansatz, it is shown in the Appendix that the
minimization with respect to M; is achieved when the tensors CM
C and D? share the same_eigenprojections: E; = E" =M. This
means collinearity between CP" and D® which corroborates the per-
mutability assumption made in (33).

On the other hand, the necessary optimality conditions for g;
and Aq take the form

= 62 =0, =123, 35)
3. 0Ap?  OA@P o

Ty =— it~ t=: =0, 36

T4 o oAq "oq 7 (36)
3

rs=>» q=0, 37)
i=1
3

o= q =3/2, (38)
i=1

Aq > 0, (39)

r4 Aq=0. (40)

Once the minimization is performed, the derivative of ¥ with re-
spect to C,,1 and Jaiq should be calculated in order to obtain the
Piola-Kirchhoff stress tensor. Due to the separation of potential ¥
in isochoric and volumic contributions, the stress tensor P is re-
written as

alp(cnﬂ ; gn)
aCnH

_ 0p°
nifDEV( aC > a]n+ jn+1 Cn+1:| (42)

Pn+l :2Fn+1

=Fni1




where (see Appendix for operational details):

dpe o\ aCPr oS00 1 .
Z o ~—=F" 3¢ 3B |E Lo43)
act" oCr | oCp, i7 96 <G

acnﬂ

3.3. Material tangents

An important aspect from the numerical implementation point
of view is the determination of the tangent matrix, consistent with
the constitutive incremental update algorithm. The contribution to
the tangent matrix from geometric terms is common to any hyper-
elastic model. Thus, we focus here on the expression of the second
derivative of the present incremental material update. We will use
here the notation -=- as the total derivative of the argument with

. Cn+1
respect C,,;. We define thus the tensor %:
e
¢-_d (EW>_ 4 <§"’ > (44)
dcnﬂ dcn+1 dcn+1 acnﬂ

Considering CP" = (F?);TC,,(F?);", calling f" =
ping index n + 1, we have: (see Appendix):

= > e L (2 Ve e
O ijkl — im*jt depr 6Epr kp*tlg kiij — ©jiki*
mtp.g=1 pq mt

The critical point is the obtention of the derivatives of ¢ with re-
spect to C" = cI"EY". In spectral coordinates this requires the com-
putation of the following functions (see Appendix for details)

_0¢°  09° 1
Yi= ocl"  Bes 20 )

d [0¢° 1
Yi = \aes 20

The terms i“e and 2

(FP)-! and drop-

_ e de¢ 1 R
@ef@eie dﬁpr 4CP’CI_” Oef 2((;1.")2

(46)

o ea e are straightforward. On other hand, the

relation (el e§’7 &) is deﬁned by the derivation of the nonlmear
system ((35) and (38), see Appendix) which provides the terms f,,

J

4. Minimization strategy

The first information to be obtained from the minimization
operation is the characterization of the plastic or elastic nature of
the incremental step. The proposed decomposition of the plastic
stretching D allows for a clear visualization of this issue. Indeed,
while Eq. (35) provide the variations of the potential function with
respect to the eigenvalues g; along a circle of radius /3/2 (condi-
tion (38)) on the deviatoric plane (condition (37)), Eq. (36) com-
putes the derivative of this potential due to the plastic increment
Aq. A plastic increment occur when the minimum is achieved for
a Ag > 0. Conversely if the minimizer is such that Ag =0 then,
the incremental step is elastic. A null minimizer Aq is obtained if
the derivative. r4y,o > O for all possible values of g;. In other
words, an elastic step occur if the minimum value of ry at Ag=0
is non-negative. Mathematically, it is necessary to solve the
problem

. 0A@¢  OAgP Oy
T T e i BAg o)
" (47)
g €Ko = {p.» ER: Zpi = O;Zp,-z = 3/2}-
i=1 i=1
Using a Lagrangian function
3 3
0Ap°© aA(pp 61// =
Z(Aq,q;) = ; ot q; + 0Aq @ +4 Z‘L
_ 3
+B Yy a —3/2>-, (48)
i=1

the necessary first order optimality conditions are easily written:

aAqa

e +i+2pg;=0 (i=1,2,3), (49)
s 1
> g =0, (50)
i=1
3
> ¢t-3/2=0. (51)

i=1

This problem is easily solved analytically. Summing up the three
dAg®

equations in (49) and using (50) it comes that 1= 1/32,-3:1 5

e¢
i

:1/3tr<a?"’e>. Introducing this expression in (49) and calling

0e®

—

agg =% 1 /3tr(a§‘”2) we obtain, after algebraic operations, that
0Ap®

2 — 1\ 2
3 % 2. (0Aee
i =A\/5T—, = . 52
@ ﬂ_ > (%) 52)

Substituting this value on Eq. (36) we arrive to the expected condi-
tion for a plastic step: the minimum value of the derivative of ¥
with respect to Aq evaluated at Aq = 0 must be negative, i.e.

0
Lo
Aq=0 aq

A
Oe®

where

<. (53)

Aq=0

where the following definition for the equivalent stress oy was
used:

,\/3
aN = )

It is important to note that if criterion (53) qualifies the minimizing
step to be “plastic” (Aq > 0) then conditions (39) and (40) may be
dropped and the minimization is to be carried out just by Egs.
(35)-(38). Moreover, further simplifications may be used; since
Aq >0, a new set of variables {qi,q>,qs} may be defined using
the expression ¢; = Aq g;. This eliminates Aq as a independent var-
iable, and also the constraint on the size of the g; in (29). Details on
this technical simplification will be shown in further article.

It is also interesting to note that the equivalent stress oy, as de-
fined in (54), also corresponds to a classical equivalent stress com-
puted from Mandel stress tensor:

om = 1/% devS - devs, (55)

where

aA(p

Tdet (54)

S=F'PF". (56)

The Mandel stress tensor is defined in the intermediate configura-
tion, and is symmetric in the case of isotropic elasticity. The above
derivation thus shows that the above minimization strategy
amounts to computing an elastic predictor Mandel stress, evaluate
the classical von Mises criterion in terms of this stress tensor, and, if
the criterion is verified, apply a plastic corrector step. This process
parallels the classical predictor-corrector scheme used in small
strains. In general, it may not correspond to a radial return, though,
since the predictor g; may be different from the overall optimal
ones.

5. Particular viscoplastic models
In this section, some expressions for the potentials are specified

in order to obtain two particular behaviors: Hencky-based and Og-
den-based models.



Table 1 As already said, the dissipation pseudo-potential y defined by

Material parameters for cyclic traction and shear tests (24) plays the important role of enforcing the positiveness of g.
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or, in a Perzyna rate-dependent law,

ol
Qo)

The (isotropic) hardening rule is provided by ¢”. A quite generic
expression for this potential may be given by

oo MYodo

o = (58)

1 1
(@) = 2oq + 5 He" + 1 <q o eXP(*“”Q)) +
(59)

where X, H, p”,ocl’,uj.’ and cx}‘.’, are material parameters. Linear hard-
ening is given by the first two terms, depending on X, and H. The
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third term provides a saturation behavior, controlled by «” and .
Finally, the fourth term is an extension of the Ramber-Osgood
law, which considers just a single term within the sum, i.e., N =1,
and parameters of and 4xf.

Note that hardening can also be introduced in the dissipation
pseudo-potential, e.g. through a dependence Y,(q) in (57). But
since the partition of hardening between dissipation pseudo-po-
tential and plastic free energy only becomes relevant in a ther-

mo-mechanical setting, we will limit hardening terms to the
latter.

5.1. Hencky-based model
In this section we analyze the case when the elastic potential is

based on a quadratic form of the logarithmic strain tensor (Hen-
cky-type potentials [18,16]):



For simplicity reasons, we assume that s and ¢P take the forms (57)
and the first two terms of (59) respectively (rate-independent linear
isotropic hardening). Thus,

(4
%(pe =2p0¢f = 24°(q" — Aqqy),
€
oY 0P
aiq:yo’ m:ZO+anH.

It is easily seen that in this case the qualifying conditions (53) re-
duces to

—om + Y0+Zo) 0 (60)

M = P = s we
o \[HS Il s Z(Spr) s =2u", (61)

R

, !’,"’ ””l
| h |

Fig. 7. Shear test.

while conditions (35) and (36) take the particular form
i = —Zu (¢

rg=— ZZ,ue(e
i-1

After some algebra, it is shown that (see Appendix)

" AQQ)Aq 4+ +2Bg; =0, i=1,2,3, (62)

P — Aqq)q; + Zo + Hq, ; + Yo =0. (63)

_\BISI = (Yo + 2o + Ha,)

361 H if Aq > 0, (64)

3#9 pr

i b = 3o + Ha, + Yo, (65)

a=3u +H,

qi =

which is the usual expression for elastoplastic radial return von-
Mises model. Finally, (65) allow the computation of
¢ = 2p(e" — Aqq;) needed for the elastic potential.

5.2. Ogden-based model

In the previous case, the quadratic function of the logarithmic
strains is particularly convenient to obtain an explicit expression
for the minimizing argument Aq]?. In spite of this advantage, it is
well known that this type of hyperelastic potential do not fit very
well other materials like polymers. For that case, a more adequate
choice may be the Ogden model ([18,16])

3 N e
u
=> ) “E(lexp(e)]” — 1), (66)
o1 p=1 %P
0
(” Zup exp(ei)]”. (67)

l

This model has the property of generalizing others well-known
models. For example, Mooney-Rivlin model is achieved taking
N=2,1 =2Cy,py = —2C; and o = 2, = —2.
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In the present case, conditions (35) and (36) take the expression 6. Numerical examples

N
ri=— Z 1 [exp(e)]?Aq + 4+ 2pg; =0, i=1,2,3, (68) 6.1. Uniaxial traction test
p=1
N " This simple example illustrates the behavior of this approach
s =— > Hp[€Xp(ei)]* g + Zo + HGny1 + Yo = 0, (69) for the case of a traction sample submitted to a constant strain rate.
= Two material models were tested: Hencky and Ogden. Both
whose solution provides Ag, g;, . and . materials were considered incompressible through a convenient
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penalization value of K. The Ogden model used N = 2,i.e,p=1,2.
The corresponding values are listed in Table 1.* For both cases,
potentials (58) and (59) were used with parameters Xy =7,
m=12,q4o=1.1,Yo =7,H = 1. It is important to remark that these

4 1t is worth to noting that the parameters of 1 do not correspond exactly to the
Mooney-Rivlin case, since the exponent «; and o, are different from the number 2.
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values are merely illustrative, with no relation to a specific material.
Both specimens were elongated and compressed up to
e=InA=[-1.0,1.0] with constant logarithmic strain rates of
1/5,0.5/s and 0.1/s. Fig. 1 shows the axial Cauchy stress gy, while
Fig. 2 shows the equivalent stress a defined in (54) for the Hencky
model. Fig. 3 also shows the evolution of the equivalent plastic strain
Aq for this case. These figures allow to see the expected dependence
of the strain rate in the plastic regime as well as the evolution of the
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Table 2 yield limit. Figs. 4-6 show analogous results for the Ogden model.
Material parameters It is possible to see a clear difference of behavior in the elastic
Potential ¢° Ogden range.
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step0 1=0000000/1 500000 cit=0 001000 step 26 #=0.100000/1 500000 cif=D 005000 step 0 =0 0000000015000 cit=0 000050 step 32 1=0.001500/0.015000 cit=0000050

Equivalent von Mises stress Equivalent von Mises stress
-0500 -0250  0.000 0.250 0.500 1.9 141 164 18.6 208
Equivalent von Mises siress Equivalent von Mises siress
0500 -0.250  0.000 0.250 0.500 6.79 8.17 9.54 10.9 12.3
s18p72 1-0.003600/0015000 c1-0.000050 $18p 112 1-0,005500/0015000 =0.000050
stepbb 1=0.300000/1 500000 cit=0005000 step 79 1=0.350000/1 500000 cit=0.001056

Equivalent ven Mises stress Equivalent von Mises siress

1.4 13.6 16.9 18.1 20.4 9.78 130 161 19.3 225
Equivalent von Mises sfress Equivalent von Mises siress
532 7.77 10.2 12.7 16.1 494 8.69 12.4 16.2 19.9 .
3%op 162 1=0,007500/0.015000 c#=0.000050

step 154 =0 400000/1.500000 cit=0 005000 step234 f=1 0D0000/1 500000 cik( 005000

Equivalent von Mises stress Equivalent von Mises stress
8.50 13.4 18.4 23.4 283 7.68 159 241 32.3 40.5

Equivalent von Mises sfress Equivalent von Mises siress
4.98 12.0 19.1 26.1 332 516 132 212 29.3 37.3
Fig. 16. Sequence of deformed configurations for displacement rate 300 mm/s.

Fig. 15. Sequence of deformed configurations for displacement rate 30 mm/s.

6.3. Normalized traction test
shear stress oy, equivalent stress oy and equivalent strain Aq is

shown in Figs. 8-10 for the Hencky model and Figs. 11-13 for The proposed formulation was implemented in the academic fi-
the Ogden model. As expected, a behavior similar to that of traction nite element code METAFOR [19]. The following example shows
test is observed, with a clear nonlinear response for the elastic re- the simulation of an experimental traction test. The specimen
gion in the Ogden case. geometry follows the ASTM D638-03 norm for thermoplastics
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Fig. 17. Sequence of deformed configurations for pressure rate 0.1 N/mm? s.

[20]. The material parameters are given in Table 2, values that pro-
vide the strain-stress curves found in Fig. 14. It is possible to see in
these curves the usual behavior of some thermoplastics i.e. an elas-
tic behavior followed by a large plateau of plastic deformation and
a final hardening. The simulation of the traction test is performed
by controlling the relative velocity of the specimen extremities,
emulating a displacement-controlled real test. The specimen is
elongated by 30 mm at rates of 30 mm/s and 300 mm/s. The results
of each case is shown in Figs. 15 and 16. The comparison between
these two cases shows clear differences in the deformation shape
due to differences in deformation rates of the material. In the slow-
est test, a clear necking nucleates® and “grows” following the defor-
mation of the specimen. Conversely, in the fastest test, the
viscoplastic behavior inhibits a clear necking formation, producing
a more homogeneous strain along the specimen, behavior usually
found in these kind of materials.

5 For both cases, the neck starts at the middle of the specimen due to a local small
perturbation of its geometry.
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6.4. Inflated membrane

This example shows the case of a membrane being inflated by a
growing pressure. Used as a benchmark for rubbery materials, this
example usually presents a snap-through behavior requiring an
arc-length technique for a quasi-static solution. This snap-trough
behavior is a result of an adequate combination of material behav-
ior and geometrical characteristics. In the present case a squared
viscoplastic membrane of 20 mm of length and thickness of
0.1 mm is submitted to a pressure rates of 1x 10" N/mm?s,
1x102 N/mm?s and 1x 10> N/mm?s. The material is the
same as the one used in the previous example.

Fig. 17 shows a sequence of deformed configurations of the
membrane during loading. Fig. 18 show the diagram of classical
von Mises stress at the bottom middle point. It is possible to see
the dependence of stresses on pressure rate, as expected. Figs. 19
and 20 show in detail the behavior of stress and transversal dis-
placement for a pressure up to 0.16 N/mm?.

It is interesting to note that the expected snap-through phe-
nomenon is not present here. This seems to happen due to the
choice of a constitutive law with a low viscoplastic plateau. The
hardening behavior of the material shown in Fig. 14 allows the
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membrane to reach high stress values. An instable configuration is
found at pressure of approximately 0.4 N/mm? which is the upper-
limit before failure.® In the present case, a dynamic analysis with an
artificial low density value was used instead of a quasi-static arc-
length technique.

5 The material response shown in Fig. 14 is similar to that of some thermoplastics.
The high stress values found at the end of present simulation are just numerical since
a real thermoplastic would fail before that.
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7. Concluding remarks

A general set of hyperelastic-viscoplastic material models was
presented in this paper. Based on the variational approach of inelas-
tic constitutive models [5], this work proposes as a main contribu-
tion, a spectral decomposition of viscoplastic strains which allows
the use of generic hyperelastic and viscoplastic isotropic potential
functions. Different material models may be obtained simply by
changing the expression of these potentials and their derivatives.
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It is also shown that the incremental yield criterion comes out nat- N 3 0 3, 3/9 20
urally from the minimization approach adopted here. In the isotro- g €Ko=1{pi € R: 217" - 2131- =3/2}, (70)
ic case, this yield criterion amounts to evaluating the classical von - - ..
p y g M;eKy={MeSym:M;-M;=1, M;-M;=0, i#j}. (71

Mises equivalent stress in terms of the Mandel stress tensor, in the
intermediate configuration.

The stress and internal variables updates require (in the general
case) the solution of a small set of nonlinear equations to deter-
mine the eigenvalues of viscoplastic increments. The solution of
the nonlinear constitutive problem is based on the Newton method
by using analytically invertible tangent matrices which provide
computationally inexpensive material tensors for the global bal-
ance problem.

All these characteristics will allow us to combine this formula-
tion with that already obtained for nonlinear viscoelastic behavior
[11] in order to propose consistent models for polymeric materials
subject to combined viscoelastic and viscoplastic strains, which is
the subject of future works.
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Appendix
Minimization of ¥ with respect to M,

The arguments that minimize the potential ¥(Aq,q;, M)
must be such that AtD? = quleq,-Mi is traceless and its decom-
position is a sum of orthonormal symmetric tensors. This means
that

In order to enforce these constraints, the optimality condition is
computed with the aid of a Lagrangian function that adds to the ori-
ginal potential all the considered equality constraints (the con-
straint on Aq, due to its simplicity is taken into account a
posteriori):

L(Aq,q;,M;, 2,4, ) = V(AQ,q;, M) + A1 (Mg - Mg — 1) + 2, (M, - M)
+3(Mg-M¢) +A4(Mp-Mp — 1) + A5 (M, - M)
+6(Mc-Mc — 1)+ 4(q, + 4, +qc) + B(42 + a7

+q2-3/2). (72)

Since g; do not depend on M;, the optimality condition with respect

to the eigenprojection M, is:

0L . oY . . , .

M, [6M] = ™M, oM + 2441 (Mg - M) + 1, (M,, - SM)
+23(M-5M) =0 V5M e Sym. (73)

Taking 6M equal to My, M,, M, respectively, we obtain the relations

. 4
2/L] = aMa ~Mﬂ,
. oY
42 = —a—Ma'Mln
. oY
A3 = “aML - M.

Substituting them in (73),

oY oY ov
o, (e, )M~ ()

_ <f’_‘*” ‘ Mc> MC} M =0 VoM e Sym, (74)

oM,
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The only term of ¥ that depends on M is the elastic potential ¢°(ef)
through the elastic tensor ¢, i.e,

3 3 e
€= E =" —AD’ =" —Aq» _qM; %: e, (75)
i=1 i=1
Y dAg* R
oM, oM, 24~ 0 Ot M, Z] de B |0 (76)
Substituting these result in (74), we have
3 3 e 3 e
aA(f) Z aaAEZ) Ee Mv Mv Z ag‘:f Ee Mv Mv
j=1 l i=1 1 i=1 1
3
- Z CAP® ge Y M"] oM =0 VoM € Sym. (77)
6

The last equation is satisfied if we take E; = M;.

Minimizing operations for Aq, q;

Assuming that the material point performs a plastic increment
Aq > 0, the nonlinear system (35)-(38) must be solved. Using
Newton method we find the roots x = {q,,q,,q5,Aq, 4, B} using
the recursive formula

xk+1 _ xk _ Kk—l k

(78)

where k is the iteration number. In case that the potential ¢¢ can be
additively written as ¢°(&f) = 37 ,w?(¢?), the material tangent ma-
trix K takes the snnpliﬁed form

MK 0 0 H, 1 Zq] 1
0 Ky 0 H, 1 2q2
0 0 K H; 1 2
K — 33 H3 as (79)
Hi H, H; Hy; O
1 1 1 0 0
L2, 2q, 23 0 0 0 ]
Ki = :;g AG* +2B, i=1,2,3 (noindex sum),
6
*A Ap® . .
. aeeate qiAq — a:f , i=1,2,3 (no index sum), (80)
1 1 1
3 2 2 2
P, PAeP 1 Py
Hy = Q@+ — . (81)
= 0cf0ef ' 0AG* At 0¢?
Derivatives of ¢¢ with respect to Coit
In order to compute the derivative ¢® we use the relation
R PTG, P
the derivative of ¢¢ comes
(4 e c
00" 150 = 92°. acr oc) = 20 pp1 SCuit ) | ppt
oCpis aCP 3Cns aCkr oCpis
(4
= aaé”p : Fg*T%((sc +oCHP ! = ! aagp PT.sC  (82)
and then,
09° _ g1 99° ppr (83)
oCppy " 0CH "
where
ope ol 3 o
] CW Z o e Z o B (84)
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Material tensors

Considering CP = (FP)."C,(F?);', calling " = (Fr);' and
dropping index n+ 1, we have (in this particular expression we

use Einstein’s notation for summation on indices
p,q,m,t,u,v,r,and s):

d (997 d [2g° oCh )\ oCh

dCy \oC;) dck \ac, oC; ) oCy

d awe a(fpn uvfpn) (fpn fDn)
S derack, oGy aC;
d o
:dEpr va;r fgz /”V"Ifl\:;flrjnnr
pq
%¢°
dfgg aepr fzgfﬁgjuvkljrsij:

__gpngpn d a#’ PREPN. (o0
—rim*tjt dcpr Cpr kp*tlg ? jikl>

)

I iy

_epnepn d
—trmvst

%Zid (g;ftiﬁ %ijkl = %;?kl'
The total derivative of ¢°® with respect to e}” comes from the deriv-

ative of the nonlinear optimality conditions. Assuming for simplic-

ity purposes ¢°( Z, 1w (€f) and considering that
det dAq dg;
Elg = Efr - Aqql = I}p’r = 51] d pr ql Aq dEJPlT’ (85)
we have
dri  A¢° de OAg¢ dAq  d2 dg; g
defri_ae?ﬁe-e dEjPr h Oef ('151-7r depr+2ﬁd pr+2qi@70
_PAg* dAg dg;
= aFeaG 61'_)' de pr q;i — qd plr Aq
_ 0A¢° dAq dA dg; dp
aes dpr deyr+2ﬁ@+2qirjyr70
dA
(AT +28) S (050100~ o) g
b
dA dﬁ
* qar 2 g AAg =0 (86)
d dA dz d
:>Kll dglr + H d p(z d pr + 2q1 d gr (puéUA‘L
,j=1,2,3 (no 1ndex sum),
dr4 3. dq,  9%Ae? 1 3%y dAq
= Z(/’nqzdyr_z idplr"" 0AG2 +BW defr:
3 dq
58Aq — %) T
; ll 1 dfj
? (pp 1 8%y dAq
* Z%qx oA At og2 ) dar Y% =0
d dA
iZH dqplr +H4d p? = (pJ]q]7
J
i,j=1,2,3 (no index sum), (87)
dr d
i Z a = (88)
dr 3 d
=22, d‘i‘r - (89)
Or, in a compact notation,
Kx; = Zy;, (90)



dg; dgs dg; dag di dp]’

T de" de" def" de" def" def |
Y = [0%9101jAq 9%,05iAq 9¢%303Aq ¢%q; O 0.
Matrix K is the converged tangent matrix (79). The solution of the
system (90) provides the vector x; that, together with (85) provides
99, Further simplifications may be done according to the chosen

3
J .
potentials.

(91)

(92)

Hencky-based model

The residual for Hencky potentials take the form

ri=—2p°(" — AQq;)Aq+ A+ 2Bg; =0, i=1,2,3, (93)
3
Ta=— Z 208 (" — AQq)q; + Zo + hqp,q + Yo =0, (94)
i1
3 3
r5:zqi:07 re:Zq?:B/z. (95)
i=1 i=1

Summing up all three equations (93) and considering (95) we have
2 = 0. From (94) and (95) we then obtain the compact expression

3
aAq+b=2pY g, (96)

i=1
where
a=3u*+H, b=2,+Hq,+Yo.

Summing up all three equations (93) multiplied by g;, and subtract-
ing (94) multiplied by Ag we have

1
B =3Aq(Z0 + Hq, + HAQ + Yo), 97)
which is substituted in (93) to obtain
_ 3w’
a4, = aAq+b (98)

Substituting (98) in (96) and noting

3
2 2
8771 = > ()7,

Jj=1

Slpr eefr 7

:2H

we arrive, after simple manipulations, to the classic expression for
the equivalent plastic increment

17

VISl = (Yo + Zo + ha,)
q =

3ut+h ’ (99)
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