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A tube-based constitutive equation for polydisperse
entangled linear polymers

A. Leygue a, C. Bailly b,∗, R. Keunings a,∗
a CESAME, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

b Unité de Chimie et de Physique des Hauts Polymères, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

We present a tube-based constitutive model for polydisperse entangled linear polymers. The model is constructed as the non-linear extension of 
a linear model [A. Leygue, C. Bailly, R. Keunings, A differential tube-based model for predicting the linear viscoelastic moduli of polydisperse 
entangled linear polymers, J. Non Newton. Fluid Mech., in press] capable of predicting quantitatively the linear viscoelasticity of polydisperse 
linear systems. The constitutive equation accounts for the major linear and non-linear phenomena thought to be important in the description of 
entangled linear polymers: reptation, contour-length fluctuations, thermal constraint release, convective constraint release and chain stretch effects. 
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n the non-linear regime convective constraint release couples the relaxation of the different masses and provides a non-linear mixing rule for the 
odel. The predictive capabilities of the model are tested on published results for mono- and bi-disperse entangled solutions [C. Pattamaprom, 
.G. Larson, Constraint release effects in monodisperse and bidisperse polystyrenes in fast transient shearing flows, Macromolecules 34 (2001) 
229–5237; X. Ye, R.G. Larson, C.J. Pattamaprom, T. Shridar, Extensional properties of monodisperse and bidisperse polystyrene solutions, J.
heol. 47 (2) (2003) 443–468], both in shear and extension.

eywords: Entangled linear polymers; Constitutive equation; Polymer mixtures

. Introduction

Following the introduction on the reptation picture by de
ennes [4], Doi and Edwards [5] proposed a first tube-based

heory to explain the linear rheology of linear entangled poly-
ers. Variations of the tube model have reached a very high

evel of maturity and are capable of a quantitative description
f the linear viscoelastic properties of linear entangled poly-
ers [6–8]. The key of these successes essentially is an ac-

urate description of the reptation dynamics (if present), the
uctuations of the length of the tube and thermal constraint
elease phenomena, which is a closure to the tube mean field
pproach. Accounting for coupling between those effects is of
ritical importance. For linear polymers, the distinction made
etween reptation and contour-length fluctuations is somehow
rbitrary as they represent different modes of the dynamics of
one-dimensional Rouse chain escaping a tube. This distinc-
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tion is not found in stochastic tube theories where the full chain
is modelled [9,10,7]. Contour-length fluctuations and reptation
have been accounted for by using a modified diffusion process
along the primitive path. In those theories, one either considers
a time dependent [11] or a position dependent [12,13,1] dif-
fusivity along the primitive path. Thermal constraint release is
today well understood through dynamic dilution [14] and Rouse
motion of the tube. The complex interplay between those phe-
nomena has been thoroughly investigated [15,16]. Double rep-
tation [17,18] provides a simple and efficient method to account
for constraint release. It essentially provides a reasonable ap-
proximation to Rouse tube motion, especially at early times
[7]. The essence of Double reptation has actually been recov-
ered within the implementation of constraint release found in
a stochastic full chain reptation model developed by Hua and
Schieber [9].

The development of theories for the non-linear response
of entangled polymers is much more limited and even in the
case of monodisperse linear chains, additional phenomena are
still proposed as being important in the description of the flow
properties of some systems [19]. The Doi–Edwards (D–E)
model [5] was a first attempt to build a tube-based constitutive
1



equation. Despite the many assumptions found within the D–E
model, mostly for mathematical convenience, the predictions
of the model are in very good agreement with experimental
data for step deformations. For other types of flow the D–E
model fails even in the prediction of qualitative features of the
non-linear rheology of entangled systems. Among the failures
of the D–E model, the most noticeable is the prediction of
a shear banding instability in weakly non-linear flows which
has never been observed in experiments. This instability is
a direct consequence of the non-monotonic curve one can
observe when the steady state shear stress is plotted versus the
shear rate. Because reptation is the only relaxation mechanism
of the D–E model, all tube segments become fully aligned
in the shear direction when the shear rate γ̇ is larger than
the inverse reptation time 1/τd, which causes the decrease
of the shear stress. The excessive shear thinning of the D–E
model prevents it from being used in complex flow simulations
without considering an additional Newtonian contribution to the
viscosity.

In a first attempt to improve the theory, Marrucci and Griz-
zuti [20] proposed a constitutive model known as the Doi–
Edwards–Marrucci–Grizzuti (DEMG) model which, unlike the
original D–E theory, did not assume the instantaneous retraction
of the chain inside the tube. This incorporation of tube stretch-
ing effects at a timescale τr, much smaller than the timescale
τd of reptation, led to improved predictions of the transient re-
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ture with the flow field, it is difficult to obtain a general CCR
formulation that does not rely on a switch function to turn CCR
off when it would yield unrealistic predictions. The thermo-
dynamical validity of such formulations of CCR for differen-
tial constitutive equations has been discussed by Leygue et al.
[24].

More successful constitutive equations account explicitly for
chain stretch and compute the rate of CCR directly from the rate
of chain retraction. Using a very detailed integral model, Mead
et al. [25] showed how CCR, combined with tube length fluc-
tuations and stretch effects, could prevent the excessive shear
thinning and solve other problems of the D–E model. Their ap-
proach however relied on a separate representation of the aver-
age stretch and orientation of the tube and still needed a switch
function to balance CCR between the relaxation of stretch and
orientation.

Recently, Marrucci and Ianniruberto [26] proposed a promis-
ing single segment model that incorporates both chain stretch
and CCR in a coupled representation. This new model is simple
enough to be easily used for complex flow simulations [27] but
yet retains the necessary physics.

The construction of microstructural constitutive models for
entangled systems is a process in which many mathematical
approximations have to be made in order to obtain a closed
set of partial differential equations. From this angle, stochas-
tic models offer an attractive approach, where the mathematical
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ponse of the model. In particular, it showed overshoots in both
hear stress and first normal stress difference upon startup of
hear. Although the inclusion of stretch effects might smear
ut the shear instability of the D–E model for moderately en-
angled systems, this approach will inevitably fail as one in-
reases the molecular mass M of the entangled species. In-
eed, as the time scale of the one-dimensional Rouse relax-
tion associated with stretch scales like M2, an increase in M
an render τr arbitrarily small with respect to τd which scales
ike M3. For highly entangled species, the approximation of
nstantaneous chain retraction is therefore valid and cannot be
eld responsible for the shear banding instability of the D–E
odel.
Finally, in 1996, Marrucci [21] successfully pointed out con-

traint release as the key to overcome the problem. Although
onstraint release may be considered to play only a mild role
n describing the linear viscoelastic behaviour of a monodis-
erse material, it has a much greater influence in the non-linear
egime where constraint release events may not only be trig-
ered by reptation but also by chain retraction. For flows where
he deformation rate γ̇ lies between 1/τd and 1/τr the rate of
onstraint release would then be proportional to γ̇ , which is the
ate of retraction necessary to maintain the chain at its equi-
ibrium length. This type of constraint release is called con-
ective constraint release (CCR) as, from the point of view
f the chain, constraints are convected by the flow along the
ube. The first attempts by Ianniruberto and co-workers [22]
nd Marrucci et al. [23] to incorporate CCR into a constitutive
quation were focusing on flow regimes where γ̇ ≤ 1/τr and as-
umed complete chain retraction. As the rate of CCR has then
o be computed from the relative alignment of the microstruc-
omplexity of the approximations is partially replaced by the
umerical complexity and cost of stochastic differential equa-
ions. Based on microstructural mechanical models, successful
ull chain stochastic reptation models have been proposed by
ua et al. [9] and Masubuchi et al. [10]. These models are very
seful to understand the influence of some physical effects but
heir numerical complexity still prevents them from being used
n complex flow simulations.

In the present text, we present the CRAFT model; a new
ube-based constitutive equation for entangled linear polymers.

e first recall a simple linear theory for the prediction of the
inear viscoelastic properties of polydisperse systems [1]. Then,
e extend this theory to a full constitutive equation for entan-
led linear polymers. This constitutive model incorporates, in a
ull chain approach, the major molecular mechanisms thought
o be important to describe the flow of entangled polymers:
eptation, contour-length fluctuations, thermal and convective
onstraint release, chain stretch and finite extensibility of
he polymeric chains. Thermal and convective constraint
elease are modelled in a unified fashion where the latter
ppears as a non-linear addition to the former. Additionally, the
inearization of our model is equivalent to the original linear
heory.

A central feature is that most of the parameters of the con-
titutive model can be identified and understood from the linear
iscoelastic response. For polydisperse systems, constraint re-
ease actually provides the mixing rule in both the linear and
on-linear regimes, with no additional parameter. The acronym
RAFT stands for constraint release on average full tensorial
hain, the main feature of our model is its implementation of con-
traint release, on a tensorial representation of the averaged prim-



itive chains. Finally, we analyse the predictions of the CRAFT
constitutive equation and compare them with recently published
experimental data for concentrated polystyrene solutions in var-
ious rheometrical flows. We show that the CRAFT model is able,
using a single set of material parameters, to quantitatively pre-
dict both linear and non-linear rheological properties of linear
entangled polymers.

2. A linear model for linear entangled polymers

Most of today’s quantitative theories [8,28,29,6,7,30] that
predict the relaxation modulus as a function of the molecular
weight distribution and a few material parameters are mathe-
matically non-linear. This feature does not allow for their direct
extension to a full constitutive equation for predicting the non-
linear rheology. Starting from a mathematically linear model
for predicting the linear viscoelasticity of linear polymers [1],
we build the CRAFT constitutive equation as a non-linear ex-
tension. As non-linear relaxation phenomena are incorporated
into the constitutive equation we always require that they do not
change its linear response. The model is therefore able to de-
scribe both the linear and non-linear rheology of entangled sys-
tems. In this section, we briefly recall the simple linear model
in the polydisperse case.

In a polydisperse mixture of entangled linear polymers,
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differential problem for P
f (i,j)
γ (t, s) reads:

∂P
f (i,j)
γ

∂t
= ∂

∂s

(
α

f (i)
d (s)

∂

∂s
Pf (i,j)

γ

)
− 1

τj

Pf (i,j)
γ ,

Pf (i,j)
γ (t, −1) = 0,

Pf (i,j)
γ (t, 1) = 0 for t > 0,

Pf (i,j)
γ (0, s) = 1 for − 1 < s < 1. (2)

Contour-length fluctuations are assumed to modify the diffusion
coefficient α

f (i)
d (s) up to a depth of order

√
M(i)/Me, where

Me is the entanglement molecular weight. The expression for
α

f (i)
d (s) reads:

α
f (i)
d (s) = 4

Kdπ2M(i)3

Kf
2Me

M(i) (1 − s)2 ,

if s >

(
1 − Kf

√
Me

M(i)

)
, (3)

4

Kdπ2M(i)3

Kf
2Me

M(i) (1 − s)2 , if s <

(
Kf

√
Me

M(i) − 1

)
, (4)
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et us consider the chains of a given mass M among the N
asses. Let s be a curvilinear coordinate along the primitive

ath. For simplicity, all lengths are made non-dimensional with
espect to half the equilibrium length of the primitive path.
herefore we have −1 ≤ s ≤ 1. We then define P

f (i)
γ (t, s) as

he probability for a chain segment of coordinate s of being in a
ube segment that is older than t. This tube survival probability
ecreases in time under the combined effects of reptation,
ontour-length fluctuations and thermal constraint release.
lthough the spectrum of relaxation times due to reptation

nd contour-length fluctuations is relatively narrow for a given
ass, a polydisperse environment will yield a broad spectrum

f relaxation times for P
f (i)
γ (t, s). The tube survival probability

s therefore approximated by a sum of modes corresponding
o the dominant relaxation times induced by thermal constraint
elease:

f (i)
γ (t, s) ≈

NCR∑
j=1

wjP
f (i,j)
γ (t, s), (1)

here NCR is representative of the number of characteristic
elaxation times τj induced by thermal constraint release and wj

epresent the relative weights of those times. This description
n terms of modes of constraint release implies that, for a fixed
i), the contribution of reptation and contour-length fluctuations
o the dynamics of P

f (i,j)
γ (t, s) is identical for all (j).

Let us now focus on the dynamics of P
f (i,j)
γ (t, s). Following

13], reptation and fluctuations are modelled together by a diffu-
ion operator with a variable diffusivity along the coordinate s.
dditionally, thermal constraint release is introduced through a

inear relaxation term with a characteristic time τj . The resulting
d

here Kd is a material parameter. The adjustable parameter Kf
s close to unity and controls the depth of the contour-length
uctuations within the model.

The relaxation times τj , induced by thermal constraint re-
ease, and their associated weights wj are such that they yield
constraint release kernel as close as possible to the constraint

elease kernel that double reptation would induce:

CR

j=0

wj exp

(−t

τj

)
≈
(

N∑
i=1

φ(i)

2

∫ 1

−1
P

f (i)
0 (t, s) ds

)γ

. (6)

he parameter γ is a mixing exponent of order unity and the
unctions P

f (i)
0 (t, s) are the tube survival probabilities with ther-

al constraint release neglected. They are computed from the
ollowing differential problem:

∂

∂t
P

f (i)
0 = ∂

∂s

(
α

f (i)
d (s)

∂

∂s
P

f (i)
0

)
,

f (i)
0 (t, −1) = 0,

f (i)
0 (t, 1) = 0 for t > 0,

f (i)
0 (0, s) = 1 for − 1 < s < 1. (7)

he relaxation modulus is proportional to the average tube sur-
ival probability over all masses:

(t) = G0
N

N∑
i=1

NCR∑
j=1

φ(i)wj

1

2

∫ 1

−1
Pf (i,j)

γ (t, s) ds, (8)

here G0
N is the plateau modulus, and φ(i) is the volume fraction

f mass (i). In order to make quantitative predictions of the



linear viscoelastic moduli at high frequencies, one should also
account for the Rouse relaxation modes of the chains. The Rouse
relaxation time τr of an unentangled chain is given by:

τr = KrM
2, (9)

where Kr is a linear material parameter. Following van Ruym-
beke et al. [6], the Rouse spectrum Gr(t) for that entangled chain
writes:

Gr(t) = G0
N

⎛
⎝ ∞∑

p=Z+1

1

Z
exp

(
−p2

τr

)

+ 1

3

Z∑
p=1

1

Z
exp

(
−p2

τr

)⎞⎠ . (10)

The integer Z is defined as the closest integer to the ratio M/Me.
The Rouse modulus of each mass M(i) is to be superposed to the
reptation relaxation modulus using a linear mixing rule.

Although Kd, Kr, M and Me are linked through the under-
lying segmental dynamics and should not be specified indepen-
dently, they are considered as independent parameters in this
work.

The set of equations presented in this section is closed and
forms a mathematically linear model that can predict quan-
titatively the linear viscoelastic response of entangled lin-
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a full thermal constraint release spectrum will be presented as a
natural extension in a latter section.

The variables of the CRAFT model are the components of a
second order conformation tensor c(t, s) defined along the co-
ordinate s of the primitive path. The dynamics of this tensor is
controlled by a PDE which accounts for the following phenom-
ena:

• affine deformation of the micro-structure;
• reptation of the primitive chain;
• contour-length fluctuations;
• relaxation of tube stretch;
• thermal and convective constraint release;
• finite extensibility of the polymeric chain.

In the next sections, we will first define some additional no-
tations and then consider the contribution of each phenomenon
to the evolution of c(t, s).

3.1. Variables and notations

Let us consider a single polymeric chain, trapped in a fixed
tube, as shown in Fig. 1. Both the primitive chain and the tube
exist in real space (3D), but can be referenced through a single
parametric coordinate s. For simplicity, all lengths in real space
are made non-dimensional with respect to half of the equilibrium
l
l

t
t
i
x

i∥∥∥∥

4

ar polymers. In the following sections, we will extend this
odel to a full constitutive equations for non-linear flow

egimes.

. Construction of the CRAFT constitutive equation

For the sake of simplicity we will present the construction
f the CRAFT model for the monodisperse case only and for
nly one characteristic time of thermal constraint release. This
implification allows us to discard the (i, j) superscripts we had
o consider in the previous section. The polydisperse case with

Fig. 1. Illustration of the notatio
 ed to build the CRAFT model.

ength of the primitive path. At equilibrium, the non-dimensional
ength of the primitive path is therefore 2.

Let x(t, s) be the position of the primitive chain along the
ube, where s (−1 ≤ s ≤ 1) is a Lagrangian coordinate along
he chain. At equilibrium, s is a curvilinear coordinate which
mplies that (x − s) is a constant. The position of the origin
= 0 is actually arbitrary. The position of the tube in real space

s defined by the vector r(x), and by definition of x and r we have:

∂r
∂x

∥∥∥∥ = 1. (11)



For a system composed of many chains, let us define the second-
order conformation tensor c(t, s) as:

c(t, s) = 3

〈
∂r
∂s

∂r
∂s

〉
, (12)

where 〈·〉 is the statistical ensemble average over all chains. This
definition of c yields:

tr c = 3

〈(
∂x

∂s

)2
〉

, (13)

which is the average local stretch along the primitive path. We
now have to propose an evolution equation for the set of tensors
c(t, s) as well as a way to compute the stress tensor.

3.2. Affine deformation

We decide to couple the dynamics c(t, s) to the velocity field
with the assumption of affine deformation of the micro-structure.
The induced strain measure is therefore the classical affine strain
measure. At the microstructural level, this yields the following

evolution equation for the tangent vector
∂r
∂s

:

D

Dt

∂r
∂s

= κ · ∂r
∂s

, (14)

where κ is the velocity gradient. Through direct substitution of
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convective constraint release (CCR) becomes the dominant re-
laxation mechanism as soon as the rate of deformation is greater
than the inverse reptation time. As the stretch relaxation time
is smaller than the reptation time, this occurs even before the
onset on chain stretch. The renormalisation of the diffusion op-
erator due to chain stretch will therefore be significant for flow
regimes where reptation has already been superseded by CCR.
Second, we believe that even before the onset of chain stretch,
anisotropy effects within the entangled network are likely to
appear and modify the diffusion process in a more significant
way.

At the chain ends, we assume that the primitive chain is al-
ways fully relaxed in both stretch and orientation. For s = ±1,

the vectors
∂r
∂s

are therefore uniformly distributed on the unit

sphere, which yields:

c(t, ±1) = δ. (18)

The validity of this assumption can be questioned as it implies
that no matter the strength of the flow, the chain ends will always
be fully relaxed. Ignoring anisotropy effects, we can nevertheless
assume that this assumption is valid for flow rates up to the
inverse of the segmental time τe.
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q. (14) in Eq. (12), we find the following evolution equation
or c(t, s):

∂c
∂t

(t, s) = κ · c + c · κT , (15)

r

c(t, s) = 0. (16)

hen all relaxation phenomena can be neglected (e.g. in a step
eformation) the evolution of c(t, s) is governed by the upper
onvected time derivative and c(t, s) is therefore equal to the
inger strain tensor.

.3. Reptation and fluctuations dynamics

To incorporate reptation within the model, we postulate that
he dissipative dynamics of reptation is governed by the same
perator that governs the relaxation of P

f
γ (t, s):

∂

∂s

(
αd(s)

∂·
∂s

)
. (17)

hrough this differential operator, we explicitly take into ac-
ount the connectivity of the chain and the physical process of
eptation. Hence, we build a full chain model rather than a single
egment model. As reptation is a diffusion process in real space
hich we solve in parametric space s, the onset of chain stretch

hould be accounted for in the change of variable from x to s. To
nsure a constant rate of diffusion in real space, Graham et al.
13] modify the diffusion operator as the stretch increases. We
o agree with the physics and the mathematics behind this pro-
osal, but we choose not to incorporate it in our model. The rea-
on is two-fold. In the first place, Marrucci has showed [21] that
.4. Chain stretch dynamics

In this section, we address the problem of describing the re-
axation of chain stretch and its coupling with orientation.

Let us model the retraction of the chain as due to a one-
imensional Rouse motion of the chain inside the tube. The
rojection along the primitive path of the microscopic force bal-
nce at position s yields the following evolution equation for
(t, s):

∂x

∂t
= αr

∂2x

∂s2 , (19)

∂

∂s
x(t, ±1) = 1, (20)

here s is the Lagrangian coordinate along the chain, x(t, s) is
he curvilinear position for the chain along the tube and αr is a
haracteristic diffusion constant, scaling like the inverse of the
quare of the molecular mass. Eq. (20) is a boundary condition
xpressing that chain ends are always fully relaxed in stretch.
he steady state solution of (19) is linear in s and the equilibrium

ength of the chain is 2.
Under the assumption that the tube is a fixed object, i.e. rep-

ation phenomena are slow compared to the relaxation of stretch
long the primitive path, we would like to find the contribution
f the chain dynamics (19) to the evolution of c. Considering
he definition of c, let us first try to obtain a tractable expression
or the following quantity:

∂

∂t

(
∂r(x(t, s))

∂s

∂r(x(t, s))

∂s

)
. (21)



From (19), applying chain differentiation we can approximate
(21) as:

∂

∂t

(
∂r
∂s

∂r
∂s

)
≈ αr

2

∂

∂s

(
∂x

∂s

)2
∂

∂s

(
∂r
∂x

∂r
∂x

)

+ αr

(
∂r
∂x

∂r
∂x

)
∂2

∂s2

(
∂x

∂s

)2

. (22)

The only approximation made to obtain the previous expression
is:

∂2

∂s2

(
∂x

∂s

)2

= 2
∂x

∂s

∂2

∂s2

∂x

∂s
+ 2

(
∂2x

∂s2

)2

≈ 2
∂x

∂s

∂2

∂s2

∂x

∂s
,

The purpose of this approximation is to obtain a closed form for

the evolution equation of

(
∂r
∂s

∂r
∂s

)
.

The term which is neglected is the square of a curvature term
and the approximation can therefore be interpreted as a mild
curvature assumption. The validity of this approximation has
been successfully tested for a single chain relaxing in a tube
after a step strain in shear or extension [31].

To go from the relaxation of a single chain to the relaxation
of c, we need to average (22) over the ensemble of chains. In this
process, we approximate the average of products/ratios by the
p
i
f
i

t
a
s

t

t

t

i

l
a
s

t

r
i

(
t
e
d
b

for the dissipation bracket [33] yields the following expression:

∂c
∂t

= αrc
∂

∂s

1

tr c
∂tr c
∂s

+ αr
c

tr c
∂2tr c
∂s2 . (24)

This expression is very close to Eq. (23) and is compatible with
the bracket formalism of non-equilibrium thermodynamics. Fu-
ture work should focus on its evaluation and its comparison with
Eq. (23) in different flow regimes.

3.5. Constraint release

Generalising our approach of thermal constraint release from
section 2, we assume it is possible to model both thermal and
convective constraint release phenomena as a local relaxation
process where the rate of relaxation due to CCR is computed
from the dynamics of stretch relaxation. Furthermore, we as-
sume that thermal and convective constraint release are inde-
pendent allowing us to sum their rates.

The procedure to compute the rate of thermal constraint re-
lease has been detailed in Section 2. For the sake of clarity, we
will assume here that thermal constraint release can be described
with a single relaxation time τcr. The remaining issue is there-
fore to give a valid expression of the rate of constraint release
fccr under the following constraints:

•

•

•
•
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roducts/ratios of the averaged quantities. These closure approx-
mations are required in order to obtain a closed set of equations
or the stretch dynamics. The resulting evolution equation for c
s the following:

∂c
∂t

= αr

2

∂tr c
∂s

∂

∂s

c
tr c

+ αr
c

tr c
∂2tr c
∂s2 . (23)

As taking the trace of the previous expression makes the first
erm of the right-hand side disappear, we see that the second term
lone governs the relaxation of stretch along the chain. More
pecifically, stretch relaxes through a diffusion process with a

ime scale of order
1

αr
. This term also couples the relaxation of

he diagonal and non-diagonal components of c in such a way

hat it does not modify the purely orientational part:
c

tr c
. Indeed,

f
∂c
∂t

= αr
c

tr c
∂2tr c
∂s2 then

∂

∂t

( c
tr c

)
= 0.

The first term on the right-hand side of (23) influences the
ocal orientation only. It can be interpreted as a transport term
long the s coordinate, wherein the velocity is proportional to the
tretch gradient and the transported quantity is purely orienta-

ional:
c

tr c
. As chain retraction occurs, it slows down the overall

elaxation as the orientation of the chain is transfered from the
nner segments to the outer, and more relaxed, segments.

In view of the many approximations needed to obtain Eq.
23), one might rely on the bracket formalism of non-equilibrium
hermodynamics [32] to obtain an alternative phenomenological
xpression for the evolution of c induced by the chain stretch
ynamics. The form of Eq. (23) provides however a guide to
uild the appropriate dissipation bracket. A simple expression
As the constitutive equation must be applicable in any type
of flow and in any coordinate system, only the invariants of
c can be used for expressing fccr.
The velocity gradient cannot be used explicitly for computing
fccr without special attention. From a thermodynamical point
of view, this would bring an additional coupling between
the velocity and the variables describing the microstructure,
which has to be accounted for in the stress tensor [32]. Fur-
thermore, such a coupling might lead to a negative rate of
entropy production in some flows and a switch function is
therefore needed to prevent this [24].
In the linear regime, the expression for fccr must vanish.
In the non-linear regime, fccr should account for CCR. Its
value has then to governed by stretch relaxation.

A first possibility to compute the rate of CCR would be to
ollow Mead et al. [25] and simply take the rate of convection of
esh of entanglements, relative to the rate at which the chain is

tretched. Neglecting some pre-factors of order unity, this would
ield the following expression:

ccr(t) = −
∫ 1
−1 αr

(
∂2

∂s2

)
tr c(t, s) ds∫ 1

−1 tr c(t, s) ds
. (25)

lthough this expression is quite appealing, it can lead to nega-
ive rates of CCR in some reversing flows such as large amplitude
scillatory shear (LAOS) flows. For well entangled systems, the
eptation time τd and stretch relaxation time τr can be well sepa-
ated. If the characteristic time of the LAOS flow ν−1 is such that
r � ν−1 � τd, the microstructure can be fully oriented but not
tretched at all when the maximum strain is reached. When the



flow starts to reverse, the flow kinematics will tend to compress
the chains below their equilibrium length. The stretch relaxation
processes will therefore tend to increase the length of the chains
to preserve their length, leading to a negative value for fccr(t).
Therefore we propose the following more general expression for
the rate of CCR:

fccr(t) = −
∫ 1
−1

(
D

Dt

)
a(c(t, s))|stretch ds∫ 1

−1 a(c(t, s)) ds
, (26)

where a(c(s)) is the contribution from the chain segments with

position s to the local free energy density. The notation
D·
Dt

|stretch

represents the Lagrangian variation of a quantity due to the re-
laxation of stretch. Under the hypothesis that sub-chains are
Gaussian, a(c) takes the form [32]:

a(c) = G0
N (tr(c) − ln det(c)), (27)

which is the free energy one would use if c was describing
Hookean dumbbells. Finite extensibility issues have also been
neglected in the definition of a(c). In the next section, when fi-
nite extensibility will be taken into account, we will use the free
energy corresponding to FENE-P dumbbells. In Appendix A,
we show that Eq. (26) always yields a positive rate of constraint
release. Except for reversing flows where the flow might tend to
c
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with,

c(t, ±1) = δ, (30)

fccr = −

∫ 1
−1

(
Da(c)

Dt

) ∣∣∣∣
stretch

ds∫ 1
−1 a(c) ds

, (31)

f (c) = b − 3

b − tr c
, (32)

a(c) =
(

−(b − 3) ln

(
1 − tr c

b

)
− ln det(c)

)
, (33)

τp = G0
N

1

2

∫ 1

−1
(f c − δ) ds. (34)

In the previous set of equations, α
f
d (s) is defined from Eq. (3),

while αr is defined as:

αr = 4

π2KrM2 , (35)

where M is the molar mass of the polymeric chains. For both the
linear and non-linear rheology the model has seven parameters:
Kd, Kr, Kf, Me, G0

N , b and γ . Out of those seven, only b is
actually a truly non-linear parameter.

The parameter b is the finite extensibility parameter, such that
tr c < b. Defining Leq as the equilibrium length of the primitive
c
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ompress the polymeric coils, the first term of Eq. (27) is always
ominant and the rate of CCR (26) actually reduces to Eq. (25).

Finally we want to account for chain stretch effects, which
ocally reduce the rate of relaxation through CCR. Indeed, if
ne assumes that the tube persistence length is fixed, a stretched
ortion of the chain will have more constraint release sites than
nder equilibrium condition. Consequently, we define the local
ate of relaxation due to constraint release f loc

cr as the sum of the
ates of thermal and convective constraint release divided by the
ocal stretch ratio:

loc
cr (t, s) =

(
1

τcr
+ fccr(t)

)
3

tr c(t, s)
. (28)

more detailed discussion of this modification of the rate of
CR can be found in [13].

.6. The CRAFT model for monodisperse systems

In this section, we propose a model containing all the ele-
ents we presented so far plus finite extensibility effects. Ad-

itionally, we provide an expression for the stress tensor τp.
ased on the assumption that one can simply add all the terms
e proposed for the time evolution of c, we propose the follow-

ng constitutive equation:

c(t, s) = ∂

∂s

(
α

f
d (s)

∂

∂s
(f c)

)
+ αr

c
tr c

∂2

∂s2 (f tr c)

+ αr

2

∂(f tr c)

∂s

∂

∂s

( c
tr c

)
−
(

1

τcr
+ fccr

)
3

tr c
(f c − δ),

(29)
hain and Lmax its maximum length, we have:

= 3
L2

max

L2
eq

= 3Nk, (36)

here Nk is the number of Kuhn steps between entanglements
t equilibrium.

The parameter Kr is the scaling parameter for the Rouse time
r, which controls both the high frequency regime of the linear
iscoelastic moduli and the stretch relaxation dynamics. Conse-
uently, this parameter can be identified either on the linear or
n the non-linear response of the system. In this work we con-
ider Kr as independent from Kd and Me, and we will preferably
dentify its value on some non-linear experiment.

. Computing numerical predictions

The CRAFT model has the form of a set of non-linear cou-
led PDEs along the s coordinate. The equations are coupled
hrough the trace of c which appears in the stretch relaxation
nd constraint release terms, but also through the determinant
f c which is found in the expression for fccr.

Before trying to solve these equations numerically, one can
se the symmetry of the problem to reduce the s domain to the
nterval ]0, 1[. Zero flux boundary conditions are then imposed
t s = 0. To solve the resulting PDEs on the reduced domain,
e chose to discretize them along the s coordinate using a finite
ifference scheme. The discretization has to be fine enough to
apture the boundary layer that appears at the chain ends for
igh deformation rates. Integration in time of the discretized
ystem is then performed using an adaptive Runge–Kutta or
ear ODE solver. This last step should be performed with care,



as the simulation of high molecular masses or very polydisperse
systems is very likely to induce many different time-scales in
the ODE, that may differ by orders of magnitude. The use of an
ODE solver for stiff problems is therefore highly recommended,
especially at high deformation rates.

In its discretized form, the model can be interpreted as a
coupled multi-segment constitutive equation where the coupling
between the modes is naturally imposed through the discretized
differential operators along the primitive path. In this form, the
model can be used in a straightforward manner for complex flow
calculations. Simulations of coupled multi-segments differen-
tial models in complex flows are indeed possible using standard
numerical methods for non-Newtonian flows (e.g. Wapperom
et al. [34]). In complex flows, the single chain coordinate s
of the CRAFT model might be an advantage over the double
chain coordinate s and s′ of the model proposed by Graham et
al. [13], as the numerical cost of integrating the equations of
the model in many points of the flow domain might become
significant.

5. Predictions in simple shear flow

In this section, we present the steady state and transient re-
sponses of the CRAFT model for simple shear flows. For all
the figures, we set the value of γ to 1.15 and we define Me as

M
3Mτr
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γ
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Fig. 3. Transient shear viscosity for four different Deborah numbers. From the
top, the respective Deborah numbers are 0.01, 1, 10 and 100. Finite extensibility
has been neglected and τd/τr = 30.

prevent the shear stress maximum from ocurring. We neverthe-
less believe that a better understanding of convective constraint
release, especially in reversing flows, could lead to improved
formulations where such modifications would not be necessary.

Fig. 3 shows the transient shear viscosity for various shear
rates for τd/τr = 100 and no finite exensibility effects. We ob-
serve that as the shear rate increases, an overshoot appears in
the viscosity curve due to the transient stretching of the chain.
At high shear rates the model also predicts a slight undershoot
following the undershoot. In a following section we will see that
these over- and under-shoots are observed experimentally and
can be predicted quantitatively.

In Fig. 4, we show the effects of finite extensibility on the
predictions of the steady state shear stress. The parameters are
identical to those used for Fig. 2 except for the finite extensi-
bility parameter which we set to b = 100. Accounting for finite
extensibility only changes the results at high shear rates, where
it leads to reduced levels of stress.
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e =
τd

.

In Fig. 2, we report the steady shear stress of the CRAFT
odel as a function of the Deborah number De = γ̇τeff, where

˙ is the shear rate and τeff = η0

G0
N

. Finite extensibility has been

eglected as b → ∞. We see that when the ratio τd/τr is small
nough, the curve is monotonic, but as this ratio gets bigger a
hallow maximum appears in the curve. This feature is how-
ver smeared out as soon as polydispersity comes into play. We
elieve that a phenomenological modification of the model in
rder to tune the effectiveness of convective constraint release,
uch as the introduction the β parameter found in [26], could

ig. 2. Steady state shear stress as a function of the Deborah number. The four
urves correspond to different τd/τr ratios (–: ratio = 10, – –: ratio = 30, – ·:
atio = 100, · · ·: ratio = 300).
ig. 4. Steady state shear stress as a function of a Deborah number. The four
urves correspond to different τd/τr ratios (–: ratio = 10, – –: ratio = 30, –·:
atio = 100, · · ·: ratio = 300). The parameter b is set to b = 100.



Fig. 5. Transient shear viscosity for four different Deborah numbers. From the
top, the respective Deborah numbers are 0.01, 1, 10 and 100. The finite exten-
sibility parameter b is set to 100 and τd/τr = 30.

In Fig. 5, we show the transient shear viscosity for different
Deborah numbers. The ratio τd/τr is set to 30 while the finite
extensibility parameter is set to 100. Accounting for finite ex-
tensibility can eventually lead, in the transient regime of very
fast flows, to stress levels corresponding to more than affine
deformations.

6. Predictions in uniaxial extension

As seen in recent publications [35,3,36,19], there is a growing
interest in measuring, predicting and understanding extensional
flows of entangled systems. Fig. 6 shows the steady state Trouton
ratio as predicted by the CRAFT model for different values of the
finite extensibility parameter b and a ratio τd/τr of 100. As the
extension rate increases we clearly see four different regimes.

(1) The first regime corresponds to slow flows, where the mate-
rial can relax sufficiently fast in order to maintain its equi-
librium structure. Its response is therefore linear and the
Trouton ratio is constant. As the flow rate increases, the
microstructure begins to align in the flow direction. At the
onset of this phenomenon, the additional stress, only due to
orientation, actually grows faster that the flow rate. This is
why one can observe a shallow maximum of the Trouton
ratio when ε̇τd is of order unity.

(

(

Fig. 6. Steady state Trouton ratio for τd/τr = 30 and different values of the finite
extensibility parameter b. From the top, the respective values of b are 1000, 300,
100, 30 and 10.

full orientation of the microstructure in the flow direction.
The stress growth is stopped when the chain reaches its full
extension, and that is why this growth is not seen at all if
the finite extensibility parameter b is small enough.

(4) In the fourth regime, the Trouton ratio is a decreasing func-
tion of the extension rate. In this regime constraint release is
the dominant mechanism and, as the chain is fully stretched,
it has to retract as fast as it is stretched by the flow in order
to remain below its maximum length. The induced rates of
CCR are therefore of the order of the extension rate, which
explains the decreasing Trouton ratio. The exact shape of
the curve actually depends on the non-linear expressions
involved in the implementation of finite extensibility.

In Fig. 6, we see that for low values of the parameter b,
the third regime is suppressed and the extensional viscosity
is a monotonously decreasing function. Indeed, as the exten-
sibility of the chains is very small they are almost instanta-
neously stretched to their maximum length once the flow rate is
high enough. This instantaneous transition from unstretched to
stretched corresponds to the instantaneous transition from the
second to the fourth regime.

7. The CRAFT constitutive equation for polydisperse
systems
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2) For increasing flow rates, reptation cannot prevent the mi-
crostructure from reaching a full orientation, but stretch
relaxation is still fast enough to maintain the chains un-
stretched. As the stress saturates, we observe a decrease of
the Trouton ratio. In this regime, the slope of the curve can
reach a value of −1, if the reptation and stretch relaxation
times are well separated. Even for a monodisperse system,
the transition to this regime can actually be quite slow as our
model exhibits the full spectrum of reptation coupled with
constraint release.

3) When the flow is fast enough to stretch the chain, the exten-
sional stress grows again beyond the value corresponding to
So far, we have focused on monodisperse systems, where all
olecules have the same mass. In this section, we present the

xtension of the CRAFT constitutive equation to the polydis-
erse case. Going from the monodisperse to the polydisperse
ase with the CRAFT model is actually very similar to what we
id for linear visco-elasticity: the key issue is to find a consistent
xpression for the rate of constraint release fccr which couples
he relaxation of all masses.

Let us consider a polymeric system with N different molecu-
ar masses M(i), each of them having a volume fraction φ(i).
he polydisperse CRAFT constitutive equation assumes that
ll masses relax independently except for the constraint release



term. Indeed, as the chains all relax within the same environ-
ment, the rate of relaxation fccr must be the same for all masses
and must be computed from the rate of relaxation of all masses.
Furthermore, a polydisperse environment yields a broad spec-
trum of relaxation times, and we cannot further assume a single
relaxation time τcr for thermal constraint release but a spectrum
of NCR characteristic times τj . These times τj and their respec-
tive weights wj are computed as described in Section 2 and
ensure the correct linear viscoelastic limit of the model.

The polydisperse CRAFT constitutive is expressed as a set of
N times NCR partial differential equations (one per mass fraction
and one per thermal constraint release mode) which are coupled
only through the single term of convective constraint release.
The variables of the model are the set of conformation tensors
c(i)(t, s), which describes the conformation of all masses along
the primitive path. The equations for the polydisperse CRAFT
model read:

∇
c(i,j)(t, s) = ∂

∂s

(
α

f (i)
d (s)

∂

∂s
(f (i,j)c(i,j))

)

+ α(i)
r

c(i,j)

tr c(i,j)

∂2

∂s2 (f (i,j)tr c(i,j))

+ α
(i)
r

2

∂(f (i,j)tr c(i,j))

∂s

∂

∂s

(
c(i,j)

tr c(i,j)

)
(

1
)
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Table 1
Description of the six entangled polystyrene solutions S1–S6 [2]

Name Features

S1 7 vol.% PS Mw = 2.9 × 106 Da, Mw/Mn = 1.09
S6 7 vol.% PS Mw = 8.4 × 106 Da, Mw/Mn = 1.17
S2 80% S1, 20% S6
S3 60% S1, 40% S6
S4 40% S1, 60% S6
S5 20% S1, 80% S6

Table 2
Parameters of the CRAFT model used for comparison with solutions S1–S6 at
40 ◦C

Kd (s Da−3) 2.43 × 10−19

Kr (s Da−2) 1.0 × 10−14

Kf 1
G0

N (Pa) 465
γ 1.0
b 942

the six solutions, named S1 to S6 are reported in Table 1. From
the linear viscoelastic moduli of S6 shown in Fig. 11, one sees
that it contains a significant fraction of smaller masses. We will
nevertheless assume that S6 is monodisperse and consider S2–
S5 as strictly bi-disperse samples.

For all solutions, the authors reported the linear viscoelastic
moduli, the steady shear viscosity and first normal stress dif-
ference as well as the steady uniaxial extensional stresses. For
some solutions, transient shear and extensional data were also
reported. As different reference temperatures were used for the
experiments presented in [2] and [3], we shifted the timescales
of the extensional stress measurements to have a reference tem-
perature of 40 ◦C.

This set of data allows us to specifically test the various com-
ponents of the CRAFT constitutive equation. In a first step, we
evaluate the ability of the CRAFT model to fit the experimental
results for the monodisperse system S1. Then we validate the
ability to predict the response for the other monodisperse sys-
tem S6 through the two scaling laws of Eqs. (3) and (35). Finally
we test the mixing rule in the non-linear regime on the solutions
S2–S5.

The procedure we used to adjust the parameters of the
CRAFT model is the following:

• We adjusted the parameters Kd, G0
N and γ in order to quantita-

tively predict the low and intermediate frequencies of the vis-

•

•

v
e
w

10
−
τj

+ fccr
tr c(i,j) (f (i,j)c(i,j) − δ), (37)

ith,
(i,j)(t, ±1) = δ, (38)

ccr = −
∑

i,j wjφ
(i)
∫ 1
−1

(
Da(c(i,j))

Dt

) ∣∣∣∣
stretch

ds∑
i,j wjφ(i)

∫ 1
−1 a(c(i,j)) ds

, (39)

(c) = b − 3

b − tr c
, (40)

(c) = G0
N

(
−(b − 3) ln

(
1 − tr c

b

)
− ln det(c)

)
, (41)

p = G0
N

N∑
i=1

NCR∑
j=1

wjφ
(i) 1

2

∫ 1

−1
(f c − δ) ds. (42)

n the linear limit, this set of equations actually reduces to the
inear model recalled in Section 2. In the non-linear regime, the
RAFT constitutive equation provides a mixing rule where the
oupling mechanism gradually switches from thermal to convec-
ive constraint release. The definition of the rate of convective
onstraint release fccr (39) is a natural extension of the monodis-
erse case that still ensures a positive instantaneous relaxation
ime.

. Comparison with experimental data

In two successive publications, Pattamaprom et al. [2] and Ye
t al. [3] presented a complete set of experimental data for mono
nd bi-disperse entangled polystyrene solutions. The features of
coelastic moduli of S1. In this process, we assumed Kf = 1.
Using the transient shear viscosity data for S1, we adjusted
the parameter Kr. Only the data for the highest extension rate
was used.
The finite extensibility parameter, derived on a micro-
structural basis, was taken from [3].

Table 2 summarizes the values of the parameters.
In Fig. 7, we see the comparison between the experimental

iscoelastic moduli of S1, and the predictions of the constitutive
quation. At high frequencies, a Rouse spectrum contribution
as added to the predictions. The Rouse time for the linear re-



Fig. 7. Linear viscoelastic moduli for S1. Comparison between experimental
results [2](◦) and the CRAFT model (−). The dashed lines are the predictions
of the model for Kr = 3.4 × 10−12 (s Da−2).

sponse was computed as τr = KrM
2 and is therefore identical to

the characteristic time of stretch relaxation. From the compari-
son with the experimental data, it seems that a longer Rouse time
should have been used in order to have quantitative predictions
in the whole frequency range.

In Fig. 8, we report the experimental transient shear viscosity
η+ for S1, which we used for adjusting the stretch relaxation time
of the model, together with the model predictions. We see that,
with the appropriate stretch relaxation time, the CRAFT model
predicts the steady state values and the transient behaviour. At
high shear rates, the CRAFT model quantitatively predicts the
large overshoot in viscosity followed by a shallow undershoot.
At intermediate shear rates however, the model fails to quanti-
tatively predict the overshoot in shear viscosity: stress built up
during the overshoot relaxes too quickly. This failure is actu-
ally consistent with our observations for the linear response. In
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Fig. 9. Steady state shear viscosity η and first normal stress difference N1 for
S1. Comparison between experimental results [2] (◦) and the CRAFT model
(−).

Figs. 7 and 8, the dashed lines are the predictions of the model
with the Rouse time increased by a factor 3.4. We see that this
yelds simultaneously better quantitative predictions both for the
linear moduli and the transient shear viscosity at low deforma-
tion rates.

This closes the first step of parameters adjustment: the pa-
rameters are now frozen and we can examine the predictions of
the models in shear for S1 and S6, and in shear and extension
for the blends S2–S5.

As foreseen in Figs. 8 and 9 shows the excellent agreement
of the steady shear viscosity of S1 with the model predictions.
The steady state first normal stress difference is predicted quan-
titatively as well. The main difference between the data and the
predictions is the “kink” one observes on the predicted curves at
shear rates for which the chain becomes significantly stretched.
These are not observed experimentally and suggest that the
model predicts too much chain stretch in shear.

In Fig. 10, the experimental steady extensional viscos-
ity is compared to the model predictions. The rise of the

F
r

1

ig. 8. Transient shear viscosity for S1. Comparison between experimental re-
ults [2] (symbols) and the CRAFT model (−). From top to bottom, the curves
orrespond to the following flow rates: 0.01 (s−1), 0.1 (s−1), 1 (s−1), 10 (s−1) and
00 (s−1). The dashed lines is the prediction of the model for Kr = 3.4 × 10−12

s Da−2), at a flow rate of 10 (s−1).

1

ig. 10. Steady extensional viscosity for S1. Comparison between experimental
esults [3] (◦) and the CRAFT model (−).



Fig. 11. Linear viscoelastic moduli for S6. Comparison between experimental
results [2] (◦) and the CRAFT model (−).

Fig. 12. Steady extensional viscosity for S6. Comparison between experimental
results [3] (◦) and the CRAFT model (−).

Fig. 13. Steady state shear viscosity η and first normal stress difference N1 for
S6. Comparison between experimental results [2] (◦) and the CRAFT model
(−).

extensional viscosity due to the onset of chain stretch is well de-
scribed, qualitatively and quantitatively, which tends to confirm
the value we selected for the Rouse time. The viscosity decay
observed at lower extension rates is overestimated by the model.
Similar predictions have been obtained by Bhattacharjee et al.
[35] in comparing similar entangled solutions with the predic-
tions of different constitutive models. Further modelling efforts
need to be spent to describe these deviations from the theoretical
−1 slope. The fourth regime (see Section 6) of the extensional
viscosity is unfortunately out of the range of the experiments
and the validity of the CRAFT predictions at high extension
rates cannot be assessed.

Fig. 11 offers the same comparison as Fig. 7 but for the so-
lution S6. Looking at the experimental loss modulus for in-
termediate frequencies clearly shows that the sample is not
monodisperse as we are assuming. Nevertheless, we are able
to correctly predict the low frequency range of the loss modu-
lus, which ensures good predictions of the zero-shear viscos-
ity η0. As for solution S1, the Rouse time of the model is
again too high to describe well the high frequency regime of G′
and G′′.

In Fig. 12, we show that the scaling law for αr allows the
CRAFT model to make good predictions of the extensional vis-
cosity of solution S6. The onset of chain stretch is well pre-
dicted, but the sparsity of the data prevents any further analysis.
The presence of shorter chains in the sample is likely to explain
t
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12
he somewhat delayed hardening observed in the experimental
ata.

In Fig. 13, we see that the model correctly predicts the steady
hear viscosity and first normal stress difference of S6 over a
ide range of shear rates. Discrepancies between predictions

nd experiments only occur at high shear rates, where the model
redicts that the flow starts stretching the chains, leading to a
hange of slope of the curves. The kink in the predictions occur-
ing at high shear rates is more visible for S6 than it is for S1,
s the increase in molecular weight yields a greater separation
etween τd and τr.

Fig. 14 shows the predictions of the steady shear viscosity and
rst normal stress difference for the solutions S2–S5. One should
emember that the predictions for solutions S2 to S5 did not
equire any additional material parameter. From a global point
f view, one can say that the agreement between predictions and
xperiments is quite good, but several comments arise from a
loser look at the curves.

The model is able to give a reasonable prediction of the zero
shear rate viscosity η0 for all solutions. This linear limit
can be expected from the linear theory behind the CRAFT
model.
For CCR dominated shear rates, the predictions of the CRAFT
are in very good agreement with experiments. The non-linear
mixing rule coming from our generalized convective con-
straint release seems quite efficient in this regime.
As for the monodisperse samples, the CRAFT model predicts
a transition to a “stretched regime” at high shear rates, which
is not seen in the experiments.



Fig. 14. Steady state shear viscosity η and first normal stress difference N1 for S2 (a), S3 (b), S4 (c) and S5 (d). Comparison between experimental results [2] (◦)
and the CRAFT model (−).

Fig. 15. Steady extensional viscosity for S2 (a), S3 (b), S4 (c) and S5 (d). Comparison between experimental results [3] (◦) and the CRAFT model (−).

Fig. 16. Transient shear viscosity (a) and transient first normal stress difference for S3. Comparison between experimental results [2] (symbols) and the CRAFT
model (−). From top to bottom (a) and bottom to top (b), the curves correspond to the following flow rates: 0.01 (s−1), 0.1 (s−1), 1 (s−1), 10 (s−1) and 100 (s−1).
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Fig. 15 shows the predictions of the steady extensional vis-
cosity together with experimental measurements for solutions
S2–S5. Because only few experimental points are available, we
can only observe that the model is able to predict the extensional
viscosity growth at about the right extension rate. Additionally,
we still observe a too strong extensional thinning of the model.
The experimental extension rates are too small in order to val-
idate the behaviour of the CRAFT model in the last regime of
the viscosity curve.

In Fig. 16, we show both the transient shear viscosity and
first normal stress difference for S3. The ability of the CRAFT
model to predict the transient response of bi-disperse samples
actually is a strong test for its mixing rule. We see that for low and
medium shear rates, the predictions are in excellent agreement
with the data. At high shear rates, the occurrence of high levels
of stretch ruins the transient predictions.

9. Conclusions

We have proposed a new tube-based constitutive equation
named CRAFT for polydisperse linear entangled polymers. The
model has the form of a set of coupled partial differential equa-
tions for a configuration tensor defined along the primitive chain
coordinate.

In addition to reptation, contour-length fluctuations and
thermal constraint release, CRAFT accounts for the cou-
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Appendix A. On the rate of CCR

In this appendix, we prove that under certain conditions and
assumptions, the rate of convective constraint release defined
through Eq. (26) is always positive. For clarity, we will restrict
ourselves to the monodisperse case.

From the definition of the tensor c(t, s) we see that its equi-
librium value is the identity tensor. Furthermore, the evolution
equation for c(t, s), is such that c(t, s) always remains symmetri-
cal. We now assume that the tensor c(t, s) always remains strictly
positive definite. We do not prove this assumption but if, for an
arbitrary flow history, one of the eigenvalues of c(t, s) was to
become negative it would have to become null, as a result of
continuity. As the logarithm of the determinant of c(t, s) en-
ters the evolution equation, we see that the differential equation
would not be defined in such case.

When finite extensibility is not accounted for, a(c) is defined
as:

a(c) = tr(c) − ln det(c),

and is equal to 3 at equilibrium. The gradient of a(c) with respect
t

T
T
r
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o
n
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T

∫
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led relaxation of stretch and orientation along the primitive
hain. convective constraint release (CCR) appears naturally
n the model, as a non-linear correction to thermal constraint
elease.

The description of polydisperse systems with the CRAFT
odel requires no additional material parameter and the cou-

ling between the different masses is provided by constraint
elease effects. In the linear regime the CRAFT model reduces
o a simple theory [1] capable of quantitative predictions, even
or polydisperse systems. The deep connection of the CRAFT
odel with a linear theory allows the identification of most of

he parameters on linear viscoelastic data only.
The preliminary comparison of the CRAFT predictions

ith experimental data is very promising. The model is able
o correctly predict both the linear and non-linear rheology of
inear polymers with a single set of parameters. On mono- and
i-disperse entangled polystyrene solutions, we have show that
he CRAFT model is able to correctly predict the steady shear
iscosity and first normal stress difference over a wide range
f shear rates. Additionally, the onset of extensional strain
ardening is well predicted for steady state flows. Transient
xperiments can be quantitatively predicted as well. The lesser
uality of the predictions at high shear rates and the excessive
xtensional thinning of the model tend to indicate that additional
tretch relaxation mechanisms, possibly related to CCR should
e accounted for.
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o c is:

∂a

∂c
= (δ − c−1).

he function a(c) is strictly positive when c is positive definite.
his can be proved by noticing that the gradient of a(c) with

espect to c only vanishes at equilibrium and that the Hessian is
ositive definite as well. The denominator on the right hand side
f Eq. (26) is therefore always strictly greater than zero. Let us
ow prove that the numerator (without the minus sign) is strictly
egative.

The expression inside the integral of the numerator of Eq.
26) can be written as follows:

D

Dt
a(c(t, s))

∣∣∣∣
stretch

= αr
∂2

∂s2 (tr c)
c

tr c
:

∂a

∂c

= αr
∂2

∂s2 (tr c)
c

tr c
: (δ − c−1)

= αr
∂2

∂s2 (tr c)

(
1 − 3

tr c

)
. (A.1)

he numerator of Eq. (26) is therefore equal to:

1

−1
αr

∂2

∂s2 (tr c)

(
1 − 3

tr c

)
ds.

e will now conclude the proof by showing that the previous
xpression is always strictly negative.



Let g(s) be a continuous and sufficiently smooth function on
the interval [−11]. If g(s) is strictly positive and is such that
g(1) = g(−1) = 3, we have the following result:

∫ 1

−1

∂2

∂s2 g(s′)
(

1 − 3

g(s′)

)
ds′ ≤ 0.

The proof of this inequality only requires basic calculus and one
integration by parts.

∫ 1

−1

∂2

∂s2 g(s′)
(

1 − 3

g(s′)

)
ds′

=
∫ 1

−1

∂2

∂s2 g(s′) ds′ −
∫ 1

−1

3

g(s′)
∂2

∂s2 g(s′) ds′.

The first term is simply integrated, while the second is integrated
by parts:

=
[

∂

∂s
g(s)

]1

−1
−
[

3

g(s)

∂

∂s
g(s)

]1

−1
−
∫ 1

−1

3

g(s′)2

(
∂

∂s
g(s′)

)2

ds′ = −
∫ 1

−1

3

g(s′)2

(
∂

∂s
g(s′)

)2

︸ ︷︷ ︸
≥0

ds′ ≤ 0. (A.2)
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