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A thermodynamic method for the construction of a cohesive law

from a nonlocal damage model

Fabien Cazes®, Michel Coret?, Alain Combescure ¢, Anthony Gravouil °.
Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR5259, F-69621, France

Several published papers deal with the possibility of replacing a damage finite element model by a com-
bination of cohesive zones and finite elements. The focus of the paper is to show under which conditions
this change of model can be done in an energy-wise manner.

The objective is to build a cohesive model based on a known damage model, without making any
assumption on the shape of the cohesive law. The method is characterized, on the one hand, by the
use of a well-defined thermodynamic framework for the cohesive model and, on the other hand, by
the idea that the main quantity which must be maintained through the change of model is the energy
dissipated by the structure. An analysis of the stability criteria enables us to determine the domains of
validity of the different models. Thus, we show that it is consistent to derive the cohesive law from a
given nonlocal damage model because the occurrence of a discontinuity can be viewed as an alternative
way to limit localization. The method is illustrated on one-dimensional examples and a numerical reso-
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lution method for the problem with a cohesive zone is presented.

1. Introduction

The simulation of crack initiation and propagation has always
been a difficult challenge, but it is always improving. In case of
continuum mechanics for homogeneous medium, the finite ele-
ment simulation of crack initiation is rather well understood.
It involves two main ingredients: the damage theory, and the
introduction of nonlocal modeling or second-gradient theory to
avoid artificial localization. However, even if it is possible to pre-
dict crack propagation with this framework, this approach is not
very robust and needs refined meshes along the whole (un-
known) crack path to be predictive. Some authors have then
avoided the use of critically damaged elements, by introducing
cohesive segments, or elements which can inherit embedded
discontinuities. The position and the direction of the initial cohe-
sive segment are based on sound physical arguments: e.g. criti-
cal stress reached within the element, initial cohesive zone
perpendicular to the direction of principal maximum tensile
stress.

On the other hand, significant progress have been obtained in
the simulation of crack propagation by the development of the
X-FEM method (Belytschko and Black, 1999; Moes et al., 1999)
which can be combined with the use of cohesive zone models
Wells and Sluys, 2001; Moés and Belytschko, 2002; Mariani and
Perego, 2003; Simone et al., 2003. This method is well adapted to

the propagation of “long” cracks but not for the initiation phase,
when cracks are short and singular functions describing the fields
near the crack tip are not valid.

This paper is devoted to the following question: under which
conditions is it possible to replace a fine model describing a local-
ization process (using damage theory combined with nonlocal
models) by a coarser mesh containing an explicit description of a
discontinuity using cohesive zones combined or not with X-FEM?
We show that it is possible to construct the cohesive law in such
a way that the change of model is perfectly thermodynamically
coherent: this implies that during this numerical change of model
no energy, stored or dissipated, is artificially inserted or withdrawn
between the two models. This point is crucial to be really predic-
tive in this domain.

Rupture within a material is hard to model because the nature
of the phenomena involved changes over time. Often, rupture be-
gins with a global interaction of all the microscopic defects initially
present until the coalescence of some of these defects results in the
creation of a macroscopic crack in the material. Thus, there is a
transition from microscopic, diffuse phenomena toward macro-
scopic, localized phenomena.

This complexity of the rupture process justifies the existence of
two main families of models to represent the same phenomena:
continuous damage models (Kachanov, 1958; Lemaitre and Chab-
oche, 1988), which follow a thermodynamic approach and are
based on the concept of a representative elementary volume, and
models in which a discontinuity is allowed to propagate within
the structure, among which Griffith’s model (Griffith, 1920) and



cohesive zone models (Barenblatt, 1962; Dugdale, 1960) deserve
special mention.

The objective of this paper is to establish a coupling between
these two visions of rupture based on energy criteria. Our starting
point is the principle proposed in Mazars (1984) that the quantity
which must be preserved in achieving this coupling between mod-
els is the dissipated energy (see also Mazars and Pijaudier-Cabot,
1996). Our preference goes toward the use of fracture models of
the cohesive zone type because these are more capable of detecting
crack initiation than Griffith’s model (Charlotte et al., 2000). We fi-
nally derive a cohesive law given a damage model without making
any assumption on the shape of the cohesive law. Even if fracture
process usually dissipates energy by plastic deformation and fric-
tional mechanisms during a closure, damage will be the only dissi-
pative mechanism considered in this article for sake of simplicity.

We will see that the use of a nonlocal continuous model is nec-
essary to model accurately a localized damaged state. Though the
thermodynamic description of nonlocal models is not perfectly
understood yet, it allows to take into account the complex mecha-
nisms of micro-cracking that occur on a spatially extended zone for
the construction of the cohesive zone model. Another interest of
the method is that the shape of the cohesive law is not fixed in ad-
vance and only determined from the knowledge of the reference
damage model. The obtained cohesive law can then be used inde-
pendently of the underlying continuous model.

In the first section, we review some results from the thermody-
namics of cohesive models, according to Gurtin (1979).

In the second section, we present the models which will be used
in the rest of the work: an isotropic damage model and a cohesive
model in which closing is assumed to be linear.

In the third section, we address the question of the validity of
the proposed coupling, which must take place at the intersection
of the domains of validity of the models being used. This point is
far from trivial because, a priori, continuous models are better sui-
ted for the modeling of diffuse phenomena, whereas discontinuous
models are better suited for the modeling of localized phenomena.
This part of our study leads to the choice of a continuous model of
the nonlocal damage type and of a discontinuous model which al-
lows the formation of a cohesive zone in a damageable material.

In the fourth section, we present criteria for the coupling of
these models. We show that by enforcing equal dissipated energies
in the continuous and discontinuous models, using a cohesive
model with linear closing under prescribed displacement boundary
conditions, one can achieve the identification of each term of the
energy balance of the coupled models. Thus, one ends up with truly
equivalent models from an energy standpoint.

In the fifth section, we apply our proposed coupling method to
the incremental determination of a cohesive law based on a non-
local damage calculation. We first study the simplified case where
localization is limited by assuming that damage is homogeneous
within the beam, then move to the case of a true nonlocal damage
model. A numerical method of resolution with a cohesive zone is
proposed.

2. Thermodynamic construction of a cohesive model
2.1. Definition of the variables of the cohesive model

We consider a continuous media with a crack defined by a dis-
continuity surface. Let us choose a basis % defined by its unit vec-
tors (n,t,t>), where n is normal to the discontinuity I's. t; and &,
are chosen such that % is a direct orthogonal basis. This basis is
defined according to the position of the crack in the undeformed
configuration. The direction chosen for n permits to define the
upper and lower lips I'; and I'; of the crack. Under the small per-

turbation assumption, let us define the displacement jump [u] as
the difference between the displacement fields u™ and u~ of the

crack’s upper and lower lips, respectively.
[u] =u*—u- over I%. (1)

The projection of the displacement jump [u] onto %; leads to the
definition of [u],, [u],, and [u],, such that

[u],
[ul = | [ul, | - )
[[u] 6/ %

Let us consider the cohesive zone alone. The principle of virtual
power, in statics, is expressed as

Pine([U]) + Zee([u]) =0 V[u] €%, 3)
where 2, is the virtual power of the internal loads, #;,, the virtual

power of the external loads and % a field of continuous, regular and
kinematically admissible vectors defined over I's. The vector of the
cohesive stresses g° is defined by

. du]’
Pt = . o — dt ds. 4)
[u]" is a virtual displacement jump and t is the time. Let ¢%, 7 and
75 designate the components of ¢° in %;:
GS
c=7] - (5)
5/ 4
Under the small perturbation assumption, integration can be car-
ried out equally well on the Eulerian or Lagrangian configuration.
Thus, [;. = [ = [ Then, the virtual power of the external loads
has the followmg expression:

du*y
P a'n -
et /rs (: dt

with g~ being the stress tensor along the crack’s lower lip and g*
being the stress tensor along the crack’s upper lip.

By choosing the proper virtual fields, one obtains the equilib-
rium equations of the structure in the cohesive zone:

o nf ) )as ©)

g°=g'n=gn overl, 7

2.2. Application of the principles of thermodynamics to the cohesive
zone

Let us define the heat flow jump [q] as
lal=(q¢"-q)n ®)

One can show (Gurtin, 1979) that the local expressions of the first
and second principles at a point of the discontinuity I'; are

a1 gpn, ©)
dss [[gﬂﬂ d(si),
@ T d (10)

e; being the surface density of internal energy, ss the surface density
of entropy, (si), the surface density of internal entropy and [u] the
actual displacement jump. Multiplying this last expression by the
temperature, one gets the dissipated surface energy of the cohesive
zone (such that d¢, = Td(sy),):

dqbsi dss
i =T lan (1)

The free surface energy of the cohesive zone  is defined by



Y = es — Tss. (12)

Introducing (9) and (12) into (11), one gets the equivalent of the
Clausius-Duhem inequality for the cohesive zone:

Let us note that there is no term associated with the temperature
gradient across the discontinuity, which is anyway undefined over
I's. Therefore, there is no thermal dissipation associated with the
cohesive zone, and ¢, can be considered to be equal to the intrinsic
dissipated energy . of the cohesive zone:

b5 = d;. (14)

2.3. Thermodynamic potential

As in Costanzo and Allen (1995), we assume that the cohesive
zone behaves like a standard generalized material. We also assume
that there is no plasticity in the behavior of the cohesive zone and,
therefore, that we do not need to define irreversible cohesive stres-
ses. This is justified by the fact there is also no plasticity in the
behavior of the damage model we intend to use as the reference
model. Therefore, we use a free energy potential i, which can be
assumed to depend only on the displacement jump [u], tempera-
ture T and on some internal variables denoted v;.

Y5 = s([ul, T, vy). (15)
One can then show (Gurtin, 1979) that

. O v,
T o) ™ STt (16)

Let us denote A, the variables associated with the internal variables
vy, i.e.,

N
A =22 17
k ayk ’ ( )
which enables one to show that the increment of dissipated surface
energy do, is

dd)s = —Akdi/k. (18)

3. The energy framework and the models being considered
3.1. General expression of the total energy for a rupture problem

Now we are going to define an energy framework for the rup-
ture process independently of the model chosen to study the phe-
nomenon by considering the case of an isothermal transformation
applied to an isolated volume denoted Q. Let & be the total energy,
defined as the energy quantity which remains constant over time.
In order to obtain an expression of &, we start from the local
expressions of the dissipated energy given by the left-hand side
of the Clausius—-Duhem inequality in the isothermal case for a con-
tinuous model and for a discontinuous model (13):

d¢ =g :de— pdy over Q, (19)
d¢, = o°d[u] — dy, over I, (20)
¢ being the dissipated volume energy, p the mass density, y the free
energy per unit mass, g the Cauchy stress tensor and ¢ the linear-

ized strain tensor. By integrating these expressions over Q and I,
one gets

do = —d¥ — dWiy, (21)

where ¢, ¥ and Wy, represent the dissipated energy, the free en-
ergy and the work of the internal forces of the whole structure,

respectively. Then, the application of the work-energy theorem
leads to the following expression of the total energy:

E=W+K—We+®, (22)

where K is the kinetic energy and W, the work of the external
forces.

3.2. The damage model

The damage model (Kachanov, 1958; Lemaitre and Chaboche,
1988) is derived from the thermodynamics of continuous media.
In the isothermal case, the free energy potential has the following
expression:

p!//:%(l—D)gzK:g, (23)

where D is the damage variable, ¢ the linearized strain tensor and K
the Hooke’s tensor of the healthy material. The value of g calculated
from v is

g:pg—‘g:a—n)l(;g. (24)

Now, let us define a cohesive model consistent with this damage
model used as the reference.

3.3. The cohesive model with linear closing

For the damage model, we know that the unloading behavior of
the material is linear elastic. Therefore, the closing is nondissipa-
tive and the expression of the thermodynamic potential can be re-
placed by its second-order expansion. Since we are trying to couple
the cohesive model with a damage model, it is natural to impose
the same closing conditions on the cohesive model being used.
Since we are dealing with the isothermal case, let us describe the
behavior of the cohesive zone using a free energy potential defined
in terms of the only observable variable [u], plus some internal
variables denoted vy:

s = W ([ul, vi). (25)

The increment of dissipated energy can be calculated using Expres-
sion (18). Thus, an increase in the system’s entropy affects only the
evolution of the internal variables. Since the closing is nondissipa-
tive, we can consider that during a closing phase the thermody-
namic potential depends on the observable variable alone:

Vs = ¥s([u]). (26)

Since the behavior during closing is linear, let us choose a potential
¥, with a quadratic expression

¥y = a5ul + g [u]?, 27)

where # remains constant during the closing. To be consistent with
the damage model, the residual stresses are zero when [u] =0,
which leads to

a5 =0. (28)
Then, the calculation of the stress from the potential yields

s 0P
@ = 5 = ul. (29)

One can observe that the chosen expression of the potential (27) en-
forces the alignment of ¢° and [u]. Now let us apply the energy bal-
ance (22) from the first section to a closing sequence until the
displacement jump [u] becomes zero. This is a nondissipative trans-
formation and the kinetic energy is assumed to be zero; thus, the
total energy is



&= lps - Wext- (30)
Therefore, the energy balance of the closing verifies
AP = AW gy (31

Let (1 — 2)[u] denote the displacement jump of the crack. Initially,
/.= 0; then it increases during closing until 2 = 1. Thus, the local
expression of energy conservation can be written as

1
M= [ (1 - 2lu). (32)
Taking (29) into account, we get
Ayg = —n[ul’ / "1 (33)
=0
1
Ay = —50°[u]. (34)

Once the material has been completely unloaded (4 = 1), y is zero
everywhere along the discontinuity. Therefore, the free surface en-
ergy before closing verifies

1
‘//s = ig [[Q] (35)

Introducing the free energy calculated in (35) into the expression of
the dissipated energy given by Eq. (13), we get

i, = 5 (0*d[u] - [u]do"). (36)

We have set up a thermodynamic framework for the cohesive mod-
el similar to that which is used for a damage model. Now, the objec-
tive for the rest of this paper is to establish a coupling between a
continuous damage model and a fracture model. In order to do that,
the first step consists in investigating whether such models are
capable of representing the same phenomena.

4. Domains of validity of the models being considered

Continuous models provide a very effective means of modeling
damage in a material as long as the scalar dg : d¢ remains strictly
positive. One can show that the loss of positiveness of this quantity
coincides with the loss of the material stability and the possible
propagation of a zero-velocity wave in the structure (Hadamard,
1903; Hill, 1962). In terms of finite element calculations, one can
observe that localization results in the damaged zone being re-
duced to the size of an element, which makes the problem patho-
logically dependent on the mesh. In other words, the loss of local
stability marks the end of the domain of validity of conventional
continuous models.

From an experimental point of view, one can consider that the
loss of material stability corresponds to the transition from diffuse
damage within the structure to localized damage in the vicinity of
the most highly loaded zone of the material. Since diffuse damage,
contrary to localized damage, cannot be modeled by a discontinu-
ity, the loss of material stability also marks the beginning of the do-
main of validity of discontinuous fracture models. One of the main
advantages of cohesive models compared to Griffith’s fracture
models, is that they can detect the initiation of a crack more easily.

It was proved in Charlotte et al. (2000) for the one-dimensional
case and in Charlotte et al. (2006) for the three-dimensional case
that cohesive models are capable of dealing with the initiation of
a discontinuity in an initially healthy structure. In the 3D case, if
the potentials are sufficiently regular, the initiation criterion of a
discontinuity can be expressed in terms of the principal stresses
g4, 0, and o3 as follows:

max;(o;) > 0. or max;j(o; — ;) > 2t V(i,j) € {1,2,3}%, (37)

where o, and 7. are constants which characterize the material. We
can recognize here the standard Rankine and Tresca initiation
conditions.

It would be unrealistic to attempt to solve a diffuse damage
problem using a fracture model. As a consequence, the cohesive
model, which is capable of dealing with the initiation of a crack,
can be considered to be valid as soon as the localized damage
phase begins. On the contrary, the damage model is effective in
modeling diffuse damage, but poorly suited for modeling localized
damage. Finally, the domains of validity of the two models being
considered is represented in Fig. 1.

Since coupling must be achieved on the common parts of the
domains of validity of the models, coupling a continuous damage
model with a fracture model appears difficult. The solution comes
from the concept of localization limiter, which enables one, among
other things, to extend the domain of validity of the classical dam-
age model to the localized stage of rupture.

The incapability of continuous models to model localized dam-
age is often explained by the fact that they fail to take into account
a characteristic length of the material’s microstructure. The notion
of localization limiter was proposed as a means to solve this prob-
lem (Lasry and Belytschko, 1988). The idea was to introduce into
the model a characteristic length representing the size of the dam-
aged zone. The numerous ways which have been proposed to
introduce such a characteristic length can be classified into two
categories.

The first category pertains to discontinuous localization limit-
ers. The idea is to introduce a Griffith-type or cohesive-type crack
into the material (Ortiz et al., 1987). One can verify that such a
crack plays the role of a localization limiter by observing that the
quantity G./E, with G. being the critical elastic energy recovery
rate and E the material’s Young’s modulus, has indeed the dimen-
sion of a length.

The second option to limit localization consists in maintaining a
continuous description of the material once localization has
started, but imposing a minimum size on the damaged zone. In
order to do that, some models transgress the damage models’
underlying local state assumption and make one or several param-
eters of the model depend not only on the state of the point under
consideration, but also on the state of the neighboring points. Non-
local models (Pijaudier-Cabot and Bazant, 1987) and second-gradi-
ent models (Aifantis, 1984), which can be viewed as a subset of
nonlocal models (Bazant et al., 1984; Peerlings et al., 2001), belong
in this category. It is also possible to introduce some degree of
viscosity into the material’s behavior, as in delay-effect models
(Ladevéze, 1992). In the rest of this work, we will focus more
specifically on nonlocal models, which we are now going to present
in more detail.

In order to use a nonlocal model, the first step consists in choos-
ing one or several internal variables to be regularized. Let z be one
of these internal variables. The regularized variable z is defined by

2(x) = ﬁ [ 2(s - xav (38)
with
Ve = [ als-xdv. (39)

Diffuse damage Localized damage

[ Damaged continuous model

I
]
|
[ Cohesive model

Fig. 1. Domains of validity of the continuous and discontinuous models.



Diffuse damage Localized damage

[ Damaged continuous model + nonlocal ]

|
|
\

[ Damaged continuous model I Cohesive model ]
|

Fig. 2. Domains of validity of the continuous and discontinuous models.

o is a weight function, such as a Gauss function

os - x) = exp ( ("'T"”)) (40)

I being the characteristic length of the material’s microstructure.

When dealing with the general case of rupture involving a dif-
fuse damage phase and a localized damage phase, it seems attrac-
tive to have at one’s disposal models which are effective enough to
simulate the whole rupture process. For the diffuse damage phase,
this is possible only if one uses a continuous model. For the local-
ized phase, one can choose between a discontinuous model of the
cohesive zone type (the only one capable of detecting the initiation
of the crack) or a continuous model equipped with a means of lim-
iting localization. In the following sections, we will attempt to cou-
ple a nonlocal damage model with a classical damage model in
which we allow the formation of a discontinuity of the cohesive
zone type. The domains of validity of these two models can be rep-
resented in Fig. 2.

The next step consists in establishing the coupling between the
two methods chosen to limit localization in the material.

5. The model coupling method
5.1. Existing methods and objectives

5.1.1. The “mechanical” approach to coupling

This approach, developed by Planas et al. (1993), is based on the
strong discontinuity method (Simo et al., 1993), which uses Heav-
iside-type functions to introduce discontinuities into the displace-
ment field of the structure. The strain field is obtained by
derivation of this discontinuous field in the distribution sense.
Thus, at the discontinuity, one gets the strain in the form of a finite
second-order tensor multiplied by a Dirac function. This strain field
can be viewed as a localized field, which can be smoothed as in the
case of a nonlocal model. The coupling method is based on the fact
that even though the initial strain field is discontinuous the regu-
larized strain field thus obtained is continuous: the smoothing
stage provides the transition from a discontinuous field to a contin-
uous field. Thus, one obtains an effective method of coupling con-
tinuous and discontinuous models.

In order to apply this method, a first approach would be to start
from a continuous nonlocal model and seek discontinuous local
fields which reproduce the regularized strain field of the nonlocal
model. This application was developed in Planas et al. (1993) to
seek analytical solutions of cohesive models which would be
equivalent to solutions of nonlocal models. Legrain et al. (2007)
used the method with a purely numerical approach, following a
nonlocal damage calculation, in order to extract the crack’s dis-
placement jump. The method can also be used to build one-dimen-
sional analytical solutions of nonlocal models, as did Legrain et al.
(2007) to get a reference solution of the nonlocal damage problem.

For one-dimensional problems, the use of this method is rela-
tively straightforward. For three-dimensional problems, the inte-
gration of the variable to be regularized must be carried out
perpendicular to the crack’s surface. We would use this approach
to coupling in order to build analytical solutions of nonlocal mod-

els from discontinuous fields. For the purpose of coupling models,
we prefer to use a method based on an “energy” approach which
we are going to present next.

5.1.2. The “energy” approach to coupling

Another approach to the coupling problem consists in trying to
obtain two thermodynamically equivalent models. Mazars (1984)
proposed to seek the same dissipated energy in a damage model
and in a Griffith fracture model. This idea was taken up by Mazars
and Pijaudier-Cabot (1996), this time using a nonlocal damage
model. Let us give a brief summary of this method which will be
the basis of the rest of our work. For Griffith’s model, the increment
of dissipated energy is

dd =G dos, (41)

where G, is the critical elastic energy recovery rate and .« the area
of the crack. For the damage model, the increment of dissipated en-

ergy is

do = /(—YdD)dV, (42)
Q
where Y is the elastic energy recovery rate defined by
_w
Y =25 (43)

Writing that these two expressions of dissipation are equal, we get
the following relation:

dot = M (44)

Ge

Then, this expression can be integrated over time in order, for
example, to verify that the parameters of a damage model agree
with a given critical elastic energy recovery rate for the same mate-
rial. As suggested by Mazars (1984), one can also use a cohesive
model instead of a Griffith model based on the fact, according to
Rice (1968) and Hillerborg et al. (1976), that the area under the trac-
tion curve of the cohesive model is equal to G.:

QzA a*dlu]. (45)

Comi et al. (2002, 2007) used this method along with a numerical
resolution based on enriched finite elements. We can also point
out that Bazant and Oh (1983) relate the crack band model to the
cohesive fracture model by enforcing an equality between the con-
sumed energy of both model.

5.2. Energy criterion for model coupling

The objective of the rest of this study is to apply the “energy”
coupling method with a cohesive model which is well-defined
thermodynamically and for which no assumption is made on the
shape of the cohesive law. The energy criterion we chose for this
coupling is a global criterion over the whole structure which can
be expressed as

b=, (46)

& being the energy dissipated by the structure for a nonlocal dam-
age model and & the energy dissipated in the case of a classical
damage model in which one allows the formation of a cohesive
zone. In @, let us make a distinction between the energy dissipated
in the volume &,,; and the energy dissipated at the discontinuity
D

@ = Py + Pbs. (47)

Thus, the energy dissipated by the cohesive zone is equal to



b, =D — . (48)

Now let us consider two cases. Looking at the situation prior to
localization, the only existing damage in the material is diffuse
damage, on which the nonlocal model has little or no effect. Then,
one can assume that d® = dd,,, i.e.

dd; =0 before localization. (49)

However, after localization, the opening of the cohesive zone tends
to unload the material in the vicinity of the cracked zone. Then, one
can assume that d®,, = 0, i.e.

dd, = dd after localization. (50)

Those increments of dissipated energy are the only pieces of infor-
mation that will be used to construct the discrete model of fracture
from the knowledge of the continuous damage model.

5.3. Choice of the cohesive model to be used

Since the global unloading behavior of the nonlocal damage
model is linear, it is natural to enforce the same behavior for the
model which combines “classical” damage and a cohesive zone.
Therefore, we will use the cohesive model with linear closing intro-
duced before. Thus, we can use expression (36) for the increment
of dissipated energy. In the one-dimensional case, or if the cohesive
zone is loaded in Mode I alone, one can define ¢°® and [u] such that

g =on, 1)
[u] = [u]n. (52)
Then, the increment of dissipated surface energy becomes

ds = %(asd[[u] — [u]da®) (53)

and can be represented by diagram 3.
5.4. Verification of the energy equivalence of the two models

Let us go back to the global energy balance (22) for a problem in
which the inertia terms are negligible:

ép = lP - Wext + @ (54)

We set out to couple the two models based on the conservation of
the dissipated energy. Let () denote the quantities associated with
the nonlocal damage model, and (%) the quantities associated with
the “classical” damage model which can be run across by a cohesive
zone. In order to show that the two models are equivalent energy-
wise, we must show that each term of the energy balance is the
same with the two models, i.e.

G, dissipated surface
energy

%

—— current position

AN

stored surface
energy

(&, ¥ Wex, D) = (&, ¥, Wey, D) VE. (55)

In order to achieve this energy equivalence, we propose to enforce
equal energy dissipation for the two models, i.e.
o= Vvt (56)
In addition, since the total energy &, by definition, does not vary
over time and is defined to within an arbitrary constant, one can
consider that

&=& Vvt (57)

Thus, only the conservation of ¥ and W, between the two models
remains to be shown. Since the energy balance (54) is verified in
both cases, it suffices to verify the property for one of the two quan-
tities for the other to be verified automatically. Let us prove the en-
ergy equivalence by induction using a problem discretized in time.
Energy equivalence between the two models is assumed at time ¢,
i.e.

(PEWE ) = (P WE).

ext ext

(58)

We want to show that this equality remains true at time t + dt. The
problems associated with the two models have the same boundary
conditions. The unloading behavior of the nonlocal damage model is
linear. This property also holds for the model which associates dam-
age and a cohesive zone because a cohesive model with linear clos-
ing was chosen. Thus, the stored elastic energy inside the structure
bounded by I' can be calculated using the following integral:

Pt :1 /E‘gt ds. (59)
2 Jr

From expression (54) of the total energy, we know that

d® = dWey — d¥. (60)

Therefore, the increment of energy dissipated by the structure is

do - 1 / (F' du — u' dF)dS.
2 Jr

(61)
Let us assume that the boundary conditions consist only of pre-
scribed displacements at the boundary of the structure (I'y = I' et
I'; = &) and can be defined through a unit reference loading repre-
sented by the field uy and a loading coefficient /.

U=U=u=Juy overlr. (62)
Therefore, the loading increment is
diit =dit =du=diu, overr. (63)

Since the increment of dissipated energy is the same for the two
models, one can write

ol t dds

o%+do® |- - - - - - - -\%\i\ﬁ* t+dt

[u] [l dfu]

Fig. 3. Increment of dissipated energy in the cohesive zone.



/ (Bt — )t dE)uo dS — / (E ) — )¢ dE)uo dS. (64)
r r

Besides, from (58), we know that at time t, ¥t = ¥¢; therefore, from

(59)
/E‘gde:/Etgde.
r r

(65)

Thus, we get

[ Fuods = [ Fupds (66)
r r

This equation allows relation (64) to be simplified to

/ dFu, dS = / dFuodS. (67)
r r

Therefore

/ Ewdtgo ds = /EH(HHO dS, (68)
r r

which shows that relation (65) remains valid at time t + dt:

/ I:-t+dtut+dr ds = / I“:t+drut+dr ds (69)
r r

and, therefore, that ¥t+dt = Pt+dt Thus, the free energy at time
t +dt is the same for both models. Using the energy balance (54),
we also get that the work of the external loads is the same for both
models. The induction relation holds true at time t + dt:
([j/[ert Wtht) _ (l;f/tert Wt+dt)

k] exi El .

ext

(70)

We assume that the two models are identical with regard to the
elastic part of the material’s behavior, which enables us to initiate
induction. A proof similar to what we have just done shows the en-
ergy equivalence in the case of a loading in terms of prescribed
forces based on a reference loading case.

5.5. Case of a softening behavior

If the material degradation occurs with localized damage alone,
the study of model coupling is simplified. This is an interesting case
because it enables one to deal only with the rupture stage during
which model coupling is being achieved. The continuous model
which corresponds to localized damage alone is a damage model
whose traction curve presents a peak following the elastic phase.
For example, if one looks at Mazars’ damage model Mazars,
1984, whose behavior is different in traction and in compression:
cf. Fig. 4. One can see that rupture under traction loading can be
considered to be localized. Therefore, the only equation to be used
for coupling is Eq. (50). In this case, the material remains free from

damage in the vicinity of the cohesive zone (®,, = 0).

a .., diffuse | localized
elasticity , damage ; damage
G 1 1
[

e

1 —

€

6. Application to the automatic determination of a cohesive law
by an incremental method

6.1. Objective

The objective of this section is, for one-dimensional examples,
to calculate a cohesive law given a nonlocal damage model. We as-
sume that the location of the discontinuity is known a priori. The
cohesive model is built automatically, in incremental fashion, from
the surface energy dissipation obtained through Eqs. (49) and (50).
The incremental construction of the cohesive model is represented
in Fig. 5.

The nonlocal calculation starts by assuming that the strain in
the beam is homogeneous, then by considering an analytical solu-
tion of the nonlocal model. The homogeneous strain assumption in
the beam during the localization phase is acceptable only if the size
of the beam is smaller than the width of the localization zone. This
is not a very satisfactory assumption, but it is the only hypothesis
leading to a relatively simple calculation of the differential equa-
tions describing the evolution of the macroscopic structure’s
behavior over time. The solution is obtained either through analyt-
ical differential equations, or through a numerical resolution meth-
od using a Lagrange multiplier to describe the boundary conditions
being applied at the level of the discontinuity. The latter method
enables one to solve the two models independently of each other
and can be used in a FEM framework.

Three examples, whose particularities are summarized in Table
1, will be presented in this paper. The aim of the first example (6.2)
is to present the direct calculation of the cohesive zone traction
law from analytical differential equations. In the second and third
examples (6.4 and 6.5), the equivalent discontinuous model is ob-
tained numerically with the method presented in Section 6.3. The
particularity of the second example is that it has a stable propaga-

[u]

Fig. 5. Incremental calculation of the cohesive model.

elasticity localized damage

T

/

Fig. 4. 0 = f(¢) curve under compression loading (a) and traction loading (b).



Table 1
Details of the developed examples.

Reference model

Equivalent model

Regularization method

Stability of damage Resolution method

Example 1 (6.2) Homogeneous Unstable Differential equations
Example 2 (6.4) Homogeneous Stable and unstable Numerical (6.3)
Example 3 (6.5) Nonlocal (analytical) Unstable Numerical (6.3)
tion phase before localization so that Egs. (49) and (50) are both D=0 if k< &, (73)
used during the resolution. K—¢& .

& D=2 if e <k <a, (74)

or — 60

6.2. Case of a simple localized damage problem: strong formulation D=1 ifk>¢. (75)

The objective is to solve the one-dimensional problem of a
beam of length L, cross-section S and Young's modulus E subjected
to a traction loading over a time period between 0 and t.. The
behavior of the material is represented through a damage model
in which the damage variable is assumed to be homogeneous with-
in the beam, which is a crude way of preventing localization. Be-
sides, a second model considers that the beam consists of an
elastic material which can be cut by a discontinuity in its center
(localized fracture case). The beam is clamped on the left and sub-
jected to a prescribed displacement u, at the point of abscissa x = L
(cf. Fig. 6).

The prescribed displacement u, verifies a linear loading law
governed by a parameter, denoted a, such that

u, = at. (71)

The damageable model depends on the maximum strain x in the
beam over time

K = max(¢) (72)

and verifies a piecewise linear behavior as in Fig. 7.
Thus, the damage variable verifies

a L
’ 3) B "
S
b
d «—}— homogeneous damage
c [u]

<>

4 |-> <-| <—|— elastic material
\ cohesive zone

Fig. 6. (a) The problem to be solved, (b) homogeneous damage model and (c)
cohesive model.

€ & K

Fig. 7. Evolution of the damage variable.

Parameter a is chosen such that at the end of the simulation the
material is fully damaged (D = 1). In order to enforce localized dam-
age, we want the model to enter an unstable damage phase as soon
as it leaves the elastic domain. In order to do that, we use the mate-
rial stability criterion:

dade > 0. (76)

If one chooses &, = ¢,/2, the localization occurs from the beginning
of the damaged state. We used the following parameters for the
problem: L=1m, S=102m? E=40GPa, & =10"* & =2x
107, tmax = 3 s. Fig. 8 shows the corresponding traction curve.

The stress of the damage model, denoted ¢ and assumed to be
homogeneous within the material, is given by

& = (1 - D)Ee. (77)

Since the strain in the beam increases, Kk = ¢ and the stress can be
written as

G =Ee if £ <&, (78)
L& &L o
0= 5 7805{; if € > &. (79)

The variation of dissipated energy d& is equal to
dd — / (—YdD)dV, (80)
Q

where Y is the elastic energy recovery rate, which for a beam in
traction, is equal to

Y = —%Esz. (81)

Denoting t, the time of transition between the diffuse phase and the
localized phase (here, ty = timqe/2), One gets

dd =0 if t<to, (82)
o 2
dp—Lps U AU ey (83)

277 126 -8

O (MPa) stable unstable
4 ,,,,,,,,,,,,,,,
d 1
2t |
1 |
0 - L - 3
0 0.05 0.1 0.15 0.2 €& (x107)

Fig. 8. Traction curve of the damage model.



Let us now consider the cohesive model for which the increment of
dissipated energy is given by Eq. (53). If 6 denotes the stress in the
material in the vicinity of the cohesive zone, the equilibrium of the
structure in that zone requires that ¢° = ¢. Since we are dealing
with a localized fracture problem, the material near the cohesive
zone behaves elastically, which leads to the following expression
of 6 and o*:

o=t Up (84)

L

Finally, we want to have identical energy dissipation between the
two models. Since we are in a localized damage case, we may sim-
ply use relation (50), which, in this case, can be written as

dd

s
These equations introduced in Eq. (53) lead to the following differ-
ential equations:

ds = (85)

dlu] =0 if t<to, (86)
242
d[u] = % (L(efi—tsoﬁ [[u]])dt if ¢ > to. (87)

In order to verify the validity of the previous equations, we car-
ried out a numerical calculation. We used a Euler-type resolution
method to solve Egs. (86) and (87) explicitly and compared the re-
sult to that of the damageable calculation. The calculations pre-
sented here were carried out with 100 time steps. The first curve
9(a) shows the evolution over time of the prescribed displacement
of the beam'’s end and of the displacement jump at the discontinu-
ity. The second curve 9(b) shows the evolution of the stress ¢° in
the cohesive model as a function of the displacement jump, which
corresponds to the behavior law of the cohesive zone. One can ver-
ify that this curve is identical to that which represents the stress &
of the damage model.

a
—e— Ur
2
—~ 15
¥
k=)
—
x
g 1
0.5
0 " " .
0 0.5 12 25

15
t(s)

The third curve 10(a) shows the dissipated energy for each
model as a function of time, which enables one to verify that the
compatibility condition between the two models is satisfied. The
fourth curve 10(b) shows the free energy in the material as a func-
tion of time for the two models. For the cohesive model, this is the
sum of the strain energy of the elastic zone and the free energy of
the cohesive zone. Again, the two curves are identical, which en-
ables one to check the energy equivalence of the two models (pro-
ven in 5.4).

The fact that curves are not perfectly superposed is due to
numerical errors. This can easily be improved by increasing the
number of time steps.

Remark: In this particular case, the differential equations (86) and
(87) have an analytical solution, which gives the following expres-
sion for the displacement jump [u]:

[ul =0 if t < to,

a’t
[u] = L(e, — o)

With the data we used, the numerical solution and the analytical
solution agree perfectly.

(88)

(t—to) if t>to. (89)

6.3. General resolution based on an energy method

6.3.1. Derivation of the continuous problem

Now we will try to develop a resolution method for the damage
problem with a crack, starting from a weak formulation of the
problem. The objective is to obtain a method in which the resolu-
tion of each of the two models is carried out separately. The only
piece of information which circulates between the nonlocal model
and the cohesive zone model is the dissipated energy &, detected
by the cohesive zone. Let us isolate the volume part of the struc-
ture, so that the cohesive forces can be viewed as external loads

(MPa)

[u] mx10*)

Fig. 9. (a) Displacement of the beam’s end and displacement jump for the cohesive model and (b) traction curve of the cohesive model.
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Fig. 10. Verification of the energy equivalence for the dissipated energy (a) and the free energy (b).



applied to the system. We assume that the crack appears at the
point of abscissa xo. The beam is built-in on the left and, therefore,
the displacement u; = u(0) is zero. Let u, = u(L) denote the pre-
scribed displacement at the beam’s right-hand cross-section and
F the corresponding load (cf. Fig. 11).

Taking the solution field as the virtual field, the principle of vir-
tual power can be written as follows:
S

[0.L]\xo

(dode)dx = dF du, — Sdao* d[[u]. (90)

The prescribed displacement is handled through a Lagrange multi-

plier /4 such that
J=-F (91)

and we define the restriction operators A, and A, which give, when
applied to the field u, the displacement of the right and the left edge
of the beam:

Al(u) =u(0) =0,
Ar(u) =u(l) = u,.

(92)
(93)

The increment in the stress field do can be calculated from the
material’s tangent modulus C:
do = Cde. (94)
Then, the incremental expression of the principle of virtual power
(90) becomes

S Cde?dx = —dJA(du) — Sdo* d[u].

[0.L1\xo

(95)

In addition, the solution of the incremental problem must vgrify the
coupling condition for the increment of dissipated energy d® which,
from 53, can be written as
dé — g(asd[[u}] _ [u]de?) (96)
and must verify the displacement boundary conditions (Egs. (92)
and (93)). We consider the discontinuity to be a surface with pre-
scribed displacements: therefore, we must add to the problem a
multiplier p associated with the discontinuity representing the
cohesion stresses and defined by

u=>Sa’. (97)
Thus, the unknowns of the problem are

u for x € [0,L]\ xo, (98)
4 forx=1L, (99)
u for x =xo. (100)
Operator T is defined such that

T(u) = [u]. (101)

Then, expression (95) of the principle of virtual power can be writ-
ten as

S Cde* dx + dAA(du) + duT(du) = 0.

0L\

(102)

The additional equations which need to be verified are, on the one
hand, Egs. (92) and (93) representing the displacement boundary
conditions and, on the other hand, Eq. (96), which is used to deter-
mine the increment in displacement jump d[u] which, because of
(97), can be written as

[uldu +2do
—

We use the following definitions of m and » (which are known at
time t):

d[u] = (103)

m:M and dv:d—(p, (104)
u

which enables us to rewrite (103) in the form

d[u] = mdu + 2dv. (105)

6.3.2. Discretization of the problem

Let us apply the energy method to the localized damage prob-
lem considered previously (6.2). The discretization we used has
four degrees of freedom numbered 1-4, and can be represented
as follows: cf. Fig. 12.

Egs. (102), (93) and (105), after spatial discretization, lead to a
system of the form

K AT T au 0
A0 0 di | = | duy (106)
T 0 -M/ \du 2dv

Then, this problem must be discretized over time in order to be
solved numerically. Since the volume problem can be nonlinear in
the case of not only localized damage, a Newton algorithm is used
to go from one time step to the next. This method of resolution
leads to the same results as the integration of the analytical differ-
ential equations obtained in 6.2. The following plot superimposes
the displacement jumps obtained with the two methods as func-
tions of time (cf. Fig. 13).

6.4. Case of a damage model with a diffuse damage phase

Let us now reconsider the previous test (6.2) and modify the
parameters of the damage model in order to create a diffuse dam-
age phase prior to the localized damage phase. All we need to do is
increase & while keeping the other parameters of the model the
same. Thus, we choose a slightly higher rupture strain
(& =3 x 107*) and keep the other parameters of the problem un-
changed. Fig. 14 shows the traction curve corresponding to this
choice of the material’s parameters.

One can verify the presence of a hardening damage zone corre-
sponding to the diffuse damage and a softening zone correspond-
ing to the localized damage. This delay between the beginning of
damage and the localization must be taken into account in building

: S
a r
0 X, L X
b 1 ‘ 2
[ |
| A —

Fig. 11. The beam’s geometry before (a) and after deformation (b).
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Fig. 12. Separate resolution of the models.

—+— AL

theo

2 t—e— [u]

e Ilu]] num

0 05 12 25 3

15
t(s)

Fig. 13. Superposition of the displacement jumps obtained with the two methods.
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Fig. 14. Traction curve of the damage model.

the cohesive model. Coupling of the models is achieved through Eq.
(49) during the diffuse damage phase, then Eq. (50) during the
localized damage phase. We still assume that damage is homoge-
neous within the beam. For the resolution, we use the energy

a 3
—6— Ur
+[[u]]
— 2
s
x
E

0 0.5 1 15 2 25

t(s)

method proposed in 6.3. We can again plot the displacement jump
at the crack as a function of time in Fig. 15(a) and the behavior law
of the cohesive model in Fig. 15(b).

Curve 16(a) also enables us to verify that the coupling criterion
based on the localized dissipated energy is satisfied. On the same
curve, we also plotted the total dissipated energy for the two mod-
els, which enables us to verify that, for that energy, the energy
balance is satisfied. Curve 16(b) shows that the energy correspon-
dence also holds for the free energy.

6.5. Use of a true nonlocal damage model

6.5.1. Definition of the nonlocal damage problem

In this section, we calculate a cohesive law using a true nonlocal
damage model based on a strain field smoothed by a Gauss func-
tion. Using the “mechanical” approach to model coupling (5.1.1),
we obtain an analytical solution of the nonlocal model. Thus, we
assume that the analytical solution of the nonlocal strain field
€(x) can be deduced from a reference displacement field u(x) which
is discontinuous at a point of abscissa xo. This method prevents us
to do a numerical calculation of the nonlocal problem on a fine
mesh. As before, the beam is built-in at x = 0 and subjected to a
prescribed displacement u, at x = L, the resulting force at the same
point being designated by F. Since the field u(x) must be statically
admissible, we have

du F

Ea_§ for x=0and x=1L, (107)
d’u
e 0 forall x € [0,L] \ Xo. (108)

Therefore, the associated strain field is homogeneous over [0, L] \ xo.
Denoting this strain &', the following expression of u(x) is
obtained:

(MPa)

0 1 2 3
[u] mx10*)

Fig. 15. (a) End displacement of the beam and displacement jump of the cohesive model and (b) traction curve of the cohesive model.
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Fig. 16. Verification of the energy equivalence for the dissipated energy (a) and the free energy (b).

u(x) = ehomx + [IH(x — xo), (109)

where H is the Heaviside function. By deriving this displacement
field with respect to x in the distribution sense, we obtain the fol-

lowing strain field over [0, L]:
&(x) = eh°m + [i]o(x — Xo). (110)

¢ being the Dirac function. It is this strain field that we use to calcu-
late the regularized strain field &:

_ 1 L
ex)=—— [ o(s—x)e(s)ds 111
) =g |, =00 (1)
with
L

V(x) = / o(s — x)ds, (112)

Jo
where « is the following Gauss function:

2

a(s — X) = exp M) (113)

I, is the characteristic length, which depends on the material. Tak-
ing into account expression (110) of the strain, one obtains

g(x) = ghom 4+ [i] oX — Xo). 114
( ) V(x()) ( 0) ( )

Let us note that at x, the regularized strain is

B(xo) = ghom 4 121 (115)

V(xo)

We assume that the material follows the behavior of Mazars’ dam-
age model Mazars, 1984. With this model, damage depends on an
equivalent strain &, which, in the one-dimensional case, is defined

as follows (Fig. 17):
gq =0 if <0,
tq=¢ if £>0.

Then, we define a memory variable k which holds the maximum
value over time of the equivalent strain:

a g
[Hﬂ] 3(x-Xp)
ghom O
0 x‘o L X

K = MaX;(&eq)- (118)

In the case of a traction loading, the calculation of the damage var-
iable is carried out as follows:

D=0 if kx<eg,
_e(1-A) A

K exp(Bi(k — &)

(119)
D=1

if Kk > &, (120)
where &y, A; and B; are parameters of the material. The stress & is
given by

& = (1 - D)EE. (121)

In our calculations, we used the following geometrical parameters:
L=1m,S=10"2m?2 x; = 0.5 m, and the following material param-
eters: E =40 GPa, & = 104, A, = 1, B, = 15,000 and I, = 0.3 m.

6.5.2. Resolution of the nonlocal damage problem

The most natural way to solve the nonlocal damage problem
would be to assign, as we did before, a linear prescribed displace-
ment loading law as a function of time. This method works well if
the displacement u, keeps increasing over time, but poses prob-
lems in case of snap-back, which requires that the displacement
jump be reduced at certain points of the time evolution. We
adopted a solution which consists in controlling the calculation
through the maximum strain &(xo) in the beam. Thus, the loading

parameter b is chosen such that
&(xp) = bt. (122)

Since &(x) is positive and increases over time, Egs. (116)-(118) lead
to

K(Xo) = E(Xo). (123)

Therefore, from (120) and (121), the stress at X, is obtained using
the relations

G (Xo) = E&(xo)

&(x0) = E(so(l A+

if &(xo) < &, (124)
Aré(Xo)

exp(B:(&(xo0) — &0))
This stress is constant over the whole length of the beam (static
admissibility). As one moves away from point x = Xy, the strain

> if E(Xo) > &p. (]25)

ghom

0 X L X

Fig. 17. The strain field before (a) and after smoothing (b).



tends toward &"™, Since Mazars’ model corresponds, in traction, to
localized damage only (¢ reaching a maximum at &), we know that
far away from x, the material is not damaged. Thus, one has
& = Eghom, which leads to the following expression for &"m:

ghom (126)

1l Qc

Since the regularized strain verifies Eq. (115), we can calculate the
displacement jump [i] through the relation

[i] = ((x0) — €"™)V (xo). (127)

Il Il
0.1 :02 03 04 05 0.6

hom wr >
€ [ull/V(xn) 1 €(Xo)
o Starting point

o

€ (x107)

Fig. 18. Method of resolution of the nonlocal problem.
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Fig. 19. Resulting regularized strain field as a function of &(xo).

Continuous problem

The method for obtaining &, &"™ and [it] is summarized in diagram
18.

Knowing &"™ and [it], one can calculate the strain field over the
whole length of the beam using relation (114). A spatial discretiza-
tion of the beam into 1000 segments was chosen for the computa-
tions. The plot of Fig. 19 shows the strain curves corresponding to
different values of the control variable &(x).

The damage variable field was calculated for that discretization
using relation (120). Then, the increment of dissipated energy can
be calculated at each time step, which provides the information
needed for the calculation of the model with the cohesive zone.

6.5.3. Resolution of the damage problem with the cohesive zone

The resolution of the damage problem with the cohesive zone is
carried out using the increments of dissipated energy calculated
with the nonlocal model, in a way similar to 6.3. The global resolu-
tion of the problem with the different models is summarized in
diagram 20.

In Fig. 21(a), we plotted the displacement u, at the end of the
beam and the displacement jump [i] at the discontinuity as func-
tions of time. This curve also shows the displacement jump [i]
which was used to obtain the analytical solution of the nonlocal
model. The fact that the two displacement jump curves are identi-
cal shows that the “mechanical” vision and the “energy” vision of
model coupling are, for this example, consistent with each other.
In Fig. 21(b), the behavior law of the cohesive model ¢° = f([il])
is compared to the stress in the damaged beam & = f([il]). Again,
one can observe that the two curves are identical.

The two curves in Fig. 22 show that the two models are, indeed,
equivalent energy-wise, in terms of both dissipated energy and
free energy.

7. Toward a generalization to bidimensional and tridimensional
cases

The change of model method can be used in bidimensional and
tridimensional calculations, at least for straight cracks and mode I
decohesion. The determination of the cohesive law increments
then requires knowing at each point of the discontinuity the sur-
face energy to be dissipated. As a consequence, the coupling crite-
rion should be defined at each point of the discontinuity instead of
being a global criterion. In order to obtain this local criterion, we
assume that the position of the crack is known beforehand and
we decompose the surrounding of the crack in cylinders perpen-
dicular to the direction of the discontinuity as in Fig. 23.

We consider one cylinder 7". The intersection of ¥~ with the
crack surface is called . The half-length [ of the cylinder is defined
so that 7~ gets through the whole damaged zone. The coupling cri-
terion 47 is written for this cylinder:

Discretized problem

L

a

0 E .

S

b

% - <~ nonlocal damage

[a]

¢ <> 1 2 3 4

% |-> <-| <—|— elastic material .

\ cohesive zone

Fig. 20. Resolution of the problem with the two models.
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Fig. 21. (a) Displacement at the end of the beam and displacement jump for the cohesive model and (b) traction curve for the cohesive model.
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Fig. 22. Verification of the equivalence in terms of dissipated energy (a) and free energy (b).
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Fig. 23. Cylinders perpendicular to the discontinuity surface.

(128)

[ oav=[davs [ das

By grouping the volume terms we obtain an expression equivalent
to (48):

[ uas= [ o= ppav.

The integration over the volume can be decompose in an integra-
tion over . and another over the segment perpendicular to the
crack surface, between —I and [, so that

/y&st_L</i($—¢)dl>dS.

If we consider that the section of the cylinder is small enough so
that variables remain stable over a section, the coupling criterion
becomes

(129)

(130)
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I

/
We obtain with Eq. (131), a local coupling criterion for each point of
the discontinuity. This criterion can be detailed by taking into ac-
count the local stability of the damaged zone. We will distinguish
for each point of the discontinuity the coupling criterion before
and after initiation. The initiation of the cohesive zone will be
caused by the loss of stability criterion (dg : d¢ > 0) when the mate-
rial enters into the softening part of the behavior law. Before initi-
ation of the crack at a point, the behavior of the material is stable
on the corresponding segment so that we can assume that
d$ = d¢. As a consequence, the coupling criterion is

(131)

dps =0 before localization. (132)

After initiation of the crack at a point of the discontinuity, the mate-
rial surrounding the crack unloads and we can assume that on the



corresponding segment d¢ = 0. The change of model criterion then
writes
]
dos = / dodl after localization. (133)
-1

In the one-dimensional case, Eqs. (132) and (133) multiplied by the
section S of the beam permit to recover Eqgs. (49) and (50).

8. Conclusion

We have presented a method which enables one to couple the
two approaches (continuous and discontinuous) to the localized
rupture of a material. This coupling is achieved by enforcing equal
dissipated energies in the two models. The conservation of the
other energy balance terms is guaranteed by using a cohesive mod-
el with linear closing which is consistent with the chosen damage
elastic model. An important point is to determine when the macro-
scopic crack is initiated. Since we consider that discontinuous
models play the role of localization limiters, the initiation of the
discontinuity coincides with the loss of material stability. Thus,
the energy dissipated by the nonlocal model is transferred to the
cohesive zone only once the material enters the softening part of
the traction curve.

This method was used for the calculation of traction curves of
cohesive models based on nonlocal (or quasi-nonlocal) damage
models. We proposed two methods for calculating the solution of
the damage model with a cohesive zone. The first method consists
in writing down all the equations of the problem in order to derive
a differential equation for the behavior of the cohesive zone. The
second method is based on the use of a Lagrange multiplier to en-
force the amount of energy dissipated at the discontinuity. The lat-
ter method can be used with any nonlocal damage model and in
the framework of finite element analysis. One could also use a sec-
ond-gradient model or a delayed-effect model in place of the non-
local model.

The method can be used in two steps. First, a calculation is car-
ried out on a simple geometry for the nonlocal model while the
coupling criterion enables to get the shape of the equivalent cohe-
sive law. Second, a calculation on a complex structure is performed
with the equivalent cohesive zone model and classical local dam-
age model alone. The possible extension of the method to bidimen-
sional and tridimensional cases with straight cracks has been
briefly presented. Some further investigations are needed to vali-
date the method for those cases. In particular, one can wonder if
the cohesive zone model obtained will be the same at each point
of the discontinuity. The method presented herein has been con-
structed with the assumption that there is no plastic deformation
in the material. A possible evolution would be to generalize it so
that it can be used with any plastic-damageable reference model.
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