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A theory of subgrain dislocation structures

M. Ortiz *, E.A. Repetto, L. Stainier
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Abstract

We develop a micromechanical theory of dislocation structures and finite deformation single 
crystal plasticity based on the direct generation of deformation microstructures and the compu-
tation of the attendant effective behavior. Specifically, we aim at describing the lamellar dislo-
cation structures which develop at large strains under monotonic loading. These microstruc-
tures are regarded as instances of sequential lamination and treated accordingly. The present 
approach is based on the explicit construction of microstructures by recursive lamination and 
their subsequent equilibration in order to relax the incremental constitutive description of the 
material. The microstructures are permitted to evolve in complexity and fineness with increas-
ing macroscopic deformation. The dislocation structures are deduced from the plastic defor-
mation gradient field by recourse to Kröner’s formula for the dislocation density tensor. The 
theory is rendered nonlocal by the consideration of the self-energy of the dislocations. Selected 
examples demonstrate the ability of the theory to generate complex microstructures, determine 
the softening effect which those microstructures have on the effective behavior of the crystal, 
and account for the dependence of the effective behavior on the size of the crystalline sample, 
or size effect. In this last regard, the theory predicts the effective behavior of the crystal to 
stiffen with decreasing sample size, in keeping with experiment. In contrast to strain-gradient 
theories of plasticity, the size effect occurs for nominally uniform macroscopic deformations. 
Also in contrast to strain-gradient theories, the dimensions of the microstructure depend sensi-
tively on the loading geometry, the extent of macroscopic deformation and the size of the 
sample.
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1. Introduction

Crystals deformed to large plastic strains are commonly observed to develop
characteristic dislocation structures (Hughes and Hansen 1991, 1993; Hansen, 1992;
Bay et al., 1992; Hughes et al. 1994, 1997; Hansen and Hughes, 1995; Rosen et al.,
1995; Murr et al., 1997; Nesterenko et al., 1997; Doherty et al., 1997). Often these
structures consist of roughly parallel arrays of dislocation walls which, as noted by
Ortiz and Repetto (Ortiz and Repetto, 1999), may be regarded as instances of sequen-

tial lamination, a feature which we endeavor to exploit systematically in the present
work. The emergence of these dislocations structures is known to have a marked
influence on the hardening characteristics of fee crystals (Argon and Haasen, 1993;
Zehetbauer, 1993; Zehetbauer and Seumer, 1993; Les et al., 1996). The formulation
of quantitative theories of single-crystal plasticity which explicitly and directly
account for the effect of dislocation structures is a long-standing goal of physical
metallurgy.

A related issue which has recently been the subject of extensive theoretical and
experimental work, concerns the dependence of the macroscopic behavior of single
crystals and polycrystals on the size of the sample, identified with the grain size,
wire diameter, film thickness, or some other limiting feature size. This dependence
is sometimes referred to as size effect. Material models which are sensitive to the
size of the sample, or to gradients in the deformation field, are necessarily nonlocal
and contain intrinsic length-scale parameters. A class of phenomenological theories
of plasticity which comply with these requirements may be obtained by allowing
the hardening relations to depend on strain gradients (Fleck and Hutchinson 1993,
1997; Fleck et al., 1994; Nix, 1998; Nix and Gao, 1998). Strain-gradient theories
are nonlocal, endow the material with a single and constant material length scale,
and have been used to account for the role of strain-gradient hardening with consider-
able success.

In this paper we develop a micromechanical theory of dislocation structures and
finite-deformation single-crystal plasticity based on the direct generation of defor-
mation microstructures and the computation of the attendant effective behavior.
Specifically, we aim at describing the lamellar dislocation structures which develop
at large strains under monotonic loading (Hughes and Hansen 1991, 1993; Bay et
al., 1992; Hughes et al. 1994, 1997; Hansen and Hughes, 1995; Rosen et al., 1995;
Murr et al., 1997; Doherty et al., 1997) and their effect on the macroscopic behavior
of crystals. Often, the observed microstructures exhibit more than one level of lami-
nation, i.e., comprise laminates within laminates (see, e.g., Fig. 6 of Hughes and
Hansen, 1993 for an example). Microstructures of this type have long been treated
within the context of the crystallographic theory of martensite (Ball and James, 1987;
Chipot and Kinderlehrer, 1988; Kohn 1991, 1991; Bhattacharya 1991, 1992; Pedre-
gal, 1993), but, their consideration in connection with crystal plasticity appears to
be new.

The cornerstone of the theory is the explicit construction — and equilibration —
of evolving deformation and dislocation structures as part of the incremental consti-
tutive description of the material. Among all possible microstructures, sequential



laminates, or ‘laminates within laminates’, have a recursive or ‘tree’ structure and
can therefore be generated and treated in a particularly efficient manner. It is, there-
fore, fortuitous that, as noted above, the experimentally observed microstructures of
interest fall into this class. The point of departure of our construction is a conven-
tional local model of crystal plasticity. Evidently, only uniform local deformations,
generally involving multiple slip, are accounted for by such models. At the most
basic level, the approach proposed here may be regarded simply as a means of pro-
viding the material with additional local deformation degrees of freedom instead of
being compelled to deform uniformly, the material is permitted to develop complex
local deformation fields in the form of sequential laminates. Once these additional
degrees of freedom are provided to the material, it will spontaneously chose the
‘path of least resistance’; i.e., it will develop such microstructures as minimize the
incremental work of deformation (Ortiz and Repetto, 1999). Ortiz and Repetto (Ortiz
and Repetto, 1999) have noted that, in crystals exhibiting latent, hardening, micro-
structural development may indeed offer an energetic advantage over uniform defor-
mations.

The scope of the present paper is two-fold. Firstly, we endeavor to formulate a
general variational framework for single-crystal plasticity in which microstructures
arise naturally as a consequence of the lack of convexity of the incremental energy
functional. Secondly, we discuss specific procedures for the efficient implementation
of the theory as an incremental constitutive update for use in large-scale computing.

Our variational formulation builds on the approach of Ortiz and Repetto (Ortiz
and Repetto, 1999), which is based on the consideration of a time-discretized bound-
ary value problem in which the primary unknown is the incremental displacement
field over a finite time step. In this setting, the dislocation structures are deduced
indirectly from the incompatibility of the plastic deformation gradient field Fp, in
contrast to other theories of low energy dislocation structures (Neumann, 1986; Lub-
arda et al., 1993), in which the spatial dislocation distribution and its time evolution
are the primary unknowns. Ortiz and Repetto (Ortiz and Repetto, 1999) noted that
this incremental or time-discretized boundary value problem obeys a minimum prin-
ciple, and proceeded to formally derive the corresponding incremental energy density
by recourse to work-minimizing deformation paths. More direct, formulations of the
incremental energy density are also possible for a wide class of materials (Radovitzky
and Ortiz, 1999; Ortiz and Stainier, 1999), and in the work presented here we follow
this more direct route.

A far-reaching realization (Ortiz and Repetto, 1999) is that, in crystals exhibiting
latent hardening the energy function is nonconvex, which favors the development
of microstructures. Roughly speaking, the resulting microstructures consist of regions
in which a small number of slip systems are activated, thereby mitigating the effects
of latent hardening. Using a sequential lamination construction, Ortiz and Repetto
(Ortiz and Repetto, 1999) were able to characterize analytically several dislocation
structures commonly observed to occur in fatigued fcc crystals, including the
coplanar slip zones which form during the stage I of hardening in Cu–lat.%Ge single
crystals; the fence structures observed during the early stages of stage II of hardening
in fcc crystals; and the parallel arrays of dipolar walls which develop in fcc crystals



fatigued to saturation. An instance of a possible rank-two laminate, or a laminate of
laminates, was also identified and explained mathematically by Ortiz and Repetto
(Ortiz and Repetto, 1999). It should be noted, however, that all these applications
of the theory were concerned with configurations leading to the ‘training’ of the
crystal and the establishment of a fixed microstructure. In the present work, by con-
trast, we specifically address the issue of microstructures which evolve with defor-
mation.

In order to account for the size effect, i.e., the observed dependence of the behavior
of crystals on sample size, we explicitly include the self-energy of the dislocations
into the total energy of the crystal. Since the self-energy of the dislocations is a
function of the dislocation density, which by Kröner’s formula is in turn given by
the curl of Fp, the resulting energy is nonlocal. The nonlocal theory effectively
accords well-defined dimensions to all the features of the microstructure, including
the lamellar thicknesses. These optimal microstructural sizes follow directly from
the competition between the dislocation wall energies and the energy of the transition
or boundary layers which inevitably form at complex lamellar interfaces. The absol-
ute dimensions of the microstructure depend on two length-scale parameters: the
Burgers vector length b, and some suitable geometrical feature size d representative
of the overall size of the microstructure. Depending on the application, d may be
variously identified with the grain size of a polycrystal, the thickness of a film, or
some other appropriate feature size. For definiteness, however, in the remainder of
the paper we shall refer to d as the ‘grain size’.

The variational formulation just outlined provides a solid mathematical foundation
for the theory and a plausible mechanistic explanation for why microstructures form
spontaneously in deformed single crystals. We also wish to emphasize that the theory
lends itself to an efficient implementation as part of the constitutive updates which
are applied, e.g., at the quadrature-point level in large-scale finite-element, simula-
tions. The basis of the implementation is the recursive treatment of sequential lami-
nates, which from a graph-theoretical point of view may be regarded as tree struc-
tures. The deformations at all levels of the tree, i.e., in all the lamellar which form the
microstruture, are obtained by the repeated application of Hadamard’s compatibility
conditions. The deformations then follow as a function of a collection of vectors ai,
which describe the amplitudes of the deformation jumps across each lamellar inter-
face i. This collection of vectors may be regarded as the additional local degrees of
freedom afforded by the microstructure. The microstructure is also subject to equilib-
rium in the form of continuity of tractions across all lamellar interfaces. These equi-
librium conditions, in conjunction with the local constitutive updates, define a system
of nonlinear algebraic equations which can be solved for the vectors ai. This in turn
determines the incremental deformations at, all levels of the tree.

Dislocation structures generally evolve in complexity and fineness with defor-
mation. We account for microstructural refinement by allowing the leaves of the tree,
i.e., the lowest level lamellae, to branch into pairs of new leaves. By this process a
new level of lamination is added to the microstructure. The geometry of the new
interface and the volume fractions of the new leaves may be determined by recourse
to energy minimization. When the incremental behavior is described by a linearized



Hill’s comparison solid, this process of energy minimization leads simply to a con-
ventional Hill–Hadamard localization analysis (see e.g., Asaro and Rice, 1977).

The additional key element of the nonlocal theory concerns the estimation of the
dislocation wall energies and the lamellar interfacial energies, whose competition
determines the microstructural dimensions. To this end we adapt a construction of
Ball and James (Ball and James, 1987) leading to the definition of kinematically
admissible fields which effect a compatible transition between complex lamellar. The
construction yields, therefore, an upper bound to the interfacial energy which we
use as a — hopefully tight — estimate of the actual energy. Under the assumption
of separation of scales, the nonlocal contribution to the energy may be treated per-
turbatively. The nonlocal theory then yields all microstructural dimensions and the
effect of the grain size d on the effective macroscopic behavior of the crystal.

We illustrate the range of behaviors predicted by the theory by way of selected
examples. Two of them are concerned with crystals deformed in simple shear and
are motivated by the recent, work of Hughes et al. (Hughes et al., 1994) on the
near-surface microstructures which develop under large sliding loads. The examples
demonstrate the ability of the theory to account for the development of complex
microstructures and the softening effect that such microstructures have on the effec-
tive macroscopic response of the crystal. It bears emphasis that these microstructures
develop under nominally uniform macroscopic deformation. The present theory is
therefore in contrast to strain-gradient theories which require the presence of macro-
scopic strain gradients for nonlocal effects to arise. We also illustrate how the theory
naturally predicts a size effect with the aid of an example concerned with the defor-
mation of a crystal under uniaxial tension along the (001) axis. As expected, small
grain sizes result in stiffer behavior of the crystal. The theory also predicts the micro-
structure to refine with increasing strain: in accordance with experiment, (Hughes et
al., 1994). This is in contrast with strain-gradient plasticity theories, in which the
microstructural lengthscale is constant and independent of deformation.

2. Crystal plasticity

We begin by reviewing key aspects of the constitutive theory of single crystals
which are pertinent, to subsequent developments. Locally, the deformation of the
crystal is fully described by the local deformation gradient, F. Ductile single crystals
are characterized by the existence of a certain class of deformations Fp, or ‘plastic’
deformations, which leave the crystal lattice undistorted and unrotated, and, conse-
quently, induce no long-range stresses. In addition to the plastic deformation Fp,
some degree of lattice distortion Fe may also be expected in general. One therefore
has, locally,

F5FeFp (1)

This multiplicative elastic-plastic kinematics was first suggested by Let (Lee, 1969)
and further developed by others (Teodosiu, 1969; Asaro and Rice, 1977; Havner,



1973; Hill and Rice, 1972; Mandel, 1972; Rice, 1971) within the context of ductile
single crystals.

We adopt an internal variable formalism (Lubliner 1972, 1973; Rice, 1975) to
describe the local inelastic processes and postulate the existence of a Helmholtz free
energy density of the form

A5A(Fe,Fp,Q)5A(FFp−1,Fp,Q);A(F,Fp,Q) (2)

where Q denotes some suitable collection of internal — or hardening — variables.
Common choices of internal variables for crystals are the slip strains and dislocation
densities on each of the slip systems of the crystal. The free energy may also depend
on other variables, such as temperature, vacancy and solute concentrations, and
others, whose evolution is governed by partial differential field equations. We shall
tacitly assume that such variables are integrated independently, e.g., by recourse to
a staggered or fractional-step procedure, and for present purposes they may be
regarded as given. The local state of the material is described by the variables {F,
Fp, Q}. In metals, the elastic response is ostensibly independent of the internal pro-
cesses aid the free energy Eq. (2) may be assumed to decompose additively as

A5We(FFp−1)1Wp(Fp,Q) (3)

The function We determines the elastic response of the metal, e.g., upon unloading,
whereas the function Wp describes the hardening of the material. Physically, Wp

represents the stored energy due to the plastic working of the crystal.
We shall denote by P the first Piola–Kirchoff stress tensor (e.g., Marsden and

Hughes, 1983), which in the absence of viscosity follows from Coleman’s relations as

P5A,F(F,Fp,Q) (4)

In order to determine the evolution of the internal variables, suitable kinetic equations
must be supplied. Assuming that the rate of the local internal processes described
by Q is determined solely by the local thermodynamic state, the general form of the
kinetic equations is

Q̇5f(F,Fp,Q) (5)

In addition, the rate of plastic deformation Ḟp is subject to the kinematic restrictions
imposed by a flow rule. In crystals, plastic deformations are crystallographic in nat-
ure. The conventional flow rule in this cast is of the form (Rice, 1971)

Ḟp5SON
a51

ġasa^maDFp (6)

where ga is the slip strain, and sa, and ma are orthogonal unit vectors defining the
slip direction and slip-plane normal corresponding to slip system a. The collection
g of slip strains may be regarded as part of the internal variable set Q. A zero value
of a slip rate ġa signifies that the corresponding slip system a is inactive. The flow
rule Eq. (6) allows for multiple slip, i.e., for simultaneous activity on more than one
system one a region of the crystal. The vectors {sa, ma} remain consistant through-



out, the deformation and are determined by crystallography. In fcc crystals sa is any
cube face diagonal and ma any cube diagonal, see Table 1. Note that we differentiate
between pairs of slip systems of the form (+s, m) and (2s, m), and require that,

ġa$0 (7)

which embodies the notion of plastic irreversibility.
The thermodynamic forces conjugate to Q are

Y52A,Q (8)

In particular, for a single crystal possessing a structure independent, elastic
response, Eq. (3), the thermodynamic form conjugate to ga is given by the ‘over-
stress’

Ya5ta2tac (9)

where

ta5(FeTPFpT)·(sa^ma) (10)

is the resolved shear stress on the plant of normal ma in the direction sa, and

tac 5Wp,ga (11)

is the critical resolved shear stress of system a. In writing Eq. (9) we have accounted
for the fact that, in view of the flow rule Eq. (6), a variation in ga necessarily implies
a variation in Fp. In addition, the dot product, between two second-rank tensors is
taker1 to be: A·B=AijBij. The hardening relations Eq. (11) may be expressed in rate
form as

ṫac 5ON
b51

habġb (12)

where

hab5Wp,gagb(g) (13)

is the hardening matrix of the crystal.

Table 1
Slip systems of an FCC crystal and Schmid and Boas’ nomenclature (Schmid and Boas, 1961)

System B2 B4 B5 A3 A2 A6

√2s ±[011] ±[101] ±[110] ±[101] ±[011] ±[110]
√3m (111) (111) (111) (111) (111) (111)

System C1 C3 C5 D4 D1 D6

√2s ±[011] ±[101] ±[110] ±[101] ±[011] ±[110]
√2m (111) (111) (111) (111) (111) (111)



The kinetic relations Eq. (5) are said to derive from an inelastic potential if there
exists a kinetic potential y(Y) such that,

Q̇5y,Y(Y) (14)

Additionally, we may introduce the dual potential y∗(Q̇) by recourse to the Legen-
dre transformation

y∗(Q̇)5max
Y

hY·Q̇2y(Y)j (15)

Then one has

Y5y∗,Q̇(Q̇) (16)

which constitutes a restatement of the kinetic equations Eq. (14). A particular case
of these potential relations follows from Schmid’s rule, which states that the slip
strain rate ġa is a function of the driving force Ya acting on the same system. i.e.,

ġa5fa(Ya) (17)

Rice (Rice, 1975) noted that the kinetic relations Eq. (17) have the potential struc-
ture

ġa5y,Ya(Y) (18)

where

y(Y)5ON
a51

E
Y
a

0

fa(Ya) dYa (19)

is the inelastic potential.
In many crystals, it is found that activity in a slip system hardens other systems

more than it hardens the system itself (Kocks 1964, 1966; Ramaswami et al., 1965;
Franciosi et al., 1980; Bassani and Wu, 1991a,b), a phenomenon known as latent
hardening. Many of the intricacies in the behavior of single crystals, such as the
development of the dislocation structures described subsequently, may be traced to
the presence of latent hardening (Cuitiño and Ortiz 1992a, 1993; Ortiz and Repetto,
1999). A simple model of latent hardening was proposed by Hutchinson (Hutchinson,
1976). In Hutchinson’s model the evolution of the flow stresses is taken to be gov-
erned by the hardening law Eq. (12) with a hardening matrix of the form

hab5h[q1(12q)dab] (20)

The parameter q characterizes the latent, hardening behavior. The choice q=1 corre-
sponds to isotropic or Taylor hardening. For fcc metals, Kocks (Kocks, 1960) determ-
ined experimentally the range of this parameter to be 1#q#1.4. A form of the self-
hardening rate h, suitable for Al–Cu alloys is (Pierce et al., 1982; Chang and
Asaro, 1981)

h(g)5h0sech2S h0g

ts−t0D (21)



where

g5ON
a51

ga (22)

is an effective slip strain, h0 is the initial hardening rate, t0 is the critical resolved
shear stress and tS is the saturation strength. Comparisons between Eq. (21) and
experimental data are given by Asaro (Asaro, 1983).

3. Time-discretized constitutive relations

In anticipation of the emergence of fine microstructures, we adopt a variational
perspective and endeavor to formulate the boundary value problem of finite crystal
plasticity as a sequence of incremental energy minimization problems. The appropri-
ate definition of the energy function to be minimized has been addressed by Radov-
itzky and Ortiz (Radovitzky and Ortiz, 1999), Ortiz and Repetto (Ortiz and Repetto,
1999), and Ortiz and Stainier (Ortiz and Stainier, 1999). An incremental energy
density may formally be obtained by integration of the constitutive relations along
‘minimizing paths’, i.e., along such deformation histories as minimize the incremen-
tal work of deformation. The work of deformation itself then supplies the sought
strain energy potential. This approach has been used in the past to derive defor-
mation, or pseudo-elastic, theories of plasticity. A recent, application of minimizing
paths to the study of dislocation structures in ductile single crystals may be found
in (Ortiz and Repetto, 1999). However, the task of determining minimizing paths
for specific models is often daunting, specially for rate-sensitive materials, which
detracts from the practicality of the approach. Here, we adopt an alternative and
more direct method for formulating incremental energy densities proposed by Radov-
itzky and Ortiz (Radovitzky and Ortiz, 1999) and Ortiz and Stainier (Ortiz and Stain-
ier, 1999).

We envisage an incremental solution procedure and concern ourselves with a gen-
eric time interval [tn, tn+1]. Let the initial state (Fn, FP

n, Qn) and the updated defor-
mations Fn+1 be given. The first step in effecting an integration of the constitutive
relations is to provide an incremental rule for updating Fp in a manner compatible
with the flow rule Eq. (6). One possibility is to use the exponential mapping:

Fp
n+15expHON

a51

Dgasa^maJFp
n (23)

where

Dga5gan+12g
a
n (24)

A particularly appealing aspect of the exponential update Eq. (23) is that it exactly
preserves volume in the absence of climb, i.e., when sa and ma are orthogonal. Other



alternative time-discretizations of the flow rule may be found elsewhere (Cuitiño and
Ortiz, 1992b; Miehe and Stein, 1992; Miehe, 1996).

Suppose that the kinetic equations possess the potential structure Eq. (14). Then
we may introduce the incremental work of deformation function:

Dn(Fn+1,F
p
n+1,Qn+1)5A(Fn+1,F

p
n+1,Qn+1)2An1Dty∗SQn+1−Qn

Dt
D (25)

The incremental energy density may be defined as

Wn(Fn+1)5Wn−1(Fn)1min
Qn+1

Dn(Fn+1,F
p
n+1,Qn+1) (26)

where it is tacitly understood that Fp
n+1 is computed through Eq. (23) or some other

discretization of the flow rule. The slip strains hgan+1,a=1,…,Nj are regarded as a
subset of Qn+1 and, consequently, are optimized along with the remaining of the
internal variables. In appending the label n to Dn, and Wn, we wish to emphasize
that these functions are incremental in the sense that they depend parametrically on
the local state (Fn, Fp

n, Qn) at time tn. In particular, the incremental strain-energy
density Wn changes between time steps, as required by irreversibility. For simplicity,
in writing Eq. (26) we have assumed that the material lacks viscosity in the Newton-
ian sense. A more general constitutive framework including viscosity has been con-
sidered by Radovitzky and Ortiz (Radovitzky and Ortiz, 1999) and Ortiz and Stainier
(Ortiz and Stainier, 1999). It may be shown (Radovitzky and Ortiz, 1999; Ortiz and
Stainier, 1999) that, the internal-variable update implied in Eq. (26) is consistent
with the kinetic relations Eq. (16). In addition, one has

Pn+15
∂Wn

∂Fn+1

(Fn+1) (26a)

i.e., Wn, furnishes a potential for the stresses Pn+1 at, time tn+1.
Unfortunately, the models of latent, hardening proposed to date rarely derive from

a potential as in Eq. (13). In order to be able to bring these models into conformity
with the variational framework envisioned here, we simply treat the hardening matrix
explicitly by sampling it at the beginning of the time step. Provided that the harden-
ing matrix is symmetric, this is tantamount to a step-by-step quadratic approximation
of the stored energy Wp, namely,

Wp
n(gn+1)5Wp

n1O
a

htacn(g
a
n+12g

a
n )1

1

2
(gan+12g

a
n )O
b

habn (gbn+12g
b
n )j (26b)

where tacn and habn are the critical resolved shear stress for system a and the hardening
matrix at time tn respectively.

4. Incremental variational formulation

Next, we turn to the general incremental boundary value problem of the elastic-
plastic solid. We consider a general crystal occupying a domain B0 in its reference



configuration. The deformation of the crystal at time t is described by a deformation
mapping j(X, t):B0→R3. The deformation gradierit field is

F5=0j (27)

where =0 is the material gradient over B0. In the components, FiJ=ji,J.
The multiplicative decomposition Eq. (1) of F is now assumed to apply locally

for all X in B0 and t. We note that neither Fe nor Fp define compatible fields. Follow-
ing Nye (Nye, 1953); see also (Mura, 1987), the dislocation density tensor is
defined as

A5=03Fp (28)

In components, AiJ=Fp
iK,LeLKJ, where eLKJ is the permutation tensor. It is evident, from

this definition that, A is a measure of the incompatibility of Fp and that, from a
continuum perspective, dislocations are inextricably related to incompatibility. A
direct consequence of definition Eq. (28) is that

=0·A50 (29)

This identity embodies the physical requirement, that dislocation lines cannot end
abruptly in the interior of the crystal. Identity Eq. (29) also embodies Frank’s rule
for dislocation reactions. It, should be carefully noted that, in the present theory, the
dislocation density A is a derived field which follows from Fp.

Within a time-discretized framework, the equilibrium deformations jn+1 of the
crystal at time tn+1 may be identified with the minimizers of the functional

Fn[jn+1]5E
B0

Wn(=0jn+1) dV01 forcing terms (30)

where Wn is the incremental strain-energy density Eq. (26). In view of the potential
relations Eq. (26a), the first term in Fn may be regarded as a measure of the work
of deformation, and Fn itself as a path-dependent potential energy. It also follows
from Eq. (26a) that the Euler–Lagrange equations corresponding to Eq. (30) are the
equilibrium equations of the body. It should be carefully noted that the functional
Fn is strictly incremental, and it, depends on the initial state {Fn, Fp

n, Qn} of the
crystal at time tn through the dependence of Wn on the local initial state.

For typical crystals exhibiting latent hardening the variational problem just stated
may have no solution, i.e., there may be no deformation mapping jn+1 for which
the infimum of Eq. (30) is attained. Mathematically, this owes to the lack of quasi-

convexity of the incremental energy density Wn (see, e.g., Dacorogna, 1989). It is
generally possible, however, to construct deformation mappings jn+1 which bring
Fn[jn+1] arbitrarily close to its minimum value. Inevitably, such deformation map-
pings exhibit fine microstructure in the form of rapidly varying deformation patterns.
To these patterns there correspond equally intricate dislocation structures through
Nye’s relation Eq. (28). Ortiz and Repetto (Ortiz and Repetto, 1999) have shown
that certain energy minimizing microstructures closely match a number of dislocation



patterns commonly observed to occur in fatigued fee crystals, including the coplanar
slip zones which form during the stage I of hardening in Cu–lat.%Ge single crystals;
the fence structures observed during the early stages of stage II of hardening in fcc
crystals; and the parallel arrays of dipolar walls which develop in fcc crystals fatigued
to saturation.

In the case of crystal plasticity, the fineness of microstructures is evidently con-
strained by the crystal lattice. This cutoff has a profound influence on the scaling
properties of the crystal (Ortiz and Repetto, 1999) and warrants careful attention.
The effect of the crystal lattice may be approximated simply by adding to the free
energy of the crystal the self-energy of the dislocations. All other contributions of
the dislocation population to the energy of the crystal are presumed to be accounted
for in the free energy Eq. (2) in some effective sense. A straightforward derivation
(Ortiz and Repetto, 1999) gives this self-energy in the form:

Eself5E
B0

T

b
|A| dV05E

B0

T

b
|=03Fp| dV0 (31)

where T is the dislocation self-energy per unit length, or dislocation line tension,
and b is the magnitude of the Burgers vector. In writing Eq. (31), we assume, for
simplicity, that, T is independent of the orientation of the dislocation segment. A
commonly adopted expression for T is (Kuhlmann-Wilsdorff, 1989)

T5Cmb2 (32)

where m is an average shear modulus and C is a constant, of order unity. It should
be carefully noted that C is a logarithmically decreasing function of the dislocation
density in the walls (Kuhlmann-Wilsdorff, 1989). Since the dislocations are densely
packed within the walls, a comparatively low value of C is likely to be appropriate.
The ratio T/b has the units of a surface energy. It will prove convenient to introduce
the reference surface energy

G5Cmd (33)

where d is the grain size, and the small parameter

e5!b

d
(34)

With this notation, the functional to be minimized is

Fn[jn+1]5E
B0

[Wn(=0jn+1)1e2G|=03Fp
n+1|] dV01 forcing terms (35)

which is augmented from Eq. (30) by the addition of the dislocation self energy Eq.
(31). It, should be carefully noted that, by virtue of this extension, the functional
Eq. (35) becomes nonlocal. In particular, it depends on the plastic deformation gradi-
ent through the dislocation density tensor A. In writing Eq. (30), it is tacitly implied



that the local plastic deformation Fp
n+1(X) is obtained by the local optimisation Eq.

(26). It is clear from the form of Eq. (35) that the self-energy term plays the role
of a singular perturbation superposed on the local form of the energy functional. In
particular, the self-energy vanishes and the local form of the incremental potential
energy is recovered in the formal limit, of e→0.

5. The effective incremental problem

In the remainder of this paper, we turn our attention to the formulation of an
effective theory of single crystals with microstructure in the regime of e,1. This
regime corresponds to the assumption of separation of scales. Indeed, as we shall
see, the condition e,1 ensures that the microstructure consists of lamellae which
are fine on the scale of the grain size d.

We seek an effective potential energy of the form

F̄n[jn+1]5E
B0

W̄n(=0jn+1) dV01 forcing terms (36)

for some effective energy density W̄n. Here, the deformation mapping j̄n+1 describes
a macroscopic deformation of the crystal exhibiting slow variation on the scale of
d. The effective energy density W̄n may be computed as follows. Consider a crystal-
lite occupying a domain V0 of size d to which the following affine boundary con-
ditions are applied:

j(X,t)5F̄(t)·X, XP∂V0 (37)

In the limit of fine microstructures, the shape of V0 is immaterial (see, e.g., Dacor-
ogna, 1989). It follows by a straightforward application of the divergence theorem
that F̄(t) coincides with the average deformation V0 at time t and, consequently,
plays the role of a macroscopic deformation gradient. In a time-discretized setting,
we actually apply a sequence of macroscopic deformation gradients F̄0, F̄1,…,F̄n,
resulting in microscopic state fields {Fn, Fp

n, Qn} at time tn, and we subsequently
apply a prescribed macroscopic deformation F̄n+1 at time tn+1. The effective energy
density is, then,

W̄n(F̄n+1)5 inf
jn+1

1

|V0|
E
V0

[Wn(=0jn+1)1e2G|=03Fp
n+1|] dV0 (38)

where the infimum is taken over all deformation fields jn+1 satisfying the affine
boundary conditions Eq. (37). We note that in general we shall be interested in the
case of e small but not necessarily zero. Under these conditions the effective energy
density W̄n(F̄n+1) may be expected to exhibit a dependence on the size d of the
domain, or size effect. In view of the structure of the functional Eq. (36), its Euler–



Lagrange equations follow in terms of the divergence of a macroscopic stress field
P̄n+1 obtained through the relation

P̄n+15
∂W̄n

∂F̄n+1

(39)

where F̄n+1==0j̄n+1 is the macroscopic deformation gradient field. It follows, there-
fore, that the effective incremental strain-energy density W̄n furnishes a potential for
the macroscopic incremental stress–strain relations.

In the presence of latent hardening, the incremental strain-energy density Wn lacks
quasiconvexity and we may expect

W̄n(F̄n+1),Wn(F̄n+1) (40)

i.e., the uniform deformation F̄n+1 does not minimize the incremental work of defor-
mation. Instead, such minimization requires the development of microstructures
(Ortiz and Repetto, 1999). Correspondingly, a marked reduction in the hardening rate
predicted by the theory may be expected to accompany the formation of dislocation
structures, as observed experimentally (Zehetbauer, 1993; Zehetbauer and Seumer,
1993; Les et al., 1996). The calculation of the effective energy density, and by exten-
sion of the effective behavior of the crystal, therefore hinges on the ability to find
a microstructure jn+1 which minimizes the incremental work of deformation over
the domain V0. It should be carefully noted that in general a microstructure may be
already established within V0 at time tn. The calculation of these evolving microstruc-
tures is, therefore, incremental in nature. This microstructural evolution represents
an irreversible internal process which renders the incremental energy density W̄n

history dependent. Thus, W̄n depends on the precise history of macroscopic defor-
mations prior to F̄n as befits plastic irreversibility. In particular, the crystal exhibits
hysteresis under cyclic deformation.

By construction, the effective energy density W̄n is quasiconvex, and the the infi-
mum of the effective potential energy Eq. (36) is indeed realized for some classical
deformation field jn+1. The effective problem is, therefore, well-posed. The solution
of the effective problem entails the determination of deformation fields j̄n+1 which
vary on the macroscale, and the attendant microstructures, which are effectively sub-
sumed within W̄n, need no longer be accounted for explicitly. The efficient calculation
of the effective energy density W̄n is addressed next.

6. Dislocation structures — laminates

Next we turn to the problem of calculating the effective macroscopic behavior of
crystals with microstructure as described by the effective incremental energy density
W̄n defined in Eq. (38). We assume that a microstructure compatible with a macro-
scopic deformation F̄n is known over the domain V0 at time tn. In addition, we are
given a new macroscopic deformation F̄n+1. The problem is to find a new microstruc-
ture which minimizes the incremental energy of the crystallite V0. An approximate



yet phyically relevant-solution to this problem may be obtained by restricting the
competing microstructures to the class of sequential laminates. In this section we
proceed to formulate an efficient algorithm for carrying out the requisite microstruc-
tural updates. For simplicity of notation, we henceforth omit, the label n+1 previously
used to designate the value of physical variables at time tn+1.

Uniform deformations may conentionally be categorized as rank-zero laminates.
In order to define laminates of rank one, we introduce the characteristic functions
c±(x):[0,l]→R of the as

c+(x)5H0, if xe[0,ll−)

1, if xe[ll−l),
(41)

c−(x)512c+(x) (42)

with l2e(0,1). These functions may be extended to the entire real line by periodicity.
We also set l+=12l2, so that l++l2=1. Consider two deformations F± satisfying
Hadamard’s jump condition:

[F]5F+2F−5a^N (43)

for some ‘polarization’ vector a and unit vector N. Evidently, a measures the ampli-
tude of the jump and N is the unit normal to the plant of discontinuity. Then, the
corresponding laminate of layer thickness l and volume fractions l± is characterized
by deformation gradients of the form

F(X)5c+(X·N)F+1c−(X·N)F− (44)

The average deformation in the laminate is

F̄5l−F−1l+F+ (45)

By construction, this deformation field is weakly compatible and, consequently, there
is a continuous displacement field j whose gradient is F almost everywhere.

Following Kohn (Kohn, 1991), a laminate of rank — r is a layered mixture of
two rank — (r21) laminates, which affords an inductive definition of laminates of
any rank. As noted by Kohn (Kohn, 1991): the construction of sequential laminates
presumes a separation of scales: the length scale lr of the rth-rank layering satisfies
lr,lr21. Treatments of sequential lamination may be found in (Kohn and Strang,
1986a,b,c; Bhattacharya 1991, 1992; Kohn, 1991; Pedregal, 1993).

Sequential laminates have a binary tree structure. The nodes of the tree are occu-
pied by deformations Fi, i=1,…, N, where N is the number of nodes, or order, of
the tree. The root deformation is the average or macroscopic deformation F̄. Each
node in the tree has either two children or none at all. Nodes with a common parent
are called siblings. Nodes without children are called leaves. Nodes which are not
leaves are said to be interior nodes. We shall denote by I and L the sets of internal
nodes and leaves of a tree, respectively. The deformations of the children of node
i, will be denoted F±

i . Each generation is called a level. The root occupies level 0
of the tree. The number of levels is the rank r of the tree. Level l contains at most



2l nodes. The example in Fig. 1a represents a rank-three laminate of order eleven.
The leaves of the tree are nodes 6 to 11. The children of, e.g., node 2 are nodes 4
and 5, with F−

2=F4 and F+
2=F5. The sequential laminate defined by the tree is shown

in Fig. 1b. As is evident, from this example, physically the leaves of the tree corre-
spond to simple lamellae undergoing uniform deformation, whereas interior nodes
correspond to complex lamellae.

The deformation Fi of an internal node i is an average of the deformations F±
i of

its children, i.e.,

Fi5l
−
i F−

i 1l+
i F+

i , ieI (46)

where ol±
i ,1 are the volume fractions occupied by each of the children. The volume

fractions are subject to the constraint

Fig. 1. A sequential laminate with nine kinematical degrees of freedom.



l−
i 1l+

i 51, ieI (47)

It, therefore follows that the deformation Fi of an l-level node is the average defor-
mation of a (r2l)-rank laminate. Additionally, siblings must be rank-one compat-
ible, i.e.,

F+
i 2F−

i 5ai^Ni, ieI (48)

for some vectors ai and Ni,|Ni|=1. The latter vector is the unit normal to the interface
between the children of node i in the underformed configuration. It follows from
Eqs. (46)–(48) that the deformations of the children of interior node i are

F−
i 5Fi2l

+
i ai^Ni (49)

F+
i 5Fi1l

−
i ai^Ni (50)

Applying this relation recursively, the deformation in all the nodes may be computed
from the deformation F̄ of the root, or average macroscopic deformation, and the
variables {ai, Ni, l

±
i , ieI}.

The dislocation structure corresponding to a laminate follows directly from Nye’s
formula Eq. (28). It is found from this formula that the dislocation structure consists
of multipolar dislocation walls separating the lamellae in the laminate. Thus, let,
Fp±

i be the plastic deformations corresponding to two siblings meeting at the planar
interface X·Ni=C. Then, the dislocation density on the interface follows from Eq.
(28) as

Ai5[Fp
i ]3Nid(X·Ni2C), ieI (51)

which shows that the interface is a dislocation wall. For instance, consider the case
of two leaves deforming in single slip. Then, the corresponding interfacial dislocation
structure consists of two sets of parallel straight dislocations in each of the slip
systems operating within the leaves, i.e., the interface is a dipolar wall (Ortiz and
Repetto, 1999).

7. The local theory

We begin by considering the limit e→0 of problem Eq. (38). Mathematically, the
limiting effective energy corresponds to the so-called g-limit, of Fn (de Giorgi, 1975;
de Giorgi and Franzoni, 1975; Modica, 1987; Sternberg, 1988). As expected, this
limiting form of the theory suffices to determine many of the salient features of the
evolving dislocation structures, such as the orientation and nesting of the dislocation
walls, misorientations across the walls, patterns of slip activity, and others. In sub-
sequent sections we turn to the nonlocal extension of the theory obtained by the
consideration of the self-energy of the dislocations. The nonlocal theory enables the
prediction of the thickness of the lamellae, the relation of such thicknesses to the
grain size, and the dependence of the effective behavior on the grain size, among
other features which lie outside the scope of the local theory.

The stresses Pi in the leaves ieL follow directly from the incremental constitutive



relations Eq. (38). The effective stresses in the interior nodes then follow recursively
by the relation:

Pi5l
−
i P−

i 1l+
i P+

i , ieI (52)

The stress thus obtained at the root, of tree is the macroscopic or effective stress
P̄. The incremental strain energy of the tree is

W̄n(F̄;hai,Ni,l
±
i ,ieI j)O

ie L

niW̄i,n(Fi) (53)

where ni are the volume fractions of the leaves. These volume fractions satisfy
the constraint

O
ie L

ni51 (54)

Minimization of W̄n with respect to the polarization vectors {ai, ieI }, taking con-
straints Eqs. (46)–(48) into account, yields the traction equilibrium equations for the
interior nodes:

ti;
∂W̄n

∂ai

5(P+
i 2P−

i )·Ni50, ieI (55)

where ti is the unbalanced traction across the interface corresponding to interior node
i. For given F̄ and fixed values of the variables {Ni, l

±
i A, ieI }, Eq. (55) defines a

system of nonlinear equations which may be solved for the amplitudes {ai, ieI},
e.g., by recourse to a local Newton–Raphson iteration.

In principle, the variables {Ni, l
±
i , ieI } which define the geometry of the laminate

could also be optimized at every time step. However, the mobility of dislocation
walls in crystals, once formed, appears to be small. We therefore assume that the
values of the geometrical variables {Ni, l

±
i } are set when leaf i becomes unstable

and branches into two new leaves, and remain unchanged thereafter. By virtue of
this assumption, {ai, ieI } represents the complete collection of microstructural
deformation degrees of freedom which the material has at its disposal in addition to
the macroscopic deformation F̄. At equilibrium, i.e., when the internal degrees of
freedom {ai, ieI } satisfy Eq. (55) one has

P̄5
∂W̄n

∂F̄
(56)

i.e., W̄n furnishes a potential for the macroscopic stress–strain relations.
The geometrical variables {Ni, l

±
i , ieI } may be determined as follows. Assume

that, a leaf i becomes unstable at time tn and branches into two children with volume
fractious l±

i separated by a dislocation wall of normal Ni. The incremental strain
energy density of the leaf is

W̄i,n(Fi,ai,Ni,l
±
i )5l−

i Wi,n(F
−
i )1l+

i Wi,n(F
+
i ) (57)

It should be noted that both incipient, leaves are at the same state at time tn. Taking



constraints Eqs. (46)–(48) into account, the optimality conditions for the geometrical
variables {Ni, l

±
i } are found to be

∂W̄i,n

∂l−
i

5[Wn]2Pi·(ai^Ni)50 (58)

∂W̄i,n

∂Ni

5(ai·[Pi])3Ni50 (59)

where Pi is computed from the stresses in the leaves in accordance with Eq. (52).
Evidently, Eq. (58) is the configurational force conjugate to the position of the inter-
faces, which may be computed directly from Eshelby’s energy-momentum tensor
(Abeyaratne and Knowles, 1990). Likewise, Eq. (58) represents the configurational
force conjugate to the orientation of the dislocation walls. Eqs. (58) and (59) define
a system of nonlinear equations which, in conjunction with the equilibrium Eq. (55),
can be solved for the unknowns {ai, Ni, l

±
i }. A nontrivial solution is obtained, sig-

naling the formation of two new leaves, when 0,l±
i ,1 and

W̄i,n,Wi,n(Fi) (60)

i.e., when the process of branching reduces the incremental work of deformation.
The geometrical parameters {Ni, l

±
i , ieI} may be estimated — and the solution

procedure just described may be simplified — by recourse to linearization, leading
to a conventional Hill–Hadamard stability analysis of the leaves. We begin by lin-
earizing the incremental strain energy of the leaf i under consideration, with the result

Wi,n(Fi)5Pi,n·(Fi2Fi,n)1
1

2
(Fi2Fi,n)·ci,n·(Fi2Fi,n)1o(|Fi2Fi,n|

2) (61)

where

ci,n5F∂2Wi,n

∂Fi∂Fi
G

Fi=Fi,n

(62)

are the tangent moduli for leaf i at time tn. These moduli are also referred to as
algorithmic moduli since their definition requires a time discretization of the consti-
tutive equations. Explicit expressions of the tangent moduli for various constitutive
updates and material models may be found in (Cuitiño and Ortiz, 1992a; Ortiz and
Stainier, 1999). It should be noted that the definition Eq. (62) of the tangent moduli
allows for general material behavior, including rate-dependency. In the rate-inde-
pendent limit, the Hill–Hadamard analysis may be based on the material tangent
moduli which relate the rate of deformation Ḟ to the stress rate Ṗ. Here again,
explicit, expressions of the material tangent, moduli for a variety of rate-independent
plasticity models are available from the literature (e.g., Asaro and Rice, 1977;
Asaro, 1983).

Using the quadratic approximation Eq. (61), representation Eqs. (49) and (50) and
constraint, Eq. (47), the resulting incremental strain-energy density of the leaf i is
found to be



W̄i,n2Wi,n(Fi)5
1

2
l−

i l
+
i (ai^Ni)·ci,n(Ni)·(ai^Ni)1o(|Fi2Fi,n|

2) (63)

Introducing the acoustic tensor Di,n(Ni) corresponding to the moduli ci,n and the nor-
mal Ni through the identity

(ai^Ni)·ci,n(Ni)·(ai^Ni)5ai·Di,n(Ni)·ai (64)

Eq. (63) further simplifies to

W̄i,n2Wi,n(Fi)5
1

2
l−

i l
+
i ai·Di,n(Ni)·ai1o(|Fi2Fi,n|

2) (65)

It follows from this expression that, to first order in the incremental deformation,
the bifurcation condition Eq. (60) requires that the acoustic tensor Di,n(Ni) becomes
negative semi-definite for some direction Ni. Branching thus requires that

det[Di,n(Ni)]50 (66)

which is the classical Hill–Hadamard localization condition (Asaro and Rice, 1977).
Within this approximation, a leaf branches into two new leaves when Eq. (66) is
satisfied for some direction Ni, which thereafter defines the orientation of the dislo-
cation wall separating the new leaves. As soon as the acoustic tensor becomes nega-
tive definite, Eq. (65) develops a minimum with respect to the volume fractions
l±

i at

l−
i 5l+

i 5
1

2
(67)

i.e., the new leaves occupy identical volume fractions. Indeed, many of the observed
lamellar structures are composed of ostensibly uniform lamellae (Hughes and Hansen
1991, 1993; Bay et al., 1992; Hansen and Hughes, 1995; Rosen et al., 1995), which
would appear to bear out the quadratic approximation. Evidently, it, follows from
Eq. (67) that microstructures composed of grossly dissimilar lamellae cannot be
adequately described by the quadratic approximation Eq. (61) and consequently, are
not, amenable to a Hill–Hadamard analysis. In such cases, the fully nonlinear stability
analysis Eqs. (58) and (59) must be carried out instead. It bears emphasis that, in
all cases, the determination of the degrees of freedom {ai, ieI} requires a fully
nonlinear analysis. (Box 1 and 2)

We conclude this section by addressing a few matters of implementation. The
solutions of the Hill–Hadamard condition Eq. (66) may be obtained by parameteriz-
ing the normal Ni, in terms of spherical angles (see e.g., Ortiz et al., 1987; Leroy
and Ortiz 1989, 1990; Nacar et al., 1989). We begin by sweeping the unit sphere
at, regular intervals of the spherical angles and determining the points where
det[Di,n(Ni)] attains a local minimum relative to its neighbors on the grid. The precise
minimizers of det[Di,n(Ni)] are then pin-pointed by a Newton–Raphson iteration. The
resulting directions are deemed admissible if the corresponding value of det[Di,n(Ni)]
is below a small positive tolerance. The absolute minimizer among all the local



Box 1. Recursive algorithm for the calculation of the deformations, stresses

and unbalanced tractions of a laminate.

type treeFnode = record
LChild: treeFnode;
RChild: treeFnode;
l: real;
a: real[l..d]; {d is the spatial dimension}
N: real[1..d];
F: real[1..d] [1..d];
P: real[1..d] [1..d];
c: real[1..d] [1..d] [1..dl [1..d];

end

procedure updateFtree (root: treeFnode)
begin

updateFnode (root);
end

procedure updateFnode (node: treeFnode)
begin

if (node. LChild=nil and node.RChild=nil) then
constitutiveFupdate (node.F,node.P,node.c);

else
lchild := node.LChild;
rchild := node.RChild;
1child.F:= node.F+rchild.A*node.a ^ node.N;
rchi1d.F:= node.F-1child.A*node.a ^ node.N;
updateFnode(lchild);
updateFnode(rchild);
node.P:= 1child.X*1child.P+rchild.A*rchild.P;
node.t:= (rchi1d.P-1child.P).node.N;

end if
end

minima is then selected as the direction Ni of the new interface. If the absolute
minimizer is not unique, one of the minimizers is selected at random.

As noted above, by virtue of the fact, that the geometrical parameters {Ni, l
±
i ,

ieI } are held fixed, the equilibrium equations Eq. (55) become a system of non-
linear equations for the variables {ai, ieI }. A flow chart for the calculation of ti({ai,
ieI } is given in list 1. The recursive character of the calculations, which permits a
particularly simple aid efficient, implementation of the theory, is noteworthy. We



Box 2. Recursive algorithm for the calculation of the Hessian matrix of

the equilibrium equations.

procedure tangent-tree (root: treeFnode, T: real[1..d] [1..N] [1..d] [1..N])
begin
{N is the number of interior nodes}

root.dF:= 0 ;
for n:= 1 to N do

nodeFofFindex (n) .da := 0;
end do
for n:= 1 to N do

node:= nodeFofFindex (n) ;
for j:= 1 to d do {assign node . da to unit vectors}

node . da := ej;
tangentFnode (root);
for m:= 1 to N do

for i:= 1 to d do
T[i] [m] [j] [n]:= nodeFofFindex (m).dt [i];

end do
end do
node.da:= 0;

end do
end do

end

procedure tangentFnode (node: treeFnode)
begin

if (node. LChild=nil and node. RChild=nil) then
node.dP:= node.c:node.dF;

else
lchild:= node.LChild;
rchild:= node.RChild;
lchild.dF:= node.dF + rchild.λ*node.du^node.N;
rchild.dF:= node.dF - 1child.λ*node.du^node.N;
tangentFnode (lchild);
tangentFnode (rchild);
node.dP:= Ichild.l*lchild.dP+rchild.λ*rchild.dP;
node.dt:= (rchild.dP-lchild.dP). node.N;

end if
end



solve system Eq. (55) by a Newton–Raphson interaction. A flow chart for the calcu-
lation of the requisite tangent matrix

Tij5
∂ti

∂aj

(68)

which follows directly from the tangent moduli {ci,n, ieI }, is shown in list 2.
In order to ensure the convergence of the Newton–Raphson iteration, we make use
of a line search algorithm based on bisection followed by a secant iteration.

We have found that the application of the procedure just outlined may in some
cases lead to a proliferation of low-angle subgrain boundaries. This proliferation
occurs when the Hill–Hadamard condition Eq. (66) is enforced with some finite
tolerance, i.e., a leaf branches whenever the determinant of the acoustic tensor is
below some small — but positive — prescribed value. The same condition may then
be satisfied by each of the children in the next time step, and so on, resulting in
runaway branching. In order to ensure that branching is physical, we impose an
additional threshold condition. Thus we assume that, for a leaf to be able to branch,
the dislocation walls which bound the leaf must be sufficiently ‘well-developed’. A
dislocation wall is presumed to be well-developed when it acts as an effective barrier
to dislocations moving within the leaves, i.e., when the critical stress twall

c for a
dislocation to cross the wall is larger than the critical stress for the same dislocation
to move within the abutting leaves. Since twall

c may be expected to scale with the
square root, of the dislocation density rwall within the wall, and rwall, according to
Eq. (51), in turn scales with |[Fp]×N|, we simply require that, for branching to occur
in a leaf, the corresponding value of |[Fp]×N| exceed a small threshold value.

8. Examples of application of the local theory

We proceed to illustrate the range of behaviors predicted by the local theory by
way of selected examples. In order to emphasize that the proposed construction can
be wrapped around any existing single-crystal plasticity model, we have based the
calculations reported here on the model of Hutchinson (Hutchinson, 1976) and Pierce
et al. (Pierce et al., 1982), Eqs. (20) and (21). The constitutive updates are carried
out, using the implicit procedure of Cuitiño and Ortiz (Cuitiño and Ortiz, 1992a).
The values of the material constants adopted in the calculations are roughly represen-
tative of an Al–Cu alloy, (Asaro, 1983; Chang and Asaro, 1981). The elastic con-
stants are: c11=168.4 GPa, c12=121.4 GPa and c44=75.4 GPa. The initial critical
resolved shear stress is t0=100 MPa and the saturation value of the critical resolved
shear stress is tS=180 MPa. The latent hardening constant is q=1.4. All calculations
correspond to quasistatic loading.

The crystal is deformed in simple shear on a plane of normal m̄ in the direction
s̄. Thus, the prescribed macroscopic deformation is

F̄5I1ḡs̄^m̄ (69)



where ḡ is the macroscopic shear strain. The work conjugate stress measure is the
resolved shear stress

t̄5P̄·(s̄^m̄) (70)

acting on plane m̄ in the direction s̄. This mode of deformation is motivated by the
experiments of Hughes et al. (1994), who investigated the formation of a contact
boundary layer in blocks of copper sliding over steel plates. In the grains within the
contact boundary layer, the nominal mode of deformation is the form Eq. (69).
Assuming that, the grains are randomly oriented initially, the directions s̄ and m̄ may
themselves be chosen randomly relative to the crystallographic axis.

We begin by considering the simple case of shear on the (001) plane along the
[110] face diagonal. In the finite deformation regime, with lattice rotations taken
into account, this deformation results in the activation of the systems A6 and D6.
Here and henceforth we adopt, the Schmidt–Boas nomenclature for the sip systems
of fee crystals, see Table 1 stress–strain curves are shown in Fig. 2. In the absence
of microstructure formation, the crystal deforms in double slip by the simultaneous
activation of the systems A6 and D6. In the presence of latent, hardening, which in
the model under consideration corresponds to the regime q.1, this process of double
slip in turn results in a high rate of hardening.

Fig. 2. Stress–strain curves for a fcc crystal subjected to simple shear on the (001) plane in the [110]
direction, showing the softening of microstructure development. The curves are obtained using Hutchinson
(Hutchinson, 1976) and Pierce et al. (Pierce et al., 1982) model of hardening, with material constants
representative Al–Cu alloys (Asaro, 1983; Chang and Asaro, 1981).



When the formation of microstructure is allowed for through the sequential lami-
nation construction described in the foregoing, the deformation field becomes
inhomogeneous immediately after first yield. The microstructure that develops con-
sists of a simple laminate, with each variant, deforming in single slip by the activation
of one of the systems A6 or D6. These variants are separated by dipolar dislocation
walls of normal N={21/√2,1/√2,0}. The formation of this microstructure results in
a significant relaxation of the stress–strain response, Fig. 2. A marked reduction in
the rate of hardening following the inception of dislocation structures such as con-
sidered here is observed experimentally in many crystals (Zehetbauer and Seumer,
1993; Les et al., 1996).

A second example which leads to the development of a somewhat more complex
microstructure concerns the case of a crystal such as described above subjected to
simple shear on the plane m̄=(0.314485, 20.104828, 0.943456) along direction s̄

=[0.929270, 20.168905, 20.328524], corresponding to a randomly chosen orien-
tation of the crystal. The computed t̄2ḡ stress–strain curves and the evolution of
the microstructure are shown in Fig. 3. The crystal first yields by the activation of
the four systems D6, C1, B5 and A2. Soon thereafter, at a strain ḡ=0.7×1022, a rank-

Fig. 3. Stress–strain curves for a fcc crystal subjected to simple shear on the (0.314485, 20.104828,
0.943456) plant in the [0.929270, 20.168905, 20.328524] direction (selected at random), showing the
development of microstructure in the form of a rank-3 laminate and the attendant relaxation of the stress–
strain response. The curves are obtained using Hutchinson (Hutchinson, 1976) and Pierce et al. (Pierce
et al., 1982) model of hardening, with material constants representative Al–Cu alloys (Asaro, 1983; Chang
and Asaro, 1981).



1 laminate forms. The microstructure consists of two lamellae separated by a dislo-
cation wall of normal N1={20.13595, 0.00797, 0.99068}. One of the two lamellae
retains the full complement of active systems, D6, C1, B5 and A2, whereas only
the three systems C1, B5 and A2 are active in the remaining lamella. This reduction
in the number of active slip systems over part of the volume of the crystal confers
the laminate an energetic advantage in the presence of strong latent, hardening.

At the strains ḡ=1.7×1022 and ḡ=3.1×1022, the right leaf of the first, rank-1 lami-
nates goes through two successive branching events, resulting in the first stable rank-
3 laminate shown in Fig. 3. The computed orientations of the three families of dislo-
cation walls which bound the leaves of the tree are N1={20.13595, 0.00797,
0.99068}, N2={20.03532, 0.99923, 0.01697} and N3={20.71477, 0.03864,
0.69829}. As may be seen from Fig. 3, the leaves in the right branch of the tree
exhibit the same slip activity pattern and are separated by low-angle subgrain bound-
aries. By contrast, the misorientation between the main two branches of the tree
measured by the relative angle of rotation between their respective crystalline lattices,
grows comparatively quickly and reaches 14 degrees at ḡ=0.5. This angle is in the
experimentally observed range of 5 to 20 degrees reported by Hughes and Hansen
(Hughes and Hansen, 1993) for nickel deformed by rolling from intermediate to
large strains. As is evident from Fig. 3, the net effect, of the microstructure is to
significantly relax the response of the crystal. The ability of the present theory to
generate physically meaningful microstructures automatically and to determine the
effect of such microstructures on the effective response of the crystal is noteworthy.

9. The nonlocal theory

The local theory developed so far has the ability to predict salient features of
subgrain microstructures such as the orientation and nesting of the dislocation walls,
misorientations across the walls, patterns of slip activity, and others. However, the
local theory is incapable of according well-defined sizes to microstructural features.
In particular, the thickness of the lamellae and the dependence of such thicknesses
and the effective behavior on grain size are outside the scope of the local theory.

In order to overcome these limitations, we turn to problem Eq. (38) with finite e,
i.e., with the self-energy of the dislocations taken into account. The construction
which we propose in order to estimate W̄n is similar to that applied by Ball and
James (Ball and James, 1987) to martensite. Thus, we retain the tree geometry {Ni,
l±

i , ieI } of the dislocation structures predicted by the local theory. However, we
now account explicitly for two additional items in the energy budget of the crystal:
the energy contained within the transition or boundary layers which separate complex
lamellae; and the self-energy of the dislocations contained in the dislocation walls.
As pointed out, by Ball and James (Ball and James, 1987) in the context of martensite
the competition between these two types of energy endows the microstructure with
well-defined dimensions. It should be noted that Muller and Kohn (Kohn and Müller,
1992) found that, for some model systems, this construction may not be optimal.
Indeed, interfacial energy may change the topology of the microstructure, e.g., by
inducing twin branching.



The presence of transition or boundary layers between complex lamellae in the
microstructure is necessitated by the fact, that the compatibility relations Eq. (48),
when applied to interior nodes of the tree, enforce compatibility on average only.
Thus, deformations F±

i corresponding to two adjacent interior nodes represent average
deformations of all their children, and Eq. (48) merely requires the compatibility of
those average deformations. Under those conditions, the actual deformation field is
bound to exhibit transition or boundary layers at the interfaces between interior
nodes, i.e., between lamellae of rank one or higher. These boundary layers in turn
cost energy and have been argued to be a factor determinant of the arrangement and
separation of the dislocation walls (Kuhlmann-Wilsdorff and van der Merwe, 1982;
Bay et al., 1992).

We proceed to estimate this energy by explicitly constructing a kinematically
admissible deformation field. Alternative constructions may be based on interpolation
(Chipot and Kinderlehrer, 1988). Owing to the variational character of the incremen-
tal problem, the energy of the kinematically admissible field on which we base our
construction is a — hopefully tight — upper bound on the actual energy. We consider
an interior node i of size li and deformation Fi. The children of the node are two
leaves of deformations F±

i and volume fractions l±
i separated by a dislocation wall

of normal Ni, Fig. 4. The distances between such walls which equal the sizes of the
children are

Fig. 4. Assumed structure of the boundary layer between interior node i and adjacent lamellae. Figure
shows a normal cross section of the node i, i.e., the dislocation walls separating the children of node i

are perpendicular to the plane of the figure.



l±
i 5l±

i lc
i (71)

where

lc
i 5l−

i 1l+i (72)

is the combined thickness of the leaves. Evidently, l−i =l+
i if l−

i =l+
i , as is the cast in

the quadratic approximation Eq. (61). Adjacent to the node i lies the sibling node j.
The geometry of the assumed kinematically admissible field is similar to that con-
sidered by Ball and James (Ball and James, 1987). Fig. 4 shows a normal cross
section of the lamella i showing the assumed boundary-layer structure. Within this
normal cross section, the transition between i and the adjacent lamellae is effected
through regions in the shape of right triangles. The deformation FBL

i in such regions
is of the form

FBL
i 5Fi1ai^NBL

i (73)

where, with reference to Fig. 4,

NBL
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i

Ni·r
−
i

|r−
i |2

r−
i 1l−

i

Ni·r
+
i

|r+
i |2

r+
i (74)

Here, the vectors r±
i are aligned with the sides of the boundary-layer triangles and

contained within the normal cross section of the node, Fig. 4. It should be noted
that, since these triangles are chosen to be straight, r±

i are orthogonal. In addition,
since r±

i are contained within the normal cross section of node i, one has
(r−

i ×r+
i )·Ni=0 and (r−

i ×r+
i )·NBL

i =0. It follows from Eq. (73) that the deformation FBL
i

of the boundary layer is entirely determined by the average deformation Fi of the
node and by the vector ai. In particular, FBL

i =Fi if ai=0. Therefore, consideration of
boundary layers does not increase the number of microscopic degrees of freedom
relative to the local theory. It, is readily verified that,

FBL
i ·r±

i 5F±
i ·r±

i (75)

FBL
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i 1r+
i )5Fi·(r

−
i 1r+

i ) (76)

and

FBL
i ·(r−

i 3r+
i )5F±

i ·(r−
i 3r+

i ) (77)

FBL
i ·(r−

i 3r+
i )5Fi·(r

−
i 3r+

i ) (78)

which establishes the kinematic admissibility of FBL
i . Under these conditions, an

upper hound to the incremental strain-energy density of the lamella is given by:

W̄i,n5(12lBL
i )[l−

i W−
i,n(F

−
i )1l+

i W+
i,n(F

+
i )]1lBL

i WBL
i,n (FBL

i ) (79)

where

lBL
i 5CBL

i

lci

li

(80)

is the volume fraction of the boundary layer. The constant, CBL
i is of order 1 and



depends on the orientation and relative thicknesses of the leaves. For instance,
CBL

i =1 in the case of leaves of equal thickness. As is evident from Eq. (80), lBL
i

and, by extension, the boundary-layer contribution to the incremental strain-energy
density of the node, scale with the combined width lci of the leaves.

Next, we proceed to estimate the energy of the dislocation walls separating the
leaves. For simplicity, we shall assume separation of scales, i.e., l±i ,li. Under these
conditions, the dominant, contribution to the wall energy per unit volume is:

W̄walls
i,n 5

8e2G

lci
|[Fp

i ]3Ni| (81)

where G and e are given by Eqs. (33) and (34), respectively. Evidently, the wall
energy density Wwalls

i,n scales in inverse proportion to the combined thickness lc
i of

the leaves.
The total energy density of the node i in the nonlocal theory now follows as

W̄ei,n2(12lBL
i )[l−

i W−
i,n(F

−
i )1l+

i W+
i,n(F

+
i )]1lBL

i WBL
i,n (FBL

i )1W̄walls
i,n (82)

The optimal size of the leaves follows by minimization of W̄ei,n with respect to lci .
Such optimal value is the result of the competition between the boundary layer
energy, which drives lci down, i.e., promotes fine microstructure, and the dislocation
wall energy, which drives lci up, thus decreasing the number of walls per unit volume.
The result is

lc
i 5eF 8G|[Fp

i ]×Ni|li

CBL
i (WBL

i,n −Wi,n)
G1/2

(83)

where W̄i,n is given by Eq. (57). The scaling law Eq. (83) results in equidistribution
of the boundary layer and dislocation wall energies, i.e.,

W̄walls
i,n 5(W̄BL

i,n 2W̄i,n)l
BL
i (84)

Using this relation, the total energy Eq. (82) may be written in the form:

W̄ei,n5(122lBL
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which obviates the need for computing the dislocation wall energy explicitly.
The size of the entire microstructure, i.e., the value of li when i is the root of the

tree, is identified with the grain size d, and is presumed known. The size optimization
given by Eq. (83) applies to the leaves of the tree only, and the size of the interior
nodes is kept constant and equal to their value at the moment of their becoming
interior, i.e.: at the time of their branching into leaves. As the macroscopic defor-
mation is increased monotonically, the interior boundary layers are expected to
harden rapidly, leading to a monotonic. reduction of the size lc

i of the leaves in
accordance with Eq. (83). In view of the limited mobility of the dislocation walls,
this process of refinement may be expected to occur by the addition of new walls
and not by the shifting of existing ones (Hansen, 1992).



It is interesting to note that the scaling relation Eq. (83) implies

lc
i |Îbli (86)

i.e., the size of the children scales as the geometric mean of the Burgers vector
length and the size of the parent. The prominent role played by the Burgers vector
length as an intrinsic length-scale parameter of the theory is evident in Eq. (86). It
follows from Eq. (86) that the first-level lamellae have sizes of order √bd=ed. Like-
wise, the second-level lamellae have sizes of order √bd√bd=e3/2d. Applying these
relations recursively it is found that the size of level-t lamellae is of order epd, with
p=2(1222r). In particular, the size of the lamellae becomes commensurate with b

as r→`, i.e., b sets a lower bound for the fineness of the microstructure. It, also
follows from these relations that the size of the lamellae vanishes – and the local
theory is recovered — as e→0, which corresponds to the limit of infinitely large
grain sizes.

In general, the nonlocal effective energies and stresses may be expected to bound
above those obtained from the local theory. In particular, the response of the material
may be expected to become increasingly harder with decreasing grain size d, in
keeping with observation (Nix, 1998; Fleck et al., 1994). Microstructures are sup-
pressed when they lead to energies in excess of that corresponding to a uniform
deformation. This cross over from microstuctures to uniform deformations may be
expected to occur for sufficiently small grain sizes. Examples illustrative of these
general trends are shown in Section 10.

The nonlocal energy of the laminate follows by the addition of the energies Eq.
(85) of the leaves, with the result:

W̄en(F̄;hai,Ni,l
±
i ,ieI j)5O

ie L

niW̄
e
i,n(Fi) (87)

The equilibrium equations for the laminate follow in the form:

tei 5
∂W̄n

e

∂ai

50 (88)

At equilibrium, the macroscopic stress–strain response of the crystal is given by

P̄e5
∂W̄en

∂F̄
(89)

This expression may be evaluated by a recursive application of the averaging rule

Pi5(122lBL
i )[l−

i P−
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i P+
i ]12lBL

i PBL
i , ieI (90)

which generalizes Eq. (52).
The equilibration of the tree may be effected by directly solving the equilibrium

Eq. (88) for the amplitudes {ai, ieI } as in the local theory. However, in cases in
which there is a sharp separation of scales between the various levels of the laminate,
the boundary-layer volume fractions lBL

i are small and the nonlocal theory may be



treated perturbatively. Then, to leading order the nonlocal energy of the laminate is
given by Eq. (87), with the amplitudes {ai, ieI } set equal to those obtained from
the local theory. Likewise, the nonlocal macroscopic stress–strain behavior follows
from Eq. (89) with {ai, ieI } set equal to their local values. This simplifies the
implementation of the nonlocal theory, as the equilibrium equations of the laminate
remain identical to those corresponding to the local theory, and the nonlocal correc-
tions are rendered explicit. The solution proceeds by first, equilibrating the laminate,
which entails solving the local equilibrium Eq. (55) for the amplitudes {ai, ieI }.
The optimal sizes {lc

i , ieL } are then computed from Eq. (83) and the boundary-layer
volume fractions {lBL

i , ieL } follow from Eq. (80). Finally, the macroscopic stresses
follow from the recursive application of Eq. (90) from the leaves up to the root of
the tree.

10. Examples of application of the nonlocal theory

A first, illustration of the nonlocal theory is provided by the example of an fcc
crystal deformed in shear on the (001) plant along the [110] face diagonal discussed
in Section 8. For this example, the local theory predicts a simple laminate consisting
of two variants undergoing single slip on systems A6 and D6. The geometry of this
example is such that the plastic deformations in each of the variants are compatible.
i.e., [Fp]×N=0. Under these conditions, the interfaces between the lamellae are dislo-
cation-free and, consequently, carry no energy. The microstructure is thus free to
refine indefinitely and the local limit is attained. In particular, the theory predicts
the absence of a size effect. This example serves to illustrate that the extent of the size
effect may vary sharply depending on the mode of deformation and the orientation of
the crystal.

Our next example stands in contrast to the one just described in that the size effect
is particularly pronounced. We consider a crystal subjected to uniaxial tension along
the (001) axis. For simplicity, we restrict the slip activity to the systems B2, B4, C1
and C3. The crystal then develops a microstructure in the form of a simple laminate
consisting of two lamellae deforming in double slip. The pair of systems (B2, B4)
operate jointly in one lamella, whereas the pair of systems (C1, C3) operate in the
remaining lamella. The pair of systems (B2, B4) combine to define the effective
system s=[112̄], m=(111), whereas the pair (C1, C3) combine to define the effective
system s=[112], m=(111). The calculations are based on Hutchinson (Hutchinson,
1976) and Pierce et al. (Pierce et al., 1982) model of hardening, with material con-
stants representative of Al–Cu alloys (Asaro, 1983; Chang and Asaro, 1981). In
addition, for purposes of calculation of interfacial energies, we set C=0.1 and m=c44

in Eq. (32).
For this geometry it is found that the deformation of the boundary layer, as

described in Section 9, is essentially elastic. The behavior of the boundary layer is
therefore very stiff, which contributes to accentuate the size effect. The true (Cauchy)
stress vs true (logarithmic) strain curves obtained for grain sizes d=1 µm, 10 µm,
100 µ, and 1 mm are shown in Fig. 5. The response predicted by the local theory,



Fig. 5. Uniaxial stress–strain curves for an (001) fcc crystal showing the dependence on grain size d

or similar limiting feature size. The curves are obtained using Hutchinson (Hutchinson, 1976) and Pierce
et al. (Pierce et al., 1982) model of hardening, with material constants representative of Al–Cu alloys
(Asaro, 1983; Chang and Asaro, 1981).

which corresponds to the limit, d→`, is also shown for reference. As expected, the
response of the crystal stiffens sharply with decreasing grain size. It should be care-
fully noted, however, that due to the stiffness of the boundary layer, the nonlocal
stress–strain curve lies above the stress–strain curve corresponding to uniform defor-
mation below a certain critical value of d. For grain sizes smaller than this critical
size, the microstructure is suppressed altogether and the grain deforms uniformly.

The evolution of the lamella thickness with macroscopic strain is depicted in Fig.
6. As is evident from the figure, the size of the microstructure is predicted to decrease
with the macroscopic strain, in keeping with observation (Bassim and Klassen, 1986;
Hughes et al., 1994). More precisely, the lamella thickness l is found to vary in
inverse proportion to the square root, of the macroscopic true strain e, i.e., l|e21/2,
in accordance with the analysis of Ortiz and Repetto (Ortiz and Repetto, 1999). The
ability of the nonlocal theory to supply scaling relations such as just described is
particularly noteworthy. However, it should be carefully noted that the precise value
of the exponent is likely to be related to the elastic behavior of the boundary layer
under the conditions of the example. Other exponents may be expected to arise in
casts in which the boundary layers are more compliant and deform plastically. In
addition, constructions which allow for self-similar lamella branching, such as pro-
posed by Kohn and Muller (Kohn and Müller, 1992) for martensite, are likely to
lead to yet, a different set of exponents.

Finally, the computed dependence of the flow stress, sampled at 50% deformation,



Fig. 6. Evolution of lamellar thickness during uniaxial stress–strain test of a (001) fcc crystal for four
different grain sizes d.

on the grain size is shown in Fig. 7. As may be seen from the figure, the flow stress
of the crystal is predicted to rise sharply with decreasing grain size under the con-
ditions of the example. The results shown in Fig. 7 are suggestive of a Hall–Petch
(Petch, 1953) scaling relation s|d21/2 for large d. The ability of the theory to predict
quantitatively the strength and hardness enhancement which is observed to occur in
small samples (Nix, 1998; Fleck et al., 1994) is noteworthy.

11. Summary and conclusions

We have developed a micromechanical theory of dislocation structures aynd finite-
deformation single-crystal plasticity based on the direct generation of deformation
microstructures and the computation of the attendant effective behavior. Specifically,
we have aimed at describing the lamellar dislocation structures which develop at
large strains under monotonic loading. (Hughes and Hansen 1991, 1993; Hansen,
1992; Bay et al., 1992; Hughes et al. 1994, 1997; Hansen and Hughes, 1995; Rosen
et al., 1995; Murr et al., 1997; Doherty et al., 1997) Following Ortiz and Repetto
(Ortiz and Repetto, 1999), these microstructures are regarded as instances of sequen-
tial lamination and treated accordingly. The present approach is based on the explicit
construction of microstructures by recursive lamination and their subsequent equili-



Fig. 7. Grain-size dependence of flow stress at 50% deformation in a (001) fcc crystal.

bration in order to relax the incremental constitutive description of the material. The
microstructures are permitted to evolve in complexity and fineness with increasing
macroscopic deformation by a process of branching of the leaves of the tree, resulting
in the net creation of new leaves. The dislocation structures are deduced from the
plastic deformation-gradient field by recourse to Kröner’s formula for the dislocation
density tensor. The theory is rendered nonlocal by the consideration of the self-
energy of the dislocations. The intrinsic length parameters of the nonlocal theory
which determine the absolute dimensions of the microstructure are the Burgers vector
length b and some suitable geometrical feature size d, such as the grain size or film
thickness, setting an upper bound for the overall size of the microstructure.

Through selected examples, we have demonstrated the ability of the theory to
generate complex microstructures, determine the softening effect which those micro-
structures have on the effective behavior of the crystal, and account for the depen-
dence of the effective behavior on the size of the sample, or size effect. Our first two
examples are concerned with crystals deformed in simple shear and are motivated by
the work of Hughes et al. (Hughes et al., 1994) on the near-surface microstructures
which develop under large sliding loads. The softening effect of microstructure
development on the effective macroscopic behavior of the crystal is evident in these
examples. The calculations produce a wealth of additional information regarding,
e.g., the misorientations which develop between the various lamellae which form
the microstructure. By assigning random orientations to the crystals, the theory may
be used to predict the misorientation distribution functions reported by Hughes and
co-workers (Hughes et al. 1997, 1998). In a similar vein, consideration of subgrain
structures should have the effect of diffusing and generally adding structure to the



textures which are computed from conventional single-crystal models, thereby bring-
ing the texture predictions into closer agreement with experiment, (Hughes and
Hansen, 1993).

The nonlocal theory predicts the microstructure to refine with increasing macro-
scopic deformation and the effective behavior of the crystal to stiffen with decreasing
sample size, in keeping with experiments (Bassim and Klassen, 1986; Hughes et al.,
1994; Nix, 1998; Nix and Gao, 1998). It should be carefully noted that, while both
the present theory and strain-gradient theories of plasticity are nonlocal, they differ
in several notable respects. Thus, in contrast to strain-gradient theories of plasticity,
the present theory predicts a size effect for nominally uniform macroscopic defor-
mations. Also in contrast to strain-gradient theories, the dimensions of the micro-
structure depend sensitively on the loading geometry, the extent of macroscopic
deformation and the size of the sample.
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