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This paper introduces a new algorithm to define a stable Lagrange multiplier space to impose stiff interface 
conditions within the context of the extended finite element method. In contrast to earlier approaches, we 
do not work with an interior penalty formulation as, e.g. for Nitsche techniques, but impose the constraints 
weakly in terms of Lagrange multipliers. Roughly speaking a stable and optimal discrete Lagrange 
multiplier space has to satisfy two criteria: a best approximation property and a uniform inf–sup condition. 
Owing to the fact that the interface does not match the edges of the mesh, the choice of a good discrete 
Lagrange multiplier space is not trivial. Here we propose a new algorithm for the local construction of the 
Lagrange multiplier space and show that a uniform inf–sup condition is satisfied. A counterexample is also 
presented, i.e. the inf–sup constant depends on the mesh-size and degenerates as it tends to zero. Numerical 
results in two-dimensional confirm the theoretical ones. 
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1. INTRODUCTION

The extended finite element method (X-FEM) is an extension of the finite element method to
handle physical domains whose boundaries are not necessarily exactly meshed or to deal with
physical surfaces crossing elements. The physical surfaces are handled inside the elements using
enrichment functions that model the appropriate discontinuity. This enrichment is introduced inside
the mesh using the so-called partition of unity technique [1, 2]. The X-FEM was first introduced
to model two-dimensional cracks in [3, 4]. It was then extended to 3D in [5, 6]. The modeling of
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tangential discontinuities can be found in [7]. The modeling of voids was considered in [8] and
of material interfaces in [9, 10].

Imposing Neumann or traction-free conditions on crack faces or along the boundary of a hole

does not require any special effort with the X-FEM. Just like with classical displacement-based finite

elements, no additional term on the traction-free surface enters, and a straightforward integration

takes place if Neumann boundary conditions are present. The situation is drastically different in

the case of stiff conditions, e.g. as by imposing Dirichlet boundary conditions or contact on the

faces of a crack. The imposition of stiff constraints may also be needed to glue together two

different materials or in the case of phase transformation and contact problems. The major issue is

how to ensure that stiff constraints are correctly imposed and also to ensure that the corresponding

fluxes are accurate and non-oscillating. In many applications, the fluxes are quite important, e.g.

the front in phase transformation problems or the growth of a crack in contact problems is governed

by fluxes.

In order to impose stiff boundary/interface conditions along an interface that is not conforming

with the mesh, two major approaches can be found in the literature: variants of the Nitsche approach

and the use of Lagrange multipliers. The latter is the focus of this paper, but we first recall the

main works related to the Nitsche method.

In the seventies, Nitsche [11] considered Dirichlet boundary conditions over a non-conforming

boundary and introduced a one-field variational formulation taking into account the inner equilib-

rium as well as the Dirichlet boundary condition. The formulation involves a parameter that must

be chosen with care in order to get a stable formulation. Note that the choice of this parameter was

discussed in the mesh-free framework in [12]. The Nitsche variational formulation was extended

to model material interfaces in [13] so that the different material phases are ‘glued’ together with a

Nitsche-type formulation. Although attractive, Nitsche’s approach has the drawback to be difficult

to extend to other stiff boundary conditions as contact, though this kind of formulation has been

used recently in contact problems with a kind of penalty stabilization in [14]. In addition, the use

of a non-linear bulk material law is not straightforward. The parameter in Nitsche’s method has

to be determined and that parameter depends also on the physical problem. Efforts were done

recently in order to determine automatically this parameter using bubble stabilization [15, 16].
In [17], Stenberg shows that stabilization in mixed finite element methods is closely related to

Nitsche’s approach.

In this paper, we consider instead a Lagrange multiplier approach. More precisely, we introduce

a Lagrange multiplier space, and the fluxes across the interface or on the boundary are used as

additional unknowns. The original variable is referred to as primal and the new one as dual variable.

In terms of the pair of primal and dual variables all types of constraints can be easily handled,

e.g. stiff Robin-type conditions. Lagrange multipliers were considered for the first time within the

concept of X-FEM in [18]. In [19], the authors illustrate through numerical experiments that a

naive choice for the Lagrange multiplier space, i.e. a piecewise linear ansatz space on the interface

with a degree of freedom at each node obtained by cutting the interface with the edges of the two-

dimensional mesh of the primal variable, yields oscillatory multipliers on the boundary. As pointed

out in [15], these oscillations were also noticed by Simone [20] in the context of stiff cohesive law

imposed on the faces of a crack. This oscillatory effect is referred to as boundary locking. From

the mathematical point of view, these oscillations result from a non-uniform but mesh-dependent

inf–sup condition. Roughly speaking this means that the Lagrange multiplier space is locally too

rich, and as a consequence the constant in the inf–sup condition tends to zero if the mesh-size

tends to zero.
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In order to improve the approach, a first effort was done in [21] where a reduced Lagrange

multiplier space has been proposed. Although the algorithm to define the Lagrange multiplier

space passes a numerical inf–sup test, it is quite complex. Numerically, the Chapelle–Bathe test is

used quite often [22, 23] to verify the inf–sup condition. This test reduces to the computation of

eigenvalues for a sequence of meshes with increasing density. This test was already used in [21].
A second algorithm was then proposed in [24], and it is currently extended for large sliding [25].
The strategy used to build the Lagrange multiplier space in the second algorithm is quite easy to

grasp. We consider the nodes on each side of the interface. These nodes are tied together across

the interface by cut edges. As a subset of these cut edges, we define the set of vital edges as

the minimum set of edges able to connect the nodes on each side of the interface. These vital

edges and only these will hold a Lagrange multiplier degree of freedom. This second algorithm

showed slight improvement in terms of accuracy compared with the first one. The major issue

in implementing the second algorithm is that finding the vital edges requires to solve a global

problem. Although both approaches perform numerically rather well and no oscillations can be

observed, no theoretical analysis of the stability exists. An alternative Lagrange multiplier-based

strategy has also been studied recently in [26]. Finally, a stabilization of the Lagrange multipliers

based on the Barbosa and Hugues approach has been introduced in [27].
In the present paper, we introduce a new algorithm allowing a local construction of the Lagrange

multiplier space while improving the accuracy of the computed fields. The originality of this

approach with regard to [21] lies in the use of the trace of primary shape functions defined on

the domain, and a simplified procedure to define the mesh on the interface. The proper design of

the Lagrange multiplier space is guided by the inf–sup condition [28–30]. Moreover, we show

that the newly constructed Lagrange multiplier space satisfies, in contrast to the naive approach,

a uniform inf–sup condition.

2. MODEL PROBLEM

We are concerned in this paper by interfaces over which the mechanical stiffness is high. Dirichlet

conditions are the limit for infinite stiffness, whereas Neumann-type conditions may be seen as

the limit for a zero stiffness. In the case of a non-linear interface law such as, e.g. contact or a

cohesive law, a sequence of linear systems has to be solved to find the solution of the non-linear

problem. Each linear system may involve high stiffness over the interface.

We consider a polygonal domain�⊂R
2, which is possibly decomposed by a non-empty interface

� into two subdomains �i , i=1,2, of regular shape. In that case, we assume �̄=��1∩��2, and

we decompose �� into two open parts �D and �N such that �D∩�N=∅. Otherwise, we split

�� into three disjoint open parts �D, �N and � �=∅ and set formally �1 :=�, �2 :=∅. On �D

homogeneous Dirichlet boundary conditions are given, and on �N we impose inhomogeneous

Neumann boundary conditions tN. Stiff interface/boundary conditions in terms of a given uD and

a stiffness parameter k>0 are considered on �. Associated with the Laplace operator on � and

a given volume force f , the weak one-field variational problem is defined by: Find u∈U :={v∈
H1(�1)×H1(�2),v|�D =0} such that for all v∈U

∫

�

∇u ·∇v d�+
∫

�

k[u][v]d�=
∫

�

f v d�+
∫

�N

tNv d�N+
∫

�

kuD[v]d� (1)
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The interface/boundary integral on � is the variational form of the stiff spring-type condition

∇nu=−k([u]−uD)

where ∇nu is the flux on � outward to �1 and [u] :=u|�1 −u|�2 and u|�2 :=0 if �2 is the empty

set. We note that under the assumption that �D is a non-empty open set and k>0, the variational

problem defined by (1) has a unique solution.

However for large values of k, the discretized variational principle has very poor performance

and locking effects can be observed. To overcome this difficulty, a two-field variational formulation

can be considered. Introducing � :=−∇nu as additional unknown variable, we obtain the following

saddle-point problem: Find (u,�)∈U×L such that

∫

�

∇u ·∇v d�+〈�, [v]〉� =
∫

�

f v d�+
∫

�N

tNv d�N ∀v∈U (2)

〈�, [u]〉�− 1

k
(�,�)−1/2;� = 〈�,uD〉� ∀�∈L (3)

whereL :=(H1/2(�))′ is the dual space of the trace space ofU restricted to �. Here we assume for

simplicity that �̄∩�̄D=∅. Otherwise, we have to work with the dual space of a suitable subspace

of H1/2(�). We remark that in the general situation a careful distinction between H1/2(�) and

H
1/2
00 (�) is required. By 〈·, ·〉� we denote the duality pairing between L and the trace of U, and

by (·, ·)−1/2;� the natural scalar product on L, which can be identified with the L2-scalar-product

in the discrete setting.

Note that (3) stays well defined in the limit of k becoming infinite (Dirichlet conditions or perfect

bonding along an interface). Existence and uniqueness of a weak solution (u,�) is guaranteed

within the abstract framework of saddle-point problems, see, e.g. [30].
The discretization of the saddle-point problem (2)–(3) involves a pair of finite element

spaces U
h ⊂U and L

h ⊂L leading to the discrete formulation: Find (uh,�h)∈U
h×L

h

such that

∫

�

∇uh ·∇vh d�+〈�h, [vh]〉� =
∫

�

f vh d�+
∫

�N

tNvh d�N ∀vh ∈U
h (4)

〈�h, [uh]〉�− 1

k
(�h,�h)−1/2;� = 〈�h,uD〉� ∀�h ∈L

h (5)

Here, we restrict ourselves to low-order conforming finite elements forUh associated with a family

of shape regular triangulations Th . We note that in general Th is not adapted to � and thus �1

cannot be written as union of elements in Th . More precisely, as standard within the X-FEM

approach U
h :=U

h
1×U

h
2 , where U

h
i is the conforming finite element space with respect to the

mesh Th on � restricted to �i . In the numerical implementation it is sufficient to double the

degrees of freedom at vertices which belong to an element which is cut by �, see, e.g. [4].
The choice of the finite element spaces Uh and L

h has to satisfy a uniform inf–sup condition

[23, 30] with respect to suitable norms. In the discrete setting quite often it is of interest to work

with a weighted pair of L2-norms instead of the H1/2(�) and H−1/2(�) duality pair. To do so,
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we consider the mesh-dependent L2-norms

‖�h‖2−1/2;�h
:=

∑

e∈Eh

he‖�h‖20;e

‖vh‖21/2;�h
:=

∑

e∈Eh

1

he
‖vh‖20;e

(6)

where Eh stands for the set of elements of the one-dimensional mesh on � which defines the

Lagrange multiplier space and he denotes the length of e. In our case the uniform inf–sup condition

requires that there exists a positive constant � independent of the mesh-size h such that

inf
�h∈Lh

sup
vh∈Uh

∫

�
�h[vh]d�

‖�h‖−1/2;�h
‖vh‖1;�

��>0 (7)

where ‖·‖1;� stands for the broken H1-norm, i.e. ‖·‖2
1;� :=‖·‖2

1;�1
+‖·‖2

1;�2
.

For many practical situations, it is quite difficult to show the existence of such a mesh-

independent inf–sup constant �. In that case, the numerical inf–sup test [22] may be used. As

mentioned before, this test reduces to the computation of eigenvalues for a sequence of meshes of

increasing density.

Let Uh and �h be the vectors of the potential and the Lagrange multiplier, respectively. Then,

the algebraic form of the variational problem (4)–(5) is given by

⎛

⎝

Ah BT
h

Bh −1

k
Mh

⎞

⎠

(

Uh

Lh

)

=
(

Fh

Dh

)

(8)

where Ah is the stiffness matrix associated with the Laplace operator and Mh corresponds to a

symmetric mass matrix on �. The stability and well-posedness of the system depends highly on the

properties of the coupling matrix Bh . Let us assume at the moment for simplicity that �D∩��i ,

i=1,2, is non-empty then the stiffness matrix Ah is symmetric and positive definite and V T
h AhVh

is equivalent to ‖vh‖2
1;�, where Vh is the algebraic representation of vh ∈U

h . Furthermore, if the

mesh on � is uniform, i.e. there exist constants such that ĉh�he�Ĉh for all e∈Eh , then h�
T
hMh�h

is equivalent to ‖�h‖2−1/2;�h
, where �h is the algebraic representation of �h ∈L

h . Using these

norm equivalences, we can rewrite (7) in an equivalent algebraic form as

inf
�h∈R

mh
sup

Vh∈R
nh

(�T
h BhVh)

2

h�
T
hMh�hV

T
h AhVh

��̂2>0 (9)

where mh and nh stand for the dimensions of Lh and U
h , respectively, and �̂ and � are equivalent.

More precisely, a mesh-size-independent � in (7) exists if and only if a mesh-size-independent �̂

in (9) exists.

From (9), the numerical inf–sup test can be motivated. In practice, the inf–sup test reduces to

the solution of a eigenvalue problem using a sequence of three to four meshes Th , h∈{hi , i=
1, . . . ,N }, with decreasing mesh-size, see [22]. Here for convenience of the reader, we will recall

two variants.
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The first variant is given by the following eigenvalue problem:

1

h
(BT

h M
−1
h Bh)Vh =�h AhVh (10)

We denote the first non-zero eigenvalue by �h;min, then the value of � is approximated by

minhi ,i=1,...,N

√

�h;min.

The second variant is given by the following eigenvalue problem:

1

h
(Bh A

−1
h BT

h )�h =�hMh�h (11)

The first non-zero eigenvalue of (10) is the same as the first non-zero eigenvalue of (11).

We recall that a necessary condition for the existence of an inf–sup constant is that mh�nh and

that Bh has full rank. Then for each �h ∈R
mh , we can find a Vh ∈R

nh such that �h =M−1
h BhVh and

(�T
h BhVh)

2

h�
T
hMh�hV

T
h AhVh

=
V T
h BT

h M
−1
h BhVh

hV T
h AhVh

These considerations motivate the first variant of the numerical inf–sup test. The second variant is

obtained by setting Vh = A−1
h BT

h �h and thus

(�T
h BhVh)

2

h�
T
hMh�hV

T
h AhVh

=
�
T
h Bh A

−1
h BT

h �h

h�
T
hMh�h

Remark 2.1

If the inf–sup condition (7) is uniformly satisfied, i.e. with a constant independently of the mesh-

size, and the discrete Lagrange multiplier space satisfies the best approximation property

inf
�h∈Lh

‖�−�h‖−1/2;�h
=O(h)

for �∈H1/2(�), then the two-field approach (4)–(5) yields stable numerical results, and optimality

of the discretization error follows from the saddle-point theory [30]. We note that for the best

approximation property of Lh it is sufficient that the basis function of Lh have a local support

and that constants can be reproduced by the Lagrange multiplier space.

3. COUNTEREXAMPLE

The following example shows that a naive approach to define the Lagrange multiplier space L
h

fails. For simplicity, we assume that the unit square � :=(0,1)2 is decomposed by the interface

� :={y=0.5} into two rectangles. The uniform mesh on � is given by 2(n−1)2, n :=2k triangles,

where h :=1/(n−1), see Figure 1.

We note that typically finite elements spaces are given by a mesh and a basis type. Here, we use

standard hat functions, i.e. piecewise linear and continuous functions, as basis. In a first setting, the

nodes of the one-dimensional mesh are given by the intersection of the interface � with the edges

of the triangulation on �, see Figure 1. Thus, we obtain a uniform mesh with 2n−1 nodes and
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Figure 1. Interface and triangulation, n=8.

edges of length h/2. To show that this naive approach does not yield a uniform inf–sup condition,

we consider two special cases.

In our first example, the coefficients of �h ∈L
h with respect to the nodal basis are given by

al =1, l=1, . . . ,n, and bl =−1, l=1, . . . ,n−1. Then, it is easy to see that the L2-norm of �h can

be bounded from above and below by positive constants independent of h. Moreover, the weighted

L2-norm of �h is uniformly equivalent to
√
h, i.e.

ĉ
√
h�‖�h‖−1/2;�h

�Ĉ
√
h (12)

Because of the position of the interface and the locality of the support only the coefficients

�l :=�1l −�2l and �l :=�1l −�2l , 1�l�n, of vh ∈U
h enter into the computation of

∫

�
[vh]�h d�. Here,

�il , �il , 1�i�2, are the coefficients in the nodal basis of vh ∈U
h restricted to �i . The values of

vh at the nodes marked by a filled bullet in Figure 1 are given by 0.5(�l +�l) and at the nodes

marked by an empty bullet by 0.5(�l +�l+1). Then, it is easy to see that

∫

�

�h[vh]d� =
n−1
∑

l=1

h

24
((�l +�l −(�l +�l+1))+(�l+1+�l+1−(�l +�l+1)))

=
n−1
∑

l=1

h

24
(�l −�l+1+�l+1−�l)=

h

24
(�1−�1+�n−�n)

�Ch(|�1−�1|+|�n−�n|)

�Ch(|�11−�11|+|�1n−�1n|+|�21−�21|+|�2n−�2n|)

�Ch(‖vh‖1;�1
+‖vh‖1;�2

)�Ch‖vh‖1;�

Here, we have used a standard norm equivalence for piecewise linear elements, i.e. for all w∈ P1(T )

we have that
∑3

i, j=1(w(pi )−w(p j ))
2 is equivalent to the squared H1(T )-seminorm |w|21;T , where

pi , 1�i�3, are the three nodes of the triangle T . The previous inequality shows that

sup
vh∈Uh

∫

�
�h[vh]d�
‖vh‖1;�

�Ch�C
√
h‖�h‖−1/2;�h
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Figure 2. Structure of the first counterexample (left) and the second one (right).

and as a result there is no uniform inf–sup estimate. This simple counterexample shows that a

naive choice for the degrees of freedom for Lh does not yield optimal a priori estimates. From

a non-uniform inf–sup estimate, poor numerical results can be expected and oscillations in the

Lagrange multiplier can be observed. This effect is similar to the well-known checkerboard modes

for the Stokes system.

The second example shows that the best constant we can find in the inf–sup estimate is not of

O(h1/2) as it might be expected from the first example. We specify the coefficients of �h ∈L
h

with respect to the nodal basis by al =(l−1)(n−l), l=1, . . . ,n, and bl =−(l−0.5)(n−l−0.5),

l=1, . . . ,n−1, see Figure 2. Then, it is trivial to see that a1=an =0 and thus
∑n−1

l=1 al�l =
∑n−1

l=1 al+1�l+1 and moreover, we find for l=1, . . . ,n−1

2bl +al +al+1=− 1
2
, al+1−al =n−2l (13)

The ‖·‖2−1/2;�h
-norm of �h is equivalent to

‖�h‖2−1/2;�h
≡h2

n−1
∑

l=1

(a2l +b2l )≡h2
n−1
∑

l=1

l4≡h2O(n5)≡O(n3)

Figure 2 shows the structure of the two counterexamples. In both cases the coefficients are

oscillating, the absolute values of the coefficients are constant in the first example, and in the

second they follow a quadratic function.

Decomposing � into (n−1)-subintervals of length h and using the fact that the values of [vh],
vh ∈U

h at the intersection nodes are given by 1
2
(�l +�l),

1
2
(�l+1+�l),

1
2
(�l+1+�l+1), we obtain

for the coupling between vh and �h

∫

�

�h[vh]d� = h

24

n−1
∑

l=1

((�l +�l)(2al +bl)+(�l +�l+1)(2bl +al +2bl +al+1)

+(�l+1+�l+1)(2al+1+bl))

= h

24

n−1
∑

l=1

(

1

2
(2bl +al +al+1)(�l +5�l +5�l+1+�l+1)

+
(

1

2
(al −al+1)+al

)

(�l +�l)−(al +al+1)(�l+1+�l)
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+
(

−1

2
(al −al+1)+al+1

)

(�l+1+�l+1)

)

= h

24

n−1
∑

l=1

(

−1

4
(�l +5�l +5�l+1+�l+1)

+1

2
(n−2l)((�l+1−�l)+(�l+1−�l)+(�l+1−�l))

)

Applying Cauchy–Schwarz and using
∑n−1

l=1 1=O(n),
∑n−1

l=1 (n−2l)2=O(n3), we find in terms

of (13)

(∫

�

�h[vh]d�
)2

�C
1

n

n
∑

l=1

(�2l +�2l )+Cn
n−1
∑

l=1

(�l+1−�l)
2

+(�l+1−�l)
2+(�l+1−�l)

2

�Cn(‖vh‖20;�+|vh |21;�)�Ch2‖vh‖21;�‖�h‖2−1/2;�h

These two examples illustrate why a naive choice of the Lagrange multiplier space fails, and that

there exists no mesh-independent constant such that (7) holds. We refer to [21] in which numerical

tests are based on such a situation. In the following lemma, we show how the inf–sup constant in

(7) depends on the mesh-size.

Lemma 3.1

There exists a constant independent of h such that for all �h ∈L
h

sup
vh∈Uh

∫

�
�h[vh]d�
‖vh‖1;�

�ch‖�h‖−1/2;�h

Proof

It is easy to see that for �h ∈L
h , the weighted L2-norm ‖�h‖2√

h;� is equivalent to h2
∑n

i=1(a
2
i +b2i ),

where ai and bi are the coefficients of �
h and bn :=0. Now, we set the coefficient �11 of v

h
�h

∈U
h to be

zero and require for �11 and �1i ,�
1
i , i=2, . . . ,n, that �1i +�1i =2ai , 1�i�n, and that �1i+1+�1i =2bi ,

1�i�n−1. All other coefficients of vh
�h

are set to be zero and thus �i =�1i , �i =�1i . We note that

these conditions define vh
�h

∈U
h uniquely. Observing that for each element in U

h , the trace of its

jump on � is in L
h , it is easy to see that [vh

�h
]|� =�h and thus h

∫

�
�h[vh]�h d�=‖�h‖2−1/2,�h

.

Then an inverse estimate gives that ‖vh
�h

‖2
1;� =‖vh

�h
‖2
1;�1

is equivalent to
∑n

i=1(�
2
i +�2i ) and thus

sup
vh∈Uh

∫

�
�h[vh]d�
‖vh‖1;�

�ch

∑n
i=1(a

2
i +b2i )

(
∑n

i=1(�
2
i +�2i ))

0.5
�c

(
∑n

i=1(a
2
i +b2i ))

0.5

(
∑n

i=1(�
2
i +�2i ))

0.5
‖�h‖√

h;�
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Observing that the two sets of coefficients are related by the lower tridiagonal matrix C of size

(2n−1)×(2n−1)

Cw :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

1 1

1 1

1 1

1 1

. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1

�2

�2

...

�n

�n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1

b1

a2

...

bn−1

an

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

we find a bound for the inf–sup constant in terms of the smallest singular value �min of C , i.e.

sup
vh∈Uh

∫

�
�h[vh]d�
‖vh‖1;�

�c inf
w∈R

2n−1

‖Cw‖
‖w‖ ‖�h‖√

h;� = 1

‖C−1‖‖�h‖√
h;�

where ‖·‖ denotes the Euclidean vector norm. A simple straightforward computation yields

�min=O(h). �

Remark 3.2

The second counterexample also shows that the estimate in Lemma 3.1 is sharp and cannot be

improved.

Remark 3.3

As it will be shown in the next sections, taking every second intersection node as degree of freedom

for the discrete Lagrange multiplier space will result in a uniform inf–sup condition.

4. ALGORITHM TO DEFINE THE MESH ON THE INTERFACE

The interface � is cutting through edges of the two-dimensional mesh Th defining a graph.

The vertices of this graph are vertices of the mesh Th , which are located exactly on � or are

intersection nodes of an open edge of the mesh Th and �. Once all the vertices of the graph have

been marked, we connect the vertices based on the following rule: two vertices are connected in

the graph if both of them result from the intersection of an open edge with � and the associated

two edges share an endpoint. We note that vertices being vertices of the original mesh are always

isolated vertices. In Figure 3, � is indicated by a dashed line. On the left, the mesh is aligned with

the interface and the graph is a set of isolated vertices. On the right, the interface crosses elements,

but the vertices are not connected because they do not lie on edges sharing common nodes. The

situation is different in Figure 4, here vertices of the graph are connected.

The naive approach for building the Lagrange multiplier space is to set one independent multiplier

on each vertex of the graph. We know that this does not pass the numerical inf–sup test [19], and
as we have shown in the previous section counterexamples can be found.
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Figure 3. A mesh conforming to � (left) and not conforming (right). Below each case is the vertex graph
as well as the selected vital vertices (squared).

Figure 4. Two different situations of a non-adapted mesh. Below each case is the vertex graph
as well as possible vital vertices.

We thus choose to select a subset of the vertices in the graph to define independent Lagrange

multipliers. We call them vital vertices. They are selected based on the following rules:

(i) An isolated vertex is always vital.

(ii) A vital vertex is not allowed to be connected to any other vital vertex.

(iii) A non-vital vertex must be connected to at least one vital vertex.

The squared vertices in Figures 3 and 4 are vital. Note that for a given graph, the choice of vital

vertices is not unique, see Figure 4.

The algorithm for the selection of the vital vertices that is used in the implementation closely

follows the rules defined above. It can handle 3D problems with surface boundary conditions as

well.

Algorithm in two dimensions and three dimensions used to define the vital vertices

0. Define an empty set of vital vertices called vi tal and an empty set of regular (non-vital)

vertices called non vi tal.

1. The vertices on the interface that are also vertices of the mesh are introduced in the vital set.

The rest of the vertices on the interface, denoted by V , emanate from cut edges. For each

such vertex vi ∈V , we denote by vi [k],k=0,1, . . . , the end-points of the cutting edge.

2. For every vertex vi ∈V on the interface, count the number of intersections of the interface

by the edges incident to vi [k]. This defines the set nint[vi ].
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3. Sort the set nint[vi ] (low number of intersections first).

4. Loop: Pick up the first item of nint[vi ] and the corresponding vi .

5. Check that for the every node vi [k], none of its incident edges are intersecting the interface

at an already vital vertex. If this condition is fulfilled, mark vi as vi tal and also mark every

vertex that is the intersection of the interface from an edge incident to vi [k] as non vi tal. If

the condition does not hold, simply mark vi as non vi tal.

6. Remove vi from nint[vi ] .
7. If nint[vi ] is not empty, go to 4.

8. The set called vi tal contains the vital vertices. The set called non vi tal contains the other

vertices.

The algorithm above is defined in such a way that isolated vertices (vertices on the interface

that are also part of the mesh) are handled first and thus always declared as vital vertices. For

other vertices of the interface, the classification should ensure a deterministic list of vital vertices.

However, there are many (to a combinatorial extent) acceptable sets of vital vertices. Now, the vital

vertices define the one-dimensional mesh on � which is used for the construction of the Lagrange

multiplier space. More precisely, we associate one degree of freedom with each vital vertex, and

the support of the associated nodal basis function is exactly the two adjacent one-dimensional

elements. The shape function corresponding to this degree of freedom is the trace of a sum of

related shape functions from the domain. For an isolated vital vertice, the shape function is the

trace of the shape function of the node coming from the domain’s mesh. We shall define exactly the

shape functions in the sequel. Each element e of the one-dimensional mesh Eh has vital vertices

as endpoints and is given as the union of straight segments joining two vertices of the graph. The

length of the element is then given as the sum of the length of the straight subsegments. To find

all elements e∈Eh , we start from one vital vertex and follow the straight segments until the next

vital vertex is reached, see Figure 5.

Remark 4.1

Roughly speaking criterion (iii) makes the set of vital vertices as large as possible to get a good

best approximation property for the discrete Lagrange multiplier space, and criterion (ii) makes

the dimension of Lh as small as necessary to satisfy a uniform inf–sup condition. Criterion (i)

guarantees that in the case of an aligned interface, the one-dimensional mesh is inherited from the

two-dimensional mesh.

The set of vital vertices on � is denoted by Vh , and the dimension of the discrete Lagrange

multiplier space Lh will be equal to #Vh . We point out that Vh∩Ph can be the empty set, where

Ph is the set of all vertices of the two-dimensional mesh not on �̄D.

e

Γ

e

Γ

Figure 5. Element decomposed into three subsegments of the one-dimensional mesh for a straight
(left) and curved (right) interface.
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Γ
Γ

Figure 6. A vital vertex p∈Ph (left) and a small perturbation of � (right).

Figure 7. Decomposition of a scaled element in Eh into two subsegments by the underlying mesh: regular
situation (left, middle) and an irregular case (right).

Figure 6 illustrates the influence of a small perturbation. On the left, the intersection of � with

the mesh Th has locally one cut which is a vertex in Ph and by criterion (i) it is a vital vertex.

The situation is totally different if a small perturbation on � is imposed. On the right, we observe

now four intersection nodes. Owing to criterion (iii) at least one of them has to be vital and due

to criterion (ii) at most one of them can be vital. Thus, exactly one of the four intersection nodes

will be vital, and the dimension of Lh does not change under a small perturbation.

5. DEFINITION OF A STABLE LAGRANGE MULTIPLIER SPACE

Starting with the one-dimensional mesh constructed in the previous section, we introduce in this

section a new Lagrange multiplier space. One natural possibility is to use standard hat functions

associated with the one-dimensional mesh on � as in [21]. More precisely, for each vital vertex

the piecewise linear and continuous hat function is taken as the basis function. As a result, the

Lagrange multiplier space does not see the underlying two-dimensional mesh. Thus, we do not

follow this line but define the Lagrange multiplier basis functions as a trace of standard finite

elements. This choice is motivated by the observation that in the inf–sup condition an element of

L
h meets the trace of an element in U

h . Moreover, this approach easily carries over to curved

interfaces and to three dimensions, whereas a definition of the Lagrange multipliers based on a

surface mesh induces complications.

Before we give the definition of our new Lagrange multiplier space, we consider locally the

difference between the two construction principles. Figure 7 shows the influence of the underlying

two-dimensional mesh. The two endpoints of an element of the one-dimensional mesh Eh on �

are marked with filled bullets and are by construction vital vertices. We recall that in the case that

� is not a straight line, the elements of Eh do not have to be straight segments.
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Figure 8. Local trace of a finite element and standard hat function.

By �1 and �2, we denote the two nodal local hat functions on a scaled element of Eh of length

one, and we set �i , i=1,2, as the trace of 	1
i +	2

i . The two sets of functions {�1,�2} and {�1,�2}
are shown in Figure 8. In contrast to �i , �i is only piecewise linear on the one-dimensional element.

A straightforward computation gives for N :=(ni j )1�i, j�2, M :=(mi j )1�i, j�2, with ni j =
∫ 1
0 �i� j ds, mi j =

∫ 1
0 �i� j ds

N =
(

bn an−bn

0.5−bn 0.5+bn−an

)

, M=
(

bm am−bm

am−bm 1−2am+bm

)

where an :=
∫ 1
0 �1 ds, bn :=

∫ 1
0 �1�1 ds, am =an and bm :=

∫ 1
0 �1�1 ds. We note that both pairs {�1,�2}

and {�1,�2} form a positive partition of unity, i.e. �1+�2=1=�1+�2 and �i ,�i�0. It is obvious

that the mass matrix M is symmetric and positive definite. Moreover, there exists a constant

depending only on the shape regularity of the two-dimensional mesh such that x⊤Mx�c‖x‖2.
For the non-symmetric matrix N , the situation is different. Although the eigenvalues of N are

positive, we find that for some cases of (�,�)∈(0,1)2 the matrix is not positive, i.e. there exits a

x such that x⊤Nx<0. These cases are called irregular, the other ones regular. We consider now

N in more detail, and find for x⊤ =(x1, x2)

x⊤Nx=bnx
2
1 +( 1

2
+an−2bn)x1x2+( 1

2
+bn−an)x

2
2

It is easy to see that 0.5>bn>0 and bn<an<bn+0.5. To verify if N is positive, we have to consider

the sign of the minimum of a quadratic expression given by

bn−
( 1
2
−2bn+an)

2

2+4bn−4an

Equivalently, we have to ask for the sign of 4bn−(an+0.5)2. Using an =0.5(1+�−�) and bn =
(2+(�−�)(1+�))/6, we find that N is positive if

(1+ 1
2
(�−�))2< 2

3
(2+(�−�)(1+�))

A straightforward computation shows that for

�≷�+ 2
3
((2�−1)±

√

(2�−1)2+3)
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Figure 9. Subdomain where N is positive.

Figure 10. Set of vertices in P
�

h .

the matrix N is not positive, see also Figure 9. If (�,�) is placed in the shadowed region, we have

a irregular case in which we cannot expect to obtain locally per element a inf–sup condition, and

thus it is extremely difficult to analyze the general case of unstructured meshes.

This simple local computation motivates our choice not to take as Lagrange multiplier a linear

function on the one-dimensional elements of the interface mesh but a trace. In that case, the proof

of a uniform inf–sup can be realized locally.

For each vital vertex p∈Vh , we define the associated basis function �p ∈L
h as a linear

combination of some nodal hat functions	q , q∈Ph restricted to�. The definition of the coefficients

is based on some preliminary observations and remarks. We note that the number of vertices in Ph

such that 	q |� is not equal to zero is of order h−1. Introducing the subset P�

h , see Figure 10, by

P
�

h :={p∈Ph;	p|� not identical zero}

it is trivial to see that
∑

q∈Ph
�pq	q |� =

∑

q∈P�

h
�pq	q |�, and thus we set

�p :=
∑

q∈P�

h

�pq	q |�, p∈Vh (14)

In a next step, we define for each vital vertex q∈Vh a Pq ⊂P
�

h . We recall that each vital vertex

q is in Ph or is the intersection point of an open edge eq of the mesh Th . In the first case, we set
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Figure 11. The set of vertices in P
V

h (left) and in Q
�

h (right) are marked with empty squares, the vertices
in Vh are marked with filled circles.

Figure 12. Sets of vertices from the left to the right P�

h , P
V

h , Q�

h and Q p .

Pq :={q} and in the second case, we define Pq :={p1q , p2q}, where p1q , p
2
q are the two endpoints

of eq . In addition, we set

Q
�

h :=P
�

h

∖

⋃

q∈Vh

Pq =:P�

h \PV

h

and observe that Q�

h might be the empty set. Owing to Criterion (iii), each q∈Q
�

h is connected

by at least one closed edge ēq cutting the interface with an element in P
V

h , see also Figure 11.

The number of such edges eq , i.e. one endpoint is q , the other endpoint qo is in P
V

h and ēq ∩� is

not empty, is denoted by nq . Because all Pp, p∈Vh , are pairwise disjoint, there exists a unique

p∈Vh such that qo∈Pp, and we put q into Qp, i.e.
⋃

p∈Vh
Qp =Q

�

h .

In the example of the right picture in Figure 12, nq =1 or nq =2. We note that Qp can be empty

and that Qp∩Qq does not have to be empty for p,q∈Vh , see the right picture in Figure 12.

In terms of these subsets, we define now the values of the coefficients �pq , p∈Vh , q∈P
�

h

�pq :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, q∈Pp

1

nq
, q∈Qp

0 otherwise

Then �p has a local support and can be written as

�p =
∑

q∈Pp

	q +
∑

q∈Qp

1

nq
	q (15)
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Figure 13. Nodes in Pp are marked with a square, nodes in Qp with a diamond.

Figure 13 shows which nodes q∈P
�

h contribute to the definition of �p, p∈Vh .

Lemma 5.1

The set {�p}p∈Vh
forms a positive partition of unity with local supports on �, i.e.

∑

p∈Vh

�p =1

Proof

Observing that the number of p∈Vh such that q∈Qp is exactly nq for q∈Q
�

h , a straightforward

computation shows that

∑

p∈Vh

�p =
∑

p∈Vh

(

∑

q∈Pp

	q +
∑

q∈Qp

1

nq
	q

)

=
∑

q∈PV

h

	q +
∑

q∈Q�

h

1

nq
	q

∑

p∈Vh ,q∈Qp

1

=
∑

q∈PV

h

	q +
∑

q∈Q�

h

	q =
∑

q∈P�

h

	q =1 �

Remark 5.2

Lemma 5.1 yields that the Lagrange multiplier space L
h reproduces constants and thus the best

approximation property gives an O(h) term in the a priori analysis.

Let q∈Q
�

h then there exists at least one p∈Vh such that q∈Qp, and thus Q
q :={p∈

Vh, such that q∈Qp} is not empty. Then it is easy to see that under the condition

∑

p∈Qq

�pq =1

Lemma 5.1 is still valid. This observation allows us to replace the trivial choice �pq =1/nq by a

more sophisticated one. A better choice for �pq�0 takes into account the distances between q and

all p∈Q
q . The closer the q is to p, the larger the scaled coefficient should be.

In the rest of this section, we show that our newly constructed Lagrange multiplier space

L
h satisfies a uniform inf–sup condition. We start with some preliminary results for the one-

dimensional mesh on the interface defining L
h . We recall that Eh is the set of elements of the

one-dimensional mesh on � and note that each e∈Eh has as endpoints vital vertices.
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Lemma 5.3

There exist constants independent of the mesh-size such that for all elements e∈Eh

chT�he�ChT , T ∈Te (16)

where he is the length of e, and hT is the diameter of the element T , and Te⊂Th is the set of

all elements T such that the intersection with e is not empty.

Proof

By construction, criterion (ii) yields that the vital vertices cannot be too close together, and criterion

(iii) guarantees that he is not too large.

As a result from the previous lemma, we find that the one-dimensional mesh for Lh is regular

in the sense that

che�h ê�Che

for all edges e, ê∈Eh with �e∩�ê is a vital vertex. �

Theorem 5.4

There exists a constant independent of the mesh-size such that for all �h ∈L
h

sup
vh∈Uh

∫

�
�h[vh]d�
‖vh‖1;�

�c‖�h‖−1/2;�h

Proof

By definition of L
h , the basis functions are associated with the vital vertices and are given

as the trace of a linear combination of standard hat functions. In terms of (15), each �h ∈
L

h has the form �h =
∑

p∈Vh
�p�p. For simplicity, we assume that the mesh Eh is glob-

ally quasi-uniform on �. However, this is a technical assumption that is not necessary for

the proof as a detailed analysis shows. Using the definition of the X-FEM space U
h , we set

wh =
∑

p∈Vh
�p(

∑

q∈P1
p
	q +

∑

q∈Q1
p
(1/nq)	q)
1−

∑

p∈Vh
�p(

∑

q∈P2
p
	q+

∑

q∈Q2
p
(1/nq)	q)
2,

where 
i is the Heaviside function with respect to �i , i=1,2, P1
p :={q∈Pp,q∈ �̄1}, Q1

p :=
{q∈Qp,q∈ �̄1}, P2

p :=Pp \P1
p, Q

2
p :=Qp \Q1

p. The definition of wh yields �h =[wh]|� and thus
∫

�
�h[wh]d�=‖�h‖−1/2;�h

‖[wh]‖1/2;�h
. Owing to the construction of wh and Lemma 5.3, it is

easy to see that ‖[wh]‖2
1/2;�h

is equivalent to
∑

p∈Vh
�2p. Then a standard inverse estimate for

finite elements yields ‖wh‖2
1;��C

∑

p∈Vh
�2p and thus

sup
vh∈Uh

∫

�
�h[vh]d�
‖vh‖1;�

�

∫

�
�h[wh]d�
‖wh‖1;�

=‖�h‖−1/2;�h

‖[wh]‖1/2;�h

‖wh‖1;�
�c‖�h‖−1/2;�h

As a consequence of Theorem 5.4 and Lemmas 5.3 and 5.1, we find that the discrete saddle-point

formulation (4)–(5) is stable and optimal a priori estimates holds. �

Remark 5.5

Both algorithms, the one to construct the vital vertices and the one to define the basis functions

of Lh are not restricted to the two-dimensional setting. They can easily be generalized to the
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three-dimensional case. Using the alternative approach of using standard hat functions for the

Lagrange multiplier on the mesh Eh would require in three-dimensional to construct a mesh of the

interface from the vital vertices that satisfies some regularity requirements (e.g. using a Delaunay

approach). By using for the definition of the Lagrange multiplier shape functions defined on the

background mesh this can be avoided.

6. NUMERICAL RESULTS

In this section, we show some numerical results illustrating the influence of the inf–sup condition

on the error decay. Different Lagrange multiplier spaces are compared and tested on unstructured

meshes with different mesh-sizes.

A comparison is made between different Lagrange multiplier spaces including:

• The naı̈ve Lagrange multiplier space.

• Lagrange multipliers on a boundary-fitted mesh.

• The Lagrange multiplier space found in [21].
• Our newly constructed Lagrange multiplier space.

6.1. Dirichlet boundary condition

We consider a two-dimensional Laplace model problem already considered in [12, 21]. The problem
is defined over the unit-square � :=�1 :=(0,1)2, and the exact solution is given by

u(x, y)=[cosh(�y)−coth(�)sinh(�y)]sin(�x) (17)

see Figure 14. The boundary conditions and the right-hand side are selected according to (17),

where � :=�D :={(s,0),0<s<1} and 1/k=0, �N :=��\�̄.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 14. The exact solution of the two-dimensional Laplace model problem (left) and a

non-matching mesh h= 1
20

(right). The boundary � is given by the horizontal line at the
bottom and the vital vertices are marked by filled bullets.
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Figure 15. Numerical computed inf–sup value.
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Figure 16. Discretization error in the energy norm and on the Dirichlet boundary.

Figure 15 shows the numerical computed inf–sup constant on different meshes. It is obvious

that the naive approach does not yield a uniform inf–sup estimate, whereas the other approaches

satisfy a uniform inf–sup condition.

As a result, for the naive approach, the error in the energy norm does not decay optimally, see

Figure 16. The other choices provide the same qualitative and almost the same quantitative results

for the error in the energy norm and the error on the Dirichlet boundary condition.

The new Lagrange multiplier has a smaller error in the Lagrange multiplier and a better inf–sup

constant. However, this difference is not significant, see Figures 15 and 17.

The main advantage of the newly designed approach is its stability in combination with its

simple local selection process of vital vertices.
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Figure 17. Error of the Lagrange multiplier (left) and of the gradient (right) on �.

6.2. Interface between two materials

Here, we model an interface between two domains with different mechanical properties. The

material law is linear isotropic elasticity. The outer domain is the matrix and has the following

mechanical properties: Em=1.0 and �m=0.3. It has a circular shape; its radius is rm=2. The

inclusion is contained inside the matrix and is also circular; its radius is ri =0.4. It has the following

mechanical properties: Ei =10 and �i =0.25. We have done computations in a two-dimensional

setting with the assumptions of plane strain and that both domains are perfectly bonded together

unless otherwise stated. As sole boundary condition, at the radius r =rm, a uniform tension is

applied so that the radial displacement ur |r=rm is equal to rm. The discretization consists of separate

displacement fields for each domain, bound together via the Lagrange multiplier space described in

this article. The weak form corresponds to Equations (2) and (3), with remarks made in the sequel

of those equations. For a perfectly bonded interface, the term including the 1/k factor vanishes;

but if an interfacial finite stiffness exists then this term has to be taken into account and eventually

produces jumps in the primal variable (see Figure 20).

The exact solution for the perfectly bonded interface is as follows [9]:

u(r,)=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[(

1− b2

a2

)

�+ b2

a2

]

r for r<a

(

r− b2

r

)

�+ b2

r
for a�r�b

(18)

where

�= (�i +�i +�m)b2

(�m+�m)a2+(�i +�i )(a
2+b2)+�mb

2
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Figure 18. Error in the energy norm (left) and on the Lagrange multiplier (right) for the interface problem.
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Figure 19. Inf–sup value (left) and zoom on the interface (right).

Here, �i , �i , �m and �m are the Lamé constants:

� = �E

(1+�)(1−2�)

� = E

2(1+�)

Knowing u(r,), the strain and stresses are obtained by simple differentiation. Thus, the error in

energy norm and the error on the Lagrange multipliers may be obtained without difficulty (Figures

18–20).
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Figure 20. Displacements for a perfectly bonded interface (left) and a slightly compliant interface (right)
. Please note the gap (jump in the displacements).

As for the example in Section 6.1, the new Lagrange multiplier space behaves properly and is

numerically stable.

7. CONCLUSIONS

In this paper we did introduce a new way to build a Lagrange multiplier space to enforce stiff

boundary condition in the extended finite element method, i.e. along boundaries not matching the

mesh. The originality of the new space is that it is the trace of the classical inner space on the

boundary with appropriate linear combination between the inner nodes. It is proven mathematically

that the new space passes the LBB condition for two-dimensional problems.
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