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A squeezing experiment showing binder migration
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Arnaud Poitou
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61 avenue du Président Wilson, 94235 Cachan Cedex, France

Guillaume Racineux

Centre de Mécanique des Milieux Continus, Université de Versailles Saint-
Quentin-en-Yvelines, 45 avenue des Etats Unis, 78035 Versailles Cedex, France

This paper deals with concentrated suspensions �pastes� of TiO2 particles at a solid concentration of 
60% per weight in an acidic binder. This paste is used to manufacture petrochemical catalysts. First 
we show that in a squeezing experiment binder migration occurs in the suspension as long as the 
velocity at which the test is carried out does not exceed a critical value. Next, we develop a 
mathematical model of the test and a complete methodology to identify the rheological parameters 
of this model. We give an analytical expression of the critical velocity, which is related to the 
physical characteristics of the suspension. The exact identification of the rheological parameters 
requires the use of a numerical program which was developed for this application.

I. INTRODUCTION

Flow-induced migration of particles has been an active research field for many years.
Acrivos’ model �Leighton and Acrivos �1987�; Phillips et al. �1992�� states that a particle
placed in a flow which presents a strain gradient receives from the other particles, on the
average, more shocks on the side of the flow that has the higher shear rate and, therefore,
tends to migrate in the opposite direction. Acrivos’ model consists of representing this
phenomenon with a diffusion equation. Thus, it is possible to describe a Couette device
experiment or a Poiseuille flow. More recently, these results were extended to three
dimension by numerical methods. However, since Biot’s studies, other models have been
developed which are closer to soil mechanics theories �Bowen et al. �1976�; Lantéri et al.
�1991�; Lantéri et al. �1996a�; Dutilly �1998�; Louge �1996�; Casella �1997��. Neverthe-
less, regardless of the model, the main difficulty in these approaches is to establish an
experimental methodology which allows one to identify the rheological parameters on
industrial materials. The aim of this paper is to present a solution to this problem. First,
we will show that in a squeezing experiment particle migration—or, more precisely,
binder migration—occurs as long as the velocity at which the test is carried out does not
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exceed a critical value. Next, we will develop a mathematical model to describe the test
as well as a complete methodology to identify the rheological parameters of this model.
We will give an analytical expression of the critical velocity, which is related to the
physical characteristics of the suspension. The exact identification of the parameters
requires the use of a numerical program, which was developed specifically.

II. EXPERIMENTS
A. Materials

The concentrated suspension used in this study was a paste at a solid concentration of
60% per weight. The Procatalyse Company produces this saturated paste by extrusion in
order to manufacture petrochemical catalysts. The TiO2 powder is made of polydisperse
grains with an average size of 4 �m. The powder is obtained by sol atomization, which
causes the grains to be constituted of agglomerates of finer particles. The sol–gel process
results in calibrated particles which are, on the average, about 40 nm in diameter. These
elementary spheres themselves are aggregates of anastase microcrystallites of about 65 Å
�Jabbes �1995��. Figure 1, is a typical scanning electron microscope photomicrograph
which shows the morphology of the powder and the agglomerate size distribution. The
different types of agglomerates can be seen: some have a diameter between 6 and 7 �m
while most of the others are around 1 �m. Their shape is approximately spherical. The
specific mass of the powder is 3.35 g/cm3 and its specific area is 280 m2/g.

The binder is an aqueous (� f � 10�3 Pa s) solution of concentrated nitric acid which
acts as a peptization agent. Because of capillary forces, the wet powder is initially ag-
glomerated and aggregated. The acid induces repulsive interactions among the aggre-
gates: the particles are electrostatically charged by protons through a phenomenon similar
to the D.L.V.O. mechanism. This colloidal action combined with mechanical mixing
allows the agglomerates to break up, which leads to a homogeneous paste.

The mixing device is a Z-blade internal mixer. These blades scrape the paste against
the recipient walls with a complex trajectory. Thus, the paste is subjected to a history of
high and almost homogeneous shear. Its behavior is very sensitive to the water content;
therefore, it is very important to conduct the mixing process carefully in order to obtain
reproducible results:

�i� The mixer is cooled to avoid water losses by evaporation.
�ii� The powder is introduced first in order to avoid fluid flow through interstices

located at the point where the blades enter the mixing recipient.

FIG. 1. SEM photomicrograph of TiO2 powder �Jabbes �1995��.
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�iii� The dry powder is mixed a few minutes in order to break apart the largest ag-
glomerates.

�iv� The binder is introduced in one step.
�v� The paste is then mixed for approximately 1 h to get a homogeneous product.

To control the agglomerate size after mixing, mercury porosimetry experiments were
carried out on dry samples �i.e., without binder�. The porosity of the skeleton is perfectly
stable from one experiment to the next �void volume of 0.35 cm3/g and pore size between
10 and 100 nm�.

B. Rheological measurement
Squeezing tests were carried out on an M.T.S. servocontrolled hydraulic tension test

machine. The squeezing device consists of two coaxial circular plates �40 mm in diam-
eter�. The upper plate is fixed whereas the lower one moves vertically at a prescribed
velocity V . The evolution of the squeezing force F is measured against the size h of the
gap between the plates �see Fig. 2�. The paste sample is placed between the plates and
then squeezed at constant velocity. The initial gap h0 between the two plates at the
beginning of the tests is such that h0 /D � 1, where D is the plate diameter.
1. Initial conditions

To ensure reproducible initial conditions, we prepared specimens with a constant
initial thickness. Our procedure consisted of preforming them quickly in moulds with
calibrated diameter D and thickness h0 �Fig. 3�. The preshaped sample was then placed
on the lower plate, which was then moved upwards until the sample reached the upper
plate �Fig. 4�.

FIG. 2. Force vs gap size.

FIG. 3. The samples are preformed in calibrated moulds.
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2. Boundary conditions
To avoid slipping of the paste at the wall, we used roughened plates, i.e., plates onto

which we pasted abrasive papers in order to force sticking contact at the wall. We used
self-adhesive papers intended for surface polishing because they present the following
advantages:

�i� Their grain size is controlled.
�ii� Polishing papers resist shearing very well.
�iii� Self-adhesive papers have good resistance to water, which means that they do not

alter the composition of the paste during the test.

To confirm that the paste sticks on plates with abrasive papers, we tested plates with
different surface roughness: polished plates made of rectified iron (Ra � 0.4 �m) and
plates with abrasive papers of different grain sizes: P400 �35 �m�, P600 �26 �m�, and
P800 �22 �m�. Figure 5 shows the results of the tests with an initial gap size h0
� 2.5 mm and piston velocity V � 0.02 mm/s without abrasive paper and with P400,

P600, and P800 abrasive papers. Two conclusions can be reached from these curves:

�i� The tests carried out with different kinds of abrasive papers give the same results:
the curves obtained with the different papers are superimposed on Fig. 5.

�ii� The test carried out with polished plates �i.e., without paper� gives different re-
sults, indicating an interaction between the paste and the boundary. In this paper,
we are interested only in tests with no slipping at the walls �i.e., with abrasive
papers�.

FIG. 4. Samples are placed on the lower plate, which is moved upwards until it reaches the upper plate.
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III. RESULTS AND DISCUSSION
A. Effect of velocity: dissociation

Figure 6 shows the squeezing force curve at different squeezing velocities and with
abrasive papers �i.e., with sticking contact at the wall�. Figure 7 shows the force as a
function of velocity for a few fixed gap widths. These results show effects which appear
contradictory:

�i� For a squeezing velocity greater than a critical piston velocity Vc � 1 mm/s, the
force increases with the velocity, but less than linearly �i.e., the force is less than
doubled if the velocity is doubled�.

�ii� On the contrary, for a squeezing velocity less than about 1 mm/s, the force in-
creases when the velocity decreases.

FIG. 5. Tests with P800 abrasive papers �initial gap h0 � 2.5 mm�.

FIG. 6. Results of squeezing tests with initial gap h0 � 2.5 mm and abrasive papers.
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At the end of a test, the sample is very fine �0.2 mm� and it tears when one lifts the
upper plate �Fig. 8�. It was, therefore, impossible to take samples of paste in different
places �at the center, on the edges...� with sufficient precision to measure the volume
fraction of powder in the sample. Furthermore, in very fine samples, the binder evapo-
rates very quickly. But after tests at low squeezing velocities, if we touched the sample
we noted �at least qualitatively� that the paste remaining between the plates contains a
higher volume fraction of powder at the end of the test than at the beginning and a higher
volume fraction of powder in the center of plates than on the edges. This observation
enables us to find an explanation for why the squeezing force at low velocities can be
greater than at high velocities. A test carried out at low velocity is a drained test �the
binder has had time to filter through the powder�; therefore, at the end of the test, one
measures the resistance of a quasicompact skeleton of powder. On the contrary, at higher
velocity, the binder cannot flow through the powder and, thus, it behaves as a lubricant
between the grains. The test results presented in Fig. 9 confirm qualitatively this drainage

FIG. 7. Force as a function of velocity for a few fixed gap widths.

FIG. 8. The sample at the end of the test.
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assumption which had already been made by many authors: Kendall �Kendall �1987��, for
example, observed this type of phenomenon on cement pastes; Lanos �Lanos �1993��, on
ash pastes, also observed a very strong migration of phases resulting in a solid nucleus at
the center of the specimen. This reveals two interesting features of these materials:

�i� It is, generally, impossible to test them in a homogeneous manner.
�ii� However, at high velocities, the force increases with velocity, which is also an

indication that a homogeneous test is possible in such a case.

B. Effect of initial thickness h0
Figure 9 shows results obtained at constant squeezing velocity V � 0.02 mm/s with

polished plates 20 mm in diameter and for different initial gap sizes h0 . These results
show that for fixed gap size h and velocity V , the measured force depends on the initial
gap size h0 and, therefore, on the strain history of the paste. If we assume that the strain
can dissociate a specimen, then forming the specimen with an initial thickness h0 has to
be undertaken with great care. In particular, it is not possible to presqueeze it slowly. This
is the reason why we preshaped the samples.

IV. MATHEMATICAL MODELING
A. Physical concept: existence of a critical velocity

In our material, we can distinguish three different causes of dissipation:
�i� The intrinsic viscous dissipation of the fluid �binder� on the microscopic scale:

Df � �
�

�f	̇f
2dv, �1�

where 	̇ f is the fluid shear rate, whose dimension is v f /h , where h is the gap between
plates.

�ii� The intrinsic viscous dissipation caused by friction between particles:

FIG. 9. Influence of the initial gap size h0 .
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Ds � �
�

K	̇s
m�1dv with 	̇s �

vs

h
, �2�

where 	̇s is the solid shear rate and m the coefficient of shear rate sensitivity.
�iii� An interaction dissipation due to the viscous drag through the powder �Darcy’s

law�:

Di � �
�

k�vf�vs�
2dv. �3�

We use a highly concentrated suspension �at a solid concentration of 60% per weight�
and an aqueous binder whose viscosity is very low (� f � 10�3 Pa s). To a first approxi-
mation, it seems reasonable to neglect the intrinsic dissipation of the binder. Then, from
a physical point of view, particle migration in our material results from a balance be-
tween two contradictory effects:

�i� On the one hand, particles tend to migrate toward zones where the intrinsic vis-
cous dissipation is low, i.e., where the solid shear rate is low.

�ii� On the other hand, particle migration implies dissipation because of the viscous
drag of the flow through the powder skeleton.

The result of this conflict is that migration occurs if the reduction in viscous dissipa-
tion when particles migrate towards low shear strain areas is greater than the dissipation
required for filtration. It turns out that, for most pastes, the coefficient of rate sensitivity
is strictly less than 1. Moreover, the viscous dissipation has the dimension 	̇s

m�1 and the
filtration dissipation has the dimension (vs�v f )2: therefore, the ratio between filtration
and skeleton deformation is negligible at low squeezing velocities and large at high
velocities. This indicates that at low velocities it is ‘‘worthwhile’’ for particles to migrate.
The situation is reversed at large squeezing velocities for which filtration ‘‘costs’’ too
much to enable migration. The limit between the two regimes occurs when filtration is no
longer negligible. We evaluate an order of magnitude of the critical velocity:

vs�vf �
vs

10
	̇s �

vs

h
vs � V �4�

at least near the center

Vc � 100� K

khm�1� 1/� l�m �

. �5�

B. Mechanical three-dimensional analysis
To extend this physical concept to three dimensions, we can model the heterogeneous

behavior of a concentrated paste by describing the global behavior of the paste as the
superposition of the behavior of each of its constituents. This approach is used in soil
mechanics to model the behavior of drained porous media. Thus, the powder is assumed
to consist of a quasirigid skeleton in which the binder can circulate �Coussy �1987��.
More recently, this approach has been used to model the behavior of concentrated paste
in injection �Lantéri et al. �1991�; Lantéri et al. �1996a�; Dutilly �1998�� and extrusion
�Casella �1997�; Louge �1996�� processes. Two main approaches have been proposed in
the literature to obtain macroscopic equations for multiphase media:
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�i� The first is the mixture theory, which is a generalization of continuum mechanics
�Bowen et al. �1976�; Poitou �1988�; Lantéri et al. �1996a��. Conservation laws are writ-
ten directly for each phase on the macroscopic scale, which leads directly to the model
equations.

�ii� The second is the averaging method, which consists of writing conservation laws
for each constituent on the microscopic scale �Gilbert �1987�; Ni and Beckerman �1991��.
These equations are then integrated with convolution products to obtain conservation
laws on the macroscopic scale for each phase. On this scale, each constituent is consid-
ered to be a continuous medium.

A distinction has to be made between constituents �the binder and the granular mate-
rial� on the microscopic scale and phases �solids and fluid� on the macroscopic scale. In
particular, we do not determine the behavior of the granular material alone, but of a solid
phase consisting of the granular material lubricated by the binder.

1. Representative volume
In order to be able to write macroscopic conservation laws, it is necessary to define a

representative elementary volume or macroscopic point. This volume has to be large
compared to the size of the solid particle, but small compared to the gap size.

2. Conservation laws
Under the hypothesis of the existence of a representative elementary volume, our paste

can be described as the superposition of two continuous media. At each macroscopic
point, both phases c coexist proportionately to their volume fraction 
c . We designate
the fluid and the solid phases, respectively, by the indexes f and s. Then, each phase is
described by:

�i� its apparent density �c � 
c� (c) , where � (c) is the density of constituent �c�.
�ii� its macroscopic velocity v� c , which can differ from the velocity of another phase.
�iii� its macroscopic stress field �c and strain rate Dc � 1

2�grad(v� c)�grad(v� c) t�; and
�iv� its own boundary conditions.

Mass balance: In the case of a nonreactive medium, we can deduce from the global
mass balance of phase c the local form

�
c��c�

�t
�div�
c��c�v� f� � 0. �6�

If the constituents �c� on the microscopic scale are individually incompressible, the mass
balance for each phase is expressed by

�
f

�t
�div�
f v� f� � 0

�
s

�t
�div�
sv�s� � 0. �7�

These equations indicate an apparent compressibility of each macroscopic phase which
enables dissociation without any diffusion mechanism. Moreover, if the mixture �as is the
case of our paste� is saturated �no air or gas inside�, then the volume fraction verifies:


f�
s � 1. �8�

Momentum balance: Our paste is at a concentration of 60% per weight; its global
viscosity is about 300 Pa s and the powder density is 3.35 g/cm3. Mass and inertia forces
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can be neglected with respect to viscous effects. The momentum balance for each phase
can thus be written as �Lantéri et al. �1991��:

div��f ��
� f � 0� div��s��
� s � 0� . �9�

Since the flow considered is isothermal, it is not necessary to write the balance of energy
and entropy.

3. Constitutive equations and boundary conditions
Momentum supply: Assuming that the filtration is isotropic, it is generally agreed that

the interaction force is the sum of a Darcy term and a reaction caused by the gradient of
volume fraction:


� s � �
� f � k�v� f�v�s��p grad
s , �10�

with 
s � 1�
 f , and k being the interaction coefficient between the solid and the fluid,
i.e., the ratio between the viscosity � f of the binder and the permeability B of the
skeleton �Costet and Sanglerat �1975��. B depends on many parameters, such as the size
of the particles, their shape, their morphology, their chemical properties, etc. In order to
minimize the number of adjustable parameters, we assume here that the permeability B
follows the Kozeny expression

B � b

f

3

�1�
f�
2

with

b �
1

2CT2S2 �
D2

100
, �11�

where T is the tortuosity of the pores, S the specific surface of the powder, C the
circularity coefficient which defines the shape of the pores, and D the diameter of the
particles.

Constitutive equation for the fluid phase: The binder used in our paste is a mixture of
water and nitric acid. Assuming that the binder is Newtonian and incompressible on the
microscopic scale and that the particles are rigid and not in direct contact with one
another, along with Gilbert �1987� we write:

�f � �
 f pI�2� fDf , where � f � cst, �12�

where � f is the viscosity of the fluid and v� f its macroscopic velocity.
Constitutive equation of the solid phase: The macroscopic constituent referred to as

the solid phase is made up of solid particles surrounded by a fine layer of adsorbed fluid.
This constituent cannot be tested separately and it is impossible to measure its behavior.
Therefore, we can reasonably assume, like Lantéri et al. �Lant éri et al. �1996b��, that the
solid phase has purely viscous behavior which depends only on the velocity of the solid
phase:

�s � �
spI�2�sDs with �s � K�2tr�Ds
2�m�1, �13�

where K is the consistency and m the coefficient of rate sensitivity.
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Many experimental and theoretical approaches �Krieger and Dougerthy �1959�; Que-
mada �1977�� lead us to assume that the consistency K diverges as the volume fraction
approaches the maximum particle packing 
m . We extend these results to our power law
behavior:

K �
K0

�1�

s


m
�� with � � 0, �14�

where � is chosen in order to be consistent with Einstein’s model for the viscosity of
dilute sphere suspensions:

K � K0�1�2.5
s�. �15�

Then, one obtains

� � 2.5
m . �16�

To a first approximation, we assumed that the maximum particle packing density 
m is
equal to the compact packing density of disorderly rigid spheres: 64%.

Boundary conditions: We assume that the fluid and solid phases stick to the wall:

v� f � v�s � v�wall . �17�

At the outflow of the plates, the boundary condition on both phases expresses local
equilibrium with the outside medium:

�f n� � �
 f pan�
�sn� � �
span� , �18�

where n� is the outward normal vector and pa the ambient pressure.

C. Numerical resolution
Since the problem is unsteady, we adopted an incremental approach in three steps

�Racineux �1999�; Racineux et al. �1999��.
�i� In the first step, we assume that the volume fraction is known and we solve the flow

problem, which is of the same level of complexity as the Stokes’ problem. We use the
finite element method with a velocity–pressure formulation and a Newton–Raphson
algorithm to solve the nonlinearity.

�ii� Then, the volume fraction is actualized using an implicit algorithm and a Taylor–
Galerkin formulation by solving the equation of mass transport balance. The difficulty of
the calculation results mainly from the hyperbolic nature of this equation.

�iii� At the end of a time increment the mesh is convected in order to keep the size of
the elements constant.

V. IDENTIFICATION
A. Behavior of the solid phase

The behavior of the solid phase �m, K� is identified at high velocity, i.e., in flow
conditions which make the paste remain homogeneous. In this particular case, the veloc-
ity of the fluid phase is equal to the velocity of the solid phase and, therefore, the tensor
of homogeneous equivalent stresses can be expressed as:

� � �pI�2K�2tr�D2��m�1 �Ds . �19�
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Using the Hele–Shaw approximations �since the tests were carried out for h/R � 1�, one
shows that the squeezing force is

F � 2
�2m�1

m �m 1

�m�3�

K

2�m�1/2�

Vm

h�2m�1 � R�m�3 �. �20�

We identified m and K on the force curve obtained at a compression velocity of 10 mm/s
�Fig. 10�. Using a least-square method, we perform a best-fit approximation of the power
law to experimental data, which leads to:

m � 0.01 K � 22 600.

The coefficient of strain rate sensitivity is very close to zero, which means that the
homogeneous paste behaves like a rigid-plastic material �Bingham fluid�.

B. Interaction coefficient
The interaction coefficient k is the ratio between the binder viscosity � f and the

permeability of the skeleton B:

k �
�f

B
. �21�

The permeability is identified at low velocity, i.e., in a test in which dissociation actually
occurs �drained test at 0.1 mm/s�. In this case, the flow equations have no analytical
solution. Therefore, we use the finite element code to simulate the squeezing test. Since
we must identify only one parameter, we proceed by dichotomy and obtain the interaction
coefficient:

k � k0

s

2

�1�
s�
3

with

k0 � 5.1012 Pa s m2. �22�

FIG. 10. The solid phase behavior is identified with a power law.
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C. Discussion
1. Simulation results

The rheological parameters were identified with two experimental curves. Figure 11
shows the superposition of experimental results and numerical simulations for the
squeezing test at every compression velocity. Figure 12 shows the evolution of the
volume fraction calculated with our model at a point located at the center, under the
upper plate, for different compression velocities. Three remarks must be made about
these curves:

�i� From Fig. 11, our model verifies the existence of paste dissociation. In particular,
for velocities greater than 1 mm/s, the calculated force increases with the velocity.
On the contrary, for velocities less than 1 mm/s, the force increases as the velocity
decreases.

FIG. 11. Comparison between experiments and calculations.

FIG. 12. Solid volume fraction calculated under the plate center.
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�ii� For high velocities �10 and 1 mm/s�, the calculated dissociation is very low. This
result is consistent with our strategy of identifying K and m at large velocities,
assuming that the sample then remains homogeneous.

�iii� For low velocities, the calculated volume fractions indicate migration which is
directly related to the increase of force as the velocity decreases.

Thus, there is good agreement between experimental results and simulations, at least
until h/2 reaches about 0.3 mm.

2. Order of magnitude of the interaction coefficient
The order of magnitude of k can be evaluated as a function of the viscosity � f of the

binder and the permeability B of the skeleton:

k �
�f

B
. �23�

From relations �11�, �22�, and �23� one gets an estimate of k0 as a function of the particle
diameter D and the fluid viscosity � f :

k0 �
100� f

D2 . �24�

With the experimental value k0 � 5.1012 Pa s m2, this leads to a particle diameter:

D � 0.1 �m. �25�

This value is approximately five times larger than the particle size suggested by the
mercury porosimetry measurement performed on dry samples �specific area 280 m2/g or
particle size 20 nm�. This result, however, is in good agreement with our model if one
notes that Eq. �11� holds for monodisperse granulometry only and that for polydisperse
powders the larger pores have a predominant influence on permeability.

3. Critical dissociation velocity
From the above expression of the critical velocity �Eq. �5�� and with our experimental

value for the interaction coefficient, we calculate a theoretical critical velocity Vc
� 2 mm/s which is also consistent with the experiments �see Fig. 6�. More generally,

Eq. �5� combined with Eqs. �11�, �22�, and �23� yields

Vc � 100� K

k hm�1� 1/�1�m �

� 100� K D2

100� f hm�1
�1�
s�

3


s
2 � 1/�1�m �

. �26�

In this expression, if the volume fraction is fixed, m and D are the two main materials
parameters that govern the transition between the two regimes. The larger m��0,1� , the
lower the critical velocity �Fig. 13�. In the same way, the larger D, the lower Vc �Fig. 14�.
From a geometrical point of view, the lower h, the larger Vc �dissociation occurs more
easily at the end of the test than at the beginning�.

4. Limitations
At the end of the simulation, the results diverge greatly, particularly at low squeezing

velocities. There are several possible explanations for this: the packing fraction intro-
duced in the model could have been underestimated, which would lead to a sharp force
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increase when dissociation becomes important. Another explanation of the discrepancy
between simulations and experiments at the end of the tests could be some numerical
errors which tend to increase because of the hyperbolic nature of the mass balance
equation. But, more likely, the reason is that in extending Krieger and Dougherty’s
relation to nonlinear viscous fluids through Eq. �14� we implicitly assumed that m does
not depend on 
s . But, as outlined above, a slight variation of m can have an important
impact on dissociation. It would have been possible to fit a function m(
s) in order to
improve the correlation between model and experiment. However, our objective here is
essentially to show that, even with only few adjustable rheological parameters �essen-
tially K, k, m�, it is possible to describe this squeezing experiment quite reasonably well.

FIG. 13. Influence of m on Vc .

FIG. 14. Influence of D on Vc .
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VI. CONCLUSION

In this paper, we have shown indirectly that particle and binder migration occurs when
a paste is deformed beyond a certain critical value of the equivalent shear strain. This
phenomenon has been analyzed and modeled in the framework of the mixture theory.
This theory is usually difficult to handle because of the difficulty related to the experi-
mentation. In particular, it is a priori difficult to solicit the different phases of a hetero-
geneous sample separately. To cope with this difficulty, we have shown that it is possible,
instead of deforming the two phases separately, to deform them either together �i.e., at
large velocities� or independently �at low velocities�. Thus, using a numerical program,
we were able to identify the different rheological parameters of our model, which seems
to lead to reasonable predictions of the overall behavior of the paste.

The paste flow can be modeled by approaches that are intermediate between non-
Newtonian fluid rheology and soil mechanics. Today, the numerical difficulties of this
type of model have been eliminated, at least partly, thanks to recent progress in the
numerical solution of hyperbolic equations made in the last few years. Thus, mixture
theory models which, a few years ago, led to difficulties in the identification of param-
eters are now much more practical.
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