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e develop a single segment differential tube model including interchain tube pressure effect (ITPE) [G.
arrucci, G. Ianniruberto, Interchain pressure effect in extensional flows of entangled polymers, Macro-
olecules 36 (2004) 3934–3942], able to describe the non-linear behaviour of entangled linear polymers.

he model accounts for the effect of flow on the tube length and diameter. It is presented in two versions,
epending on which tube dimension is assumed to deform affinely. The classical relaxation mechanisms,

.e., reptation, stretch dynamics, convective constraint release (CCR), as well as finite extensibility, are
ncorporated in a simple manner; hence the model allows an explicit comparison of the relative impor-

ance of various effects. A striking result is the insignificance of finite extensibility and the detrimental
nfluence of CCR for moderately entangled systems when ITPE is taken into account. For highly entangled
ystems, CCR regains importance to avoid the well-known shear stress instability. The proposed model
s able to make quantitative predictions of steady elongational and shear data for monodisperse melts,

hile transient values are less accurate but within experimental errors.
. Introduction

Doi and Edwards [2], following the concept of reptation by de
ennes [3], first proposed a tube model to describe the rheology of

inear entangled polymers in the linear viscoelastic regime. Steady
rogress over two decades has made quantitative predictions possi-
le for linear properties [4–6]. On the other hand, the development
f theories for the non-linear response of entangled polymers is
uch more limited and even in the case of monodisperse linear

hains, additional relaxation-mechanisms are still proposed today
o improve the description of the flow properties [1]. The Doi and
dwards (DE) model [2] was a first attempt to build a tube-based
onstitutive equation for linear polymers. Though the predictions
f the DE model are in very good agreement with experimental
ata for step deformations, it fails even in the prediction of quali-
ative non-linear features for other types of flow. In particular, the
E model predicts a constitutive instability in steady shear.

In an attempt to improve the theory, Marrucci and Grizzuti [7]
nd Marrucci [8] successfully pointed out stretch dynamics and

onvective constraint release (CCR) as key elements to overcome
he DE model’s limitations. Marrucci and Ianniruberto [9] proposed
promising single segment differential tube model that incorpo-

ates both chain stretch and CCR in a coupled representation. This

∗ Corresponding author. Tel.: +32 10 47 3560; fax: +32 10 45 15 93.
E-mail address: christian.bailly@uclouvain.be (C. Bailly).
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model is simple enough to be easily used for complex flow simula-
tions [10], but yet retains the necessary physics. Using the concept
of CCR and stretch dynamics, Mead et al. [11] proposed an integral
tube model, which can make quantitative predictions in fast shear
flows. Another integral model, known as the molecular stress func-
tion model (MSF) is based on the assumption of a strain-dependent
tube diameter and has been proposed by Wagner et al. [12]. Gra-
ham et al. [13] have developed a comprehensive differential tube
model where the effects of reptation, chain stretch, and CCR are
derived from a microscopic stochastic partial differential equation
that describes the chain contour dynamics. This model can make
quantitative predictions in linear and non-linear shear flows and
slow elongational flows (ε̇ > 1/�r, where �r is the Rouse relaxation
time). Likhtman and Graham [14] have simplified the Graham et al.
[13] model to a single segment differential model, which is known
as “Rolie-Poly”, and makes qualitatively similar predictions to those
of Graham et al. [13]. Recently, Leygue et al. [15] have proposed
a new differential tube based constitutive model, which incorpo-
rates, in a full chain approach (multi-segment), the major molecular
mechanisms thought to be important to describe the flow of entan-
gled polymers: reptation, contour-length fluctuations, thermal and
convective constraint release, chain stretch, and finite extensibility

of the polymeric chains. The pertinent literature to date has been
thoroughly reviewed by Dealy and Larson [16].

All the tube theories mentioned above predict elongational
thickening around an elongation rate (ε̇) of 1/�r for linear poly-
mer melts. However, the data of Bach et al. [17] on monodisperse



Nomenclature

a tube diameter (m)
a0 equilibrium tube diameter (m)
B conformation tensor
C matrix square of tensor B
E deformation tensor
f finite extensibility modification
G0

N plateau modulus (Pa)
l tube length (m)
l0 equilibrium tube length (m)
Nk number of Kuhn steps (–)
N1 first normal shear stress difference (Pa)
T12 shear stress (Pa)
t time (s)
Tr Trouton ratio (�el/�0)
u orientation vector distributed on the unit sphere
Z number of entanglements

Greek symbols
˛ normalized tube diameter (−)
ˇ numerical CCR factor (−)
� unit tensor (−)
� normalized tube length (−)
� stress tensor (Pa)
�̇ shear rate (s−1)
ε Hencky strain (−)
ε̇ elongation rate (s−1)
�0 zero shear viscosity (Pa s)
�el steady elongational viscosity (Pa s)
�d reptation time (s)
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�p tube relaxation time (s)
�r Rouse relaxation time (s)

olystyrene instead show an elongational thinning behaviour (−0.5
ower law) for ε̇ > 1/�r. This behaviour for polystyrene has later
een confirmed by Luap et al. [18] from stress and birefringence
xperiments in elongational flows. Recent published data of Nielsen
t al. [19] also show the same behaviour, again for polystyrene. The
ube theory by Leygue et al. [15] can quantitatively predict this
longational thinning behaviour for polystyrene, but only for unre-
listically low values of finite extensibility (b = 12, instead of b = 66
he value derived from microstructure) [20]. In order to remedy this
ssue, Marrucci and Ianniruberto [1] have proposed to include an
nterchain tube pressure effect (ITPE), based on an original idea by
oi and Edwards [2]. This concept, which is based on tube diameter
ynamics is able to predict the observed elongational thinning in a
traightforward way and qualitatively explains the observed scaling
f tensile stress with elongation rate. As a follow-up work, Mar-
ucci and Ianniruberto [21] have developed a 2D constitutive model
or ITPE, which can make qualitative predictions both in shear and
longational flows. More recently, Wagner et al. [22,23] have incor-
orated the idea of ITPE, along with the finite extensibility in their
SF model and successfully predicted the Bach et al. [17] and Luap

t al. [18] data.
So, the state of the art on tube models is that, only the MSF

odel with ITPE [22] can predict the transient and steady elon-
ational data for linear polymer melts at high elongation rates
ε̇ > 1/�r). This model, however, requires the knowledge of the

ntire relaxation spectrum, and being an integral model, makes
umerical simulations heavy. Therefore, the aim of the present
ork is to develop a simple, full tensorial single segment differ-

ntial tube model, which can make (semi-)quantitative predictions
n high shear and elongational flows. This model is based on all

2

Fig. 1. Relaxation time (�) vs. number of entanglements (Z): regimes for different
�d/�p ratios.

the above mentioned relaxation mechanisms including ITPE. It also
serves the purpose of studying the influence of different relaxation
mechanisms in relation to each other. The proposed model hence
includes reptation, stretch dynamics, finite extensibility, convective
constraint release, and ITPE. Since it is a “single segment” model,
thermal constraint release effects can only appear through a re-
scaling of the reptation time �d.

In order to include the concept of ITPE into the full tensorial
model, tube diameter dynamics need to be converted into tube
length dynamics. Thus, this paper starts with the section, “tube
dynamics”, dealing with this issue. Next, the development of the
single segment model is presented. In the following section, the
qualitative and quantitative performance of the model is discussed.
In the last section, the main conclusions are exposed.

Before moving to the next section, we would like to clarify the
concept of moderately and highly entangled systems. Fig. 1 presents
a qualitative picture of the relation (on a log–log scale) between
characteristic relaxation times (�d, �r and �p) and the number of
entanglements (Z). Classical tube models [9,15] include two charac-
teristic relaxation times, i.e., the Rouse time and the reptation time.
The scaling of �r and �d vs. molar mass (or Z) is well established. The
characteristic time �p is the tube relaxation time representing ITPE
[1]. As shown by Marrucci and Ianniruberto [1], �p is proportional
to M2 with an unknown pre-factor (∼50). Therefore, qualitatively,
Fig. 1 identifies two zones of linear entangled polymer systems.
Zone I (shaded area in Fig. 1) is for moderately entangled systems
(�p > ≈ �d), and Zone II for highly entangled systems (�p < �d).

2. Tube dynamics

In this section, two different scalar models for tube dynamics,
based on alternative deformation assumptions for a tube segment,
are developed in the special case of an elongational flow. Later, in
the next section, these scalar models are generalized to full tensorial
models.

For a tube segment, characterized by length l and diameter a,
one can ask about the way it changes in an extensional flow, when
the tube segment is already aligned with the flow. The first option
is of course to consider that everything deforms affinely. Under this
assumption, the volume V = la2 of the tube segment is preserved at

all times.

However, the assumption of incompressibility of the material
can not be used, as tubes of different chains certainly overlap and
the tube does not have the characteristics of a solid object. If the tube
does not deform affinely then one has to find how l or a evolve and
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b − trB
dentify the relation between them. Doi and Edwards [2] calculate
he equilibrium length l0 of the primitive path of a chain confined in
tube of a given diameter a0. In this derivation, they first compute

he entropy of such a confined chain and then derive the primitive
ath length that maximizes this entropy. They obtain the following
caling relationship:

0∼a−1
0 . (1)

et us define the relative tube diameter ˛ and relative tube length
as follows:

= a

a0
, (2)

= l

l0
, (3)

here a0 and l0 are the respective equilibrium values. Eq. (1) now
eads:

= �−1. (4)

q. (4) is strictly valid at equilibrium, but we assume the same
caling to hold under flow conditions. Indeed, the flow-induced
erturbation of the tube diameter is a local phenomenon with
characteristic length of about the entanglement distance. The

orresponding chain section explores the tube with a character-
stic equilibration time around the segmental time (�e). Hence
he local tube diameter vs. length equilibration can be considered
nstantaneous at deformation rates up to and even above 1/�r for
ignificantly entangled chains. Thus we should be able to exploit Eq.
4) even under the fast flow conditions. As will be shown in follow-
ng sections, the quantitative performance of the proposed model
n the nonlinear regime supports the validity of the assumption. It is
lso worth mentioning that the MSF model with ITPE [22] uses the
ame scaling and can make quantitative predictions at deformation
ates above 1/�r.

In their paper on ITPE [1], Marrucci and Ianniruberto do not
eally address the dynamics of the tube segments, since they focus
n what they call “Zone 2” (Fig. 1 in [1]), where they assume the
bsence of stretch. Based on Eq. (1), simple, mutually exclusive
ssumptions for the nature of the deformation of the tube segment
an be considered:

1) The tube length changes according to affine deformation and
the tube diameter adapts according to Eq. (4). This hypothesis
basically suggests affine deformation of the primitive path. We
call this assumption “affine stretching”.

2) The tube diameter changes according to affine deformation and
the local stretch ratio � adapts through Eq. (4). We name this
assumption “affine squeezing”.

In this work, two independent full tensorial constitutive models
re developed from the above assumptions. Using Eqs. (7) and (20)
f Marrucci and Ianniruberto [1], an evolution equation for ˛ based
n the affine stretching assumption can be written as follows:

˙ = −ε̇˛ + 1
�p

(˛−3 − 1). (5)

he first term on the right hand side of Eq. (5) is the convection term,
hile the second term describes relaxation toward equilibrium
riven by the compression force. Similarly, an evolution equation
or ˛ based on the affine squeezing assumption can be written as:
˙ = − ε̇

2
˛ + 1

�p
(˛−3 − 1). (6)

he parameter �p is the characteristic time required for the tube
egment to come back to its equilibrium (diameter) state from its
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deformed state. It should be mentioned here that the exact expres-
sion for �p is not known, but it scales like �r [1]. Eq. (6) differs from
Eq. (20) in [1] by the factor 0.5 in front of the strain rate. This factor
reflects the assumption of affine shrinking of the tube diameter (in
the absence of relaxation phenomena). By ignoring it, Marrucci and
Ianniruberto implicitly choose the affine stretching assumption (Eq.
(5) in the present work). The relevance of the factor of 0.5 will be
shown later, when both assumptions are generalized to a full con-
stitutive equation, since its inclusion or exclusion yields different
strain measures.

Making use of Eq. (4), the equation for the evolution of � for the
affine stretching case is given as:

�̇ = ε̇� − 1
�p

(�5 − �2). (7)

So far, this simple model, written using � is totally equivalent to
Marrucci and Ianniruberto [1]. In order to incorporate finite exten-
sibility into this model, the method proposed by Rolon-Garrido et al.
[22], has been followed. Therefore, the modified evolution equation
for � is given as follows:

�̇ = ε̇� − 1
�p

((f (�2))
2
�5 − �2). (8)

The finite extensibility modification to the stiffness of the entropic
spring is computed as for a FENE spring:

f (�2) = �2
max − 1

�2
max − �2

, (9)

where �max is of the order of the square root of the number of Kuhn
steps in the tube segment.

Similarly, for the affine squeezing case we get:

�̇ = ε̇

2
� − 1

�p
((f (�2))

2
�5 − �2). (10)

It has to be kept in mind that, for a given affine deformation of the
tube radius characterized by a ratio ˛, the generated stretch level
� = ˛−1 is only the square root of the level that would be generated
if everything was deforming affinely (i.e., � = ˛−2).

3. Building a single segment model

This section is dedicated to the building of a full tensorial, sin-
gle segment constitutive model. As discussed above, the model is
developed based on either one of the alternative assumptions i.e.,
affine squeezing or affine stretching.

The first step is to choose a set of structural variables and assign
them a clear meaning. Let us call R the vector of norm � tangent
to a given tube segment. The average orientation and stretch of the
microstructure at a given time can therefore be described through
the tensor B defined as:

B = 3〈RR〉. (11)

By using Kramers formula [26], an expression for the extra stress
tensor can be obtained:

� = G0
N(f (trB)B − ı), (12)

with f(trB) defined as:

f = b − 3
, (13)
and b = 3�2
max.

The value of the maximum square stretch �2
max can be estimated

as the number of Kuhn steps between entanglements. In the follow-
ing sections, we will show how we can use the affine stretching and
affine squeezing assumptions to derive an evolution equation for B.
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.1. Affine stretching model

If tube segments orient and stretch affinely under a step strain,
he evolution equation for B in the absence of relaxation mecha-
isms simply writes:

= 0, (14)

here
∇
B is the upper convected derivative of B. According to the

efinition of B (Eq. (11)), the trace of B can be related to the average
f 3�2. Multiplying Eq. (8) by 2�, the evolution equation for �2 is
btained:

˙ 2 = 2ε̇�2 − 2
�p

(f 2�6 − �3). (15)

ince, the trace of B is related to the average of 3�2, the trace of
full tensorial model should produce Eq. (15). So, we propose the

ollowing compatible full tensorial constitutive equation (Eq. (16)).

= − 2
9�p

(f (trB)2tr(B3) − trB)
B

trB
. (16)

s it should, the right hand side of the above equation vanishes
t equilibrium. With the assumption of �3 ≈ �2/9, the trace of Eq.
16) produces Eq. (15). The assumption, �3 ≈ �2/9 is used in order to
educe the level of non-linearity in the model. The sensitivity of this
ssumption has been tested, and it has been found that it makes no
ifference on the predictions. In Eq. (16), we could have used �6 ∼
trB)3 instead of trB3. We have tested the two alternatives and found
o difference in the predictions for all the systems analyzed in the
aper.

We can assume that the relaxation of B is simply a superpo-
ition of different relaxation mechanisms happening at different
ime scales. This allows us to add “reptation dynamics” and “stretch
ynamics” in the following way:

= − 2
9�p

(f (trB)2tr(B3) − trB)
B

trB
− 1

�d
(f (trB)B − ı)

− 1
�r

(f (trB)trB − 3)
B

trB
. (17)

imilarly, convective constraint release can be included by modify-
ng the reptation time �d. The modified or effective reptation rate
1/�eff) is basically a superposition of the reptation rate (1/�d), and
he rate of convection of the entanglements by stretch dynamics
1/�r) and tube diameter dynamics (1/�p). Basically, it is added in
similar fashion as proposed by Marrucci and Ianniruberto [21] in

heir 2D model for interchain tube pressure effects:

= − 2
9�p

(f (trB)2tr(B3) − trB)
B

trB

− 1
�eff

(f (trB)B − ı) − 1
�r

(f (trB)trB − 3)
B

trB
, (18)

here

1
�eff

= 1
�d

+ˇ

[
2

9�p
(f (trB)2tr(B3)−trB)+ 1

�r
(f (trB)trB − 3)

]
. (19)

he adjustable numerical coefficient ˇ weighs the importance of
onvective constraint release.
.2. Affine squeezing model

If we assume affine squeezing and instantaneous equilibration
f the primitive path length according to the tube diameter, the
tretching of the microstructure is non-affine. More precisely, after

4

an instantaneous deformation characterized by a deformation ten-
sor E, the new tube vector R′ is given by the following expression:

R′ = E · R√
|E · R|

. (20)

The expression for B as a function of E now becomes:

B = 3

〈
E · u E · u∣∣E · u

∣∣
〉

, (21)

where u is a orientation vector distributed on the unit sphere. This
expression for B is very closely related to the Q tensor of Doi and
Edwards [2] (without independent alignment). Following the previ-
ous work of Marrucci and Greco [24] on alternative strain measures
based on force balance arguments, we choose to approximate B
after a step strain with the (matrix) square root of the Finger tensor
corresponding to the deformation characterized by E:

B = (3〈E · u E · u〉)1/2 ≈ 3
〈

E · u E · u

|E · u|
〉

. (22)

This simple approximation for B has the following properties:

• The principal orientations, i.e., the eigenvectors of the approxi-
mations correspond to those of an affine deformation.

• The average stretch level is only the square root of the stretch level
of an affine deformation.

• Following a step strain in shear, this tensor will predict a second
normal stress difference.

• This tensor yields a strain measure which can be implemented in
a differential models [21,25].

Let us define C as the (matrix) square of B:

C = B2. (23)

When relaxation phenomena can be considered as frozen, the ten-
sor C evolves according to the upper convected derivative and is,
therefore, an appealing choice as a variable.

For the affine squeezing assumption (Eq. (10), the trace of C is
related to the average of 9�4. Therefore, multiplying Eq. (10) by 4�3,
the evolution equation for �4 is given as follows:

�̇4 = 2ε̇�4 − 4
�p

(f 2�8 − �5). (24)

So, by assuming �5 ∼ �4/9, and following the same steps as that for
the affine stretching model, the full constitutive equation for affine
squeezing assumption can be obtained:

∇
C = − 4

9�p
(f (trC1/2)

2
tr(C2) − trC)

C

trC
− 2

�eff
(f (trC1/2)C − C1/2)

− 1
�r

(f (trC1/2)trC − 3)
C

trC
, (25)

where,

1
�eff

= 1
�d

+ ˇ

[
4

9�p
(f (trC1/2)

2
tr(C2) − trC) + 1

�r
(f (trC1/2)trC − 3)

]
.

(26)

In the above equation
∇
C is an upper convected derivative on C and
f(C1/2) is defined as follows:

f (trC1/2) = b − 3

b − trC1/2
, (27)

with b = 3�2
max.



F
t
b

�

4

e
r
i
L
p
s
t
i
p
R
a
r
d
s
t
b
f
[

5

b
F
e
q
i
e

5

5
5
s
g
fi
e
i
fi

5.1.1.3. Comparisons with other Models. Fig. 4 compares the predic-
tions of the new models with the predictions of coupled DCR [9],
Rolie-Poly [14], and CRAFT [15] for steady state elongational viscos-
ig. 2. Trouton ratio (Tr) vs. non-dimensional rate of elongation in uniaxial elonga-
ional flow: Effect of finite extensibility in Zone I (�d/�p = 0.1, �r → ∞, b → ∞ (no FE),
= 66 (with FE), ˇ = 0).

In terms of the variable C, the extra stress tensor writes:

= 2G0
N(f (trC1/2)C1/2 − ı). (28)

. Model parameters

The material parameters required for the above proposed mod-
ls are, a reptation time, �d, a Rouse relaxation time, �r, a tube
elaxation time, �p, a plateau modulus, G0

N, and a finite extensibil-
ty factor, b. All parameters, except �p, can be determined based on
VE data or structural information on the polymer. For qualitative
redictions, �p/�d = 10 is used to represent moderately entangled
ystems (Zone I in Fig. 1) and �p/�d = 0.1 for highly entangled sys-
ems (Zone II in Fig. 1). We take �r = �p/100 in both cases. This scaling
s consistent with Marrucci and Ianniruberto [1]. For quantitative
redictions, the reptation time �d is determined as �d = �0/G0

N.
ouse time values for two polystyrene samples (PS200 and PS390)
re taken from Marrucci and Ianniruberto [1]. The tube pressure
elaxation time �p is adjusted manually in order to fit the non-LVE
ata. Though the exact expression for �p is not known, it is known to
cale as �r ( ∼ M2) [1]. This manually adjusted value of �p is then jus-
ified by comparing the scaling of �p with molar mass. The value of
is determined based on molecular structure of the polymer, e.g.,

or polystyrene b = 66 (= 3Nk, where Nk is number of Kuhn steps)
27]. For the Gaussian limit, we have b → ∞.

. Results and discussion

This section presents qualitative and quantitative predictions by
oth models for moderately entangled polymer systems (Zone I,
ig. 1). Because of the lack of reliable non-linear data for highly
ntangled monodisperse systems, predictions are restricted to a
ualitative analysis in Zone II. Different observations and compar-
sons with other relevant differential tube models are discussed in
ach subsection.

.1. Qualitative predictions

.1.1. Elongational flow

.1.1.1. Effect of finite extensibility. Fig. 2 shows the normalized
teady state elongational viscosity (Tr = �el/�0) as a function of elon-

ational rate for both models, with (b = 66) and without (b → ∞)
nite extensibility, in Zone I. In order to see the effect of finite
xtensibility on ITPE, we use the values �p/�d = 10, �r → ∞, and ˇ = 0
n order to make CCR inactive. In Fig. 2, and also in the following
gures, the abbreviations ‘Ast’ and ‘Asq’ stand for affine stretching

5

Fig. 3. Trouton ratio (Tr) vs. non-dimensional rate of elongation in uniaxial elon-
gational flow: Effect of stretch dynamics and CCR in Zone I (�d/�p = 0.1, �r = �p/100,
b → ∞, ˇ = 1).

model and affine squeezing model, respectively. Fig. 2 clearly shows
that finite extensibility is not playing any role in elongational flows
in steady state conditions. In transient conditions, finite extensibil-
ity plays some role at high elongational rates, though the difference
becomes less significant while moving from affine squeezing to
affine stretching and also with the inclusion of stretch dynamics.

The same observations about the role of finite extensibility apply
to Zone II. Therefore, the “infinite extensibility” limit (b → ∞) has
been used for the remainder of this work.

5.1.1.2. Effect of Stretch and CCR. Fig. 3 shows the effect of stretch
dynamics (�r = �p/100, ˇ = 0) and CCR (�r = �p/100, ˇ = 1) on the
steady state elongational viscosity for both models in Zone I. With
the inclusion of stretch dynamics, there is no upturn of the steady-
state elongational viscosity at ε̇∼1/�r (as in classical tube theories,
see Fig. 4), but there is an upward kink, after which �el vs. ε̇ follows
a −0.5 power law. The power law observed for �el between 1/�d
and 1/�r is (approximately) −1, which is in line with classical tube
theories (see Fig. 4). It will be shown in the section on quantitative
predictions that these features are all consistent with experimental
observations [17].

Inclusion of CCR causes more elongational thinning. Although
the effect of CCR should also be tested in shear, it is obvious that
CCR does not improve predictions in elongational flows, as will be
confirmed by the quantitative comparisons (Section 5.2). The pre-
dictions of the models in Zone II are qualitatively similar to those
in Zone I.
Fig. 4. Trouton ratio (Tr) vs. non-dimensional rate of elongation in uniaxial elonga-
tional flow: Comparison between models in Zone I (�d/�p = 0.1, �r = �p/100, b → ∞,
ˇ = 0).
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dynamics gives an additional small upward kink at the transi-
tion (around ε̇ = 1/�r) from −1 power law to −0.5 power law. The
entire feature is consistent with the experimental observations (see
Figs. 7(b, d) and 8(b, d)). Inclusion of CCR (ˇ = 1) works detrimen-
tally.

Table 1
Model parameters for PS200 and PS390.
ig. 5. Non-dimensional steady state shear stress vs. non-dimensional shear rate: (a)
one I (�d/�p = 0.1, �r = �p/100, b → ∞, ˇ = 1), and (b) Zone II (�d/�p = 10, �r = �p/100,
→ ∞, ˇ = 1).

ty. The model parameters used are, Gaussian chain limit (b → ∞),
r = �p/100, �d/�p = 0.1, and ˇ = 0 (no CCR). Predictions by other
odels show strong elongational thickening at ε̇ = 1/�r, while

oth affine squeezing and affine stretching models show elonga-
ional thinning even above ε̇ > 1/�r, except a small upward kink
round ε̇ = 1/�r. The qualitative behaviour of the proposed models
s clearly superior.

.1.2. Shear flow

.1.2.1. Effect of Stretch and CCR. As indicated in the above section,
he Ast and Asq models show qualitatively similar predictions for
longational flow in Zones I and II. The effect of stretch dynam-
cs and CCR on steady state shear predictions is summarized in
ig. 5. Fig. 5(a) shows the non-dimensional steady state shear stress
T12/G0

N) vs. Deborah number (�r-based) for Zone I (�d/�p = 0.1).
t can be observed that at high shear-rates, the affine squeezing

odel predicts unstable shear-thinning behaviour in the absence
f CCR (ˇ = 0), but the affine stretch model is always stable, even
ithout CCR. By reference to the elongational flow predictions pre-

ented above, this observation leads to the conclusion that the
ffine stretching model may be physically more meaningful than
he affine squeezing model and that CCR is not needed for stability
n the case of moderately entangled systems. On the other hand, as
een from Fig. 5(b) for Zone II (�d/�p = 10) i.e., for highly entangled
ystems, CCR is needed for stability in both models. The inclusion
f stretch dynamics qualitatively does not make a difference in
oth zones and for both models, but it improves the quantitative
redictions, as will be seen in the next section.

.1.2.2. Comparisons with other models. Comparisons between the
redictions of the Ast, Asq, and other models [9,14,15] for steady
tate shear stress are shown in Fig. 6. All predictions are made for

he no CCR condition (ˇ = 0). It is seen that all models except the
ffine stretching model show a maximum shear stress. The max-
mum steady state shear stress shown by Rolie-Poly is not very
ronounced despite the absence of CCR, supporting the idea that
CR may not be important in moderately entangled systems. The

6

Fig. 6. Non-dimensional steady state shear stress vs. non-dimensional shear rate:
comparison between models in Zone I (�d/�p = 0.1, �r = �p/100, b → ∞, ˇ = 0).

non relevance of CCR at high shear rates has also been supported
by recent slip-link simulations of Schieber et al. [28] for moderately
entangled PS systems. This conclusion may not be valid for highly
entangled systems as the importance of CCR may depend on the
level of entanglements (see Fig. 5(b)).

5.2. Quantitative predictions

Data of Bach et al. [17] and Schweizer et al. [29] in elonga-
tional and shear flow, respectively, have been used for quantitative
predictions. The samples (polystyrene, Z ∼ 20, �d ≈ �p) fall in the
moderately entangled category.

5.2.1. Elongational flow
Figs. 7 and 8 show the comparisons of the affine squeezing and

affine stretching models predictions with the elongational data of
Bach et al. [17] for two samples (PS200 and PS390). The model
parameters used are given in Table 1.

The ratio �p for PS390 to �p for PS200 is 3.76, and the ratio M2

for PS390 to M2 for PS200 is 3.8. Thus, the molar mass scaling of �p

as given by Marrucci and Ianniruberto [1] is about right. It should
also be noted that �p ∼ 10 �r, which is also consistent with Marrucci
and Ianniruberto [1].

5.2.1.1. Transient flow. Figs. 7(a, c) and 8(a, c) show the effect of
stretch dynamics and CCR on the transient tensile stress as a func-
tion of Hencky strain ε, for PS200 and PS390. It can be seen from
these Figs. (7(a, c), 8(a, c)) that the model predictions are good, espe-
cially for affine stretching. Inclusion of stretch dynamics improves
the predictions by both models, but inclusion of CCR works detri-
mentally.

5.2.1.2. Steady flow. Figs. 7(b, d) and 8(b, d) show the variation
of the Trouton ratio (�el/�0) vs. elongational rate ε̇ for PS200
and PS390. Predictions by both models can be compared with
the experimental data. In the relaxation zone, both models, when
only including reptation and tube pressure terms (i.e., �r ≈ ∞ and
ˇ = 0), follow the −0.5 power law for �el vs. ε̇. Inclusion of stretch
Sample G0
N (kPa) �d (s) �r (s) �p (s)

PS200 at 130 ◦C 200 428 50 476
PS390 at 130 ◦C 200 3620 200 1787
PS200 at 175 ◦C 200 0.39 0.046 0.43



Fig. 7. Comparisons between experimental data [17] on transient tensile stress (a
and c) and steady state elongational viscosity (b and d) and predictions by the affine
squeezing model. (The symbols from top to bottom are experimental data for elon-
gation rate (ε̇) of 0.1, 0.03, 0.01, 0.003 and 0.001 s−1 for PS200 and for elongation rate
(ε̇) of 0.1, 0.03, 0.01, 0.003, 0.001 and 0.0003 s−1 for PS390 in a and c, respectively.)

Fig. 8. Comparisons between experimental data [17] on transient tensile stress (a
and c) and steady state elongational viscosity (b and d) and predictions by the affine
stretching model. (The symbols from top to bottom are experimental data for elon-
gation rate (ε̇) of 0.1, 0.03, 0.01, 0.003 and 0.001 s−1 for PS200 and for elongation rate
(ε̇) of 0.1, 0.03, 0.01, 0.003, 0.001 and 0.0003 s−1 for PS390 in a and c, respectively.)

7
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Fig. 11. Comparisons between experimental data [29] on steady state shear stress
and first normal stress difference and predictions by both the affine squeezing and
affine stretching model.
ig. 9. Comparisons between experimental data [29] on transient first normal stress
ifference (N1) and predictions by both the affine squeezing and affine stretching
odel.

.2.2. Shear flow
Figs. 9–12 show the quantitative predictions of the models for

ransient and steady shear flow for PS200. Experimental data by
chweizer et al. [29] are used for this purpose. The model param-
ters used for PS200 (Table 1) are shifted to 175 ◦C [17]. The
orresponding values are shown in Table 1.

.2.2.1. Transient flow. Fig. 9 shows the quantitative predictions for
he transient first normal stress difference N1, at �̇ = 10 s−1 for
S200. Both models, when only reptation and tube pressure terms
re included (solid lines) show a maximum before reaching steady
tate. The inclusion of stretch dynamics (dashed lines) almost erases
he peaks and also improves the predictions significantly, especially
or the affine stretching model. On the other hand, CCR (ˇ = 1, dotted
ines) reduces the steady state values unrealistically. Similar model
redictions are obtained for the transient shear stress at �̇ = 10 s−1

or PS200 as shown in Fig. 10. As opposed to the dampening of the
eaks in the transient N1 (Fig. 9), inclusion of the stretch dynamics

redicts these peaks nicely in the transient shear stress (Fig. 10).
he transient offset between the predictions and the experimental
ata up to about 0.2 s is attributed to the axial compliance of the
heometer and the normal force capacity of the transducer [29].

ig. 10. Comparisons between experimental data [29] on transient shear stress (T12)
nd predictions by both the affine squeezing and affine stretching model.

8

Fig. 12. Effect of CCR on quantitative predictions by both models for steady state
shear stress and N1.

5.2.2.2. Steady flow. Figs. 11 and 12 show the quantitative steady
state predictions for the shear stress T12, and the first normal stress
difference N1, by both models. It can be seen from Fig. 11 that the
predictions by the affine stretching model in the absence of CCR,
without (thin solid lines) and with chain stretch (dashed thin lines)
are consistent with the experimental data [29]. On the other hand,
affine squeezing predicts unstable shear-thinning in both cases at
high shear rates. Although inclusion of CCR (ˇ = 1) stabilizes the
affine squeezing model (Fig. 12), the predictions are too much devi-
ating from the experimental data. Thus, CCR seems to be always
working detrimentally for moderately entangled systems.

6. Conclusions

The simple, single segment models presented in this paper
appear promising in describing both qualitatively and quantita-
tively the non-linear behaviour of entangled linear polymer melts.

Principal conclusions of this work are as follow:

• Two simple, single segment tube models, based on either an
affine squeezing or an affine stretching assumption have been
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[28] J.D. Schieber, D.M. Nair, T. Kitkrailard, Comprehensive comparisons with non-
presented. The qualitative and quantitative predictions of both
models in shear flow indicate that the affine stretching model is
physically more meaningful (stable response in shear flow) than
the affine squeezing model for moderately entangled systems
(Zone I).
Predictions in elongational flow by both models (Fig. 2) show that
ITPE relaxes the need for unrealistically low finite extensibility.
Inclusion of the stretch dynamics improves quantitative predic-
tions by both models in elongational and shear flows. Especially,
inclusion of stretch dynamics can precisely predict the kink
(Figs. 7(b, d) and 8(b, d)) at the transition (ε̇∼1/�r) from −1 power
law to −0.5 power law, observed by Bach et al. for polystyrene.
[17]. This prediction also leads us to consider this experimentally
observed kink to be physical.
Based on the predictions in shear flow (Figs. 9–12), it is con-
cluded that, inclusion of CCR works detrimentally for moderately
entangled systems (Zone I) when ITPE is taken into account. This
conclusion is consistent with the non importance of CCR observed
by Schieber et al. [28] for PS systems in their slip-link simula-
tions. On the other hand, the requirement of CCR for stability
(see Fig. 5b) in highly entangled systems (Zone II) leads to the
conclusion that CCR may be important in that case.
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