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The main aim of this paper is the development of a refinement procedure able to operate in the context of the constrained natural 
element method (C-NEM). The C-NEM was proposed by the authors in a former work and its main meshless features, that allow to 
describe large domain changes as well as to handle fixed or moving discontinuities, were analyzed. Sometimes, in order to improve the 
interpolation accuracy for describing boundary layers or an anisotropic behavior, new nodes must be added, removed or repositioned. 
The interpolation in the vast majority of meshless techniques is free of mesh quality requirement. Thus, introduction, elimination or 
repositioning of nodes is a trivial task, because no geometrical restrictions exist. In this way, nodes can be added without geometrical 
checks in the regions where the solution must be improved (identified by using an appropriate error indicator). For this purpose, in this 
paper an a posteriori error indicator will be proposed and tested in some linear elastostatic problems benchmarks involving different levels 
of difficulty (stress concentration, solution singularities, . .  . ) all of them with a known exact solution. The computational implemen-
tation of this error indicator is very simple, and when it is used in tandem with an efficient refinement procedure, which makes use of the 
meshless features of the C-NEM, provides an accurate adaptation procedure, specially appropriate in the C-NEM framework.
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1. Introduction

The objective of this work is to define an efficient error
indicator and the associated refinement procedure within
the framework of the meshless natural neighbor Galerkin
method. The finite element method (FEM), which has been
widely used in many engineering problem simulations,
exhibits some limitations when the mesh become highly dis-
torted. It is well known that finite element interpolation
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fails when the elements (where the interpolation is defined)
becomes too distorted [2]. In order to avoid these problems,
alternative approaches, known as meshless methods, have
been developed. Meshless methods describe a continuum
body by a finite number of nodes. Thus, the unknown fields
are interpolated everywhere from the nodal values that con-
stitute the problem degrees of freedom. The main advantage
of meshless methods is the fact that the interpolation accu-
racy is much less affected by the nodal distribution. How-
ever, it is obvious that in any case, an appropriate nodal
density is required in order to describe high gradients
(boundary layers) as well as an anisotropic behavior of



the solution. For this reason, nodal adaptation is needed to
compute numerical solutions of problems governed by par-
tial differential equations.

In the framework of the finite elements, these adaptation
procedures are known as remeshing techniques. Remeshing
is required for example when the element geometry
becomes too distorted as a consequence of large domain
changes. Moreover, sometimes, in order to improve the
interpolation accuracy for describing boundary layers or
an anisotropic behavior, new nodes must be added,
removed or repositioned, and in fact this is not an easy task
because the mesh associated to the new nodal distribution
cannot contain any too distorted element. If this is not the
case, local or global remeshing is required in order to guar-
antee the geometrical quality of the mesh elements.

On the contrary, in meshless techniques, interpolation is
free of that mesh requirement. Thus, introduction, elimina-
tion or repositioning of nodes is a trivial task, because no
geometrical restrictions exist. In this way, nodes can be
added without geometrical checks in the regions where
the solution must be improved (identified by using an
appropriate error indicator). Once that the new nodes are
placed into the domain, and for problems making use of
internal variables, these variables can be initialized at those
nodes using the standard meshless interpolation. This
appealing feature of this kind of techniques simplifies sig-
nificantly the refinement procedures. Moreover, the use
of smoother shape functions (constructed without a finite
element mesh support) allows to deal with large geometri-
cal transformations [31].

Many meshless methods have been developed, including
the meshfree finite differences [21], the smooth particle
hydrodynamics (SPH) [30], the diffuse element method
(DEM) [33], the h-p clouds method [14], the element-free
Galerkin (EFG) method [4], the reproducing kernel parti-
cle method (RKPM) [27], the radial basis functions
(RBF) and the method of finite spheres [12], among many
others. Nevertheless, a troublesome task in these tech-
niques is the imposition of essential boundary conditions,
because in general the Kronecker delta property is not sat-
isfied. Despite of several techniques have been proposed to
overcome this problem [4,7,19], an appealing alternative
technique which allows to circumvent this difficulty lies
in the use of the natural neighbor interpolation (NEM)
[34,36].

The natural neighbor Galerkin method, or natural ele-
ment method (NEM), which has been considered as a
member of the meshless methods family, satisfies the Kro-
necker delta property as well as the linear consistency.
Sukumar has shown in [36] the strict linearity of the shape
functions along any convex boundary. However, on the
non-convex ones, the NEM shape functions are no more
linear. In this way, we consider a point located on a non-
convex boundary. The interpolated value of a field at this
position depends on the two neighbor nodes located on
the boundary and on other spurious nodes: some are
located in the neighborhood of this point within the
2

domain and others on the non-convex boundary far from
the considered point, as described in our former works [42].

A strategy to overcome this problem and to recover the
linearity of the shape functions along any kind of boundary
(convex or not) was proposed by Cueto et al. in [11] by
invoking the concept of alpha shapes. Moreover, this tech-
nique allows to proceed without an explicit description of
the domain boundary, which is automatically extracted
from the cloud of nodes. However, the treatment of prob-
lems involving cracks requires an appropriate adaptation
of the nodal density, which can reach infinity as the width
of the crack goes to zero.

On the contrary, if the domain boundary is defined
using a CAD description, the shape functions can be com-
puted from the constrained Voronoi diagram instead of the
Voronoi diagram used in the NEM, and no more nodal
density control is required. It has been proved in our for-
mer works [42] that the use of this technique, known as
constrained natural element method (C-NEM), allows to
recover the shape functions linearity along any kind of
boundary. Despite of the fact that the constrained Voronoi
diagram makes use of a visibility criterion, no numerical
discontinuities are introduced. Thus, cracks and fixed or
moving discontinuities can be treated in a very simple
manner [42,43].

Error estimation and the associated remeshing are well
established in the finite elements framework [22,3,47]. A
state of the art on basic a posteriori error estimation,
including limits of usual error measures, has been proposed
recently in [16]. Nevertheless, the emergence of papers on
these topics in the context of meshless methods is more
recent, despite of its high simplicity, as previously argued,
for the insertion and deletion of nodes. In the last years,
some researches have been devoted for developing suitable
adaptive approaches for meshless methods.

In the context of the reproducing kernel particle method
(RKPM), Belytschko et al. [5], and Liu et al. [28] have pro-
posed approaches based on the residuals. You et al. [41]
have used an original approach by utilizing the reproduc-
ing kernel as a low-pass filter and the corresponding
high-pass filter is used to identify the locations of high gra-
dient and serves as an operator for error indication. In the
context of the element-free Galerkin (EFG), error estima-
tion has been widely investigated using recovery based
error indicators [47]. Owing to the smooth shape functions
in meshless methods, the stress recovery error does not
require any projection as was needed in the C0 finite ele-
ment methods. Chung and Belytschko [10] introduced local
and global error estimates for the element-free Galerkin
(EFG) method. The essence of this error estimate is to
use the difference between the values of the recovered stress
and those obtained directly by the EFG solution. More in-
depth study about refinement procedures in EFG have
been conducted by Lee and Zhou [24,25] and in the RKPM
by Lu and Chen in [29]. Nevertheless, some difficulties
appear, because the quality of the effectivity index depends
on the number of nodes contained in the domain of
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Fig. 1. Construction of the Sibson shape functions.
influence used in the computation and in the projection
stages [10]. Moreover, the difficulties associated to the
adaptation of the domain of influence during refinement
are discussed in [24].

The main aim of the present work is the development of
a refinement procedure able to operate in the context of the
C-NEM, which includes an a posteriori error indicator,
based on the stress recovery technique.

The layout of this paper is as follow: Section 2 provides
a brief description of the constrained natural neighbor
Galerkin method, applied to the elastostatic formulation.
In Section 3, we will propose an a posteriori error indica-
tor, as well as the associated refinement technique. Section
4 illustrates the capabilities of the proposed strategy
through some numerical examples including different levels
of stress concentration, all of them with known analytical
solutions. Effectivity indexes will be computed to evaluate
the accuracy of the error indicator.

2. The constrained natural element method

The natural element method is an appealing choice
among the different meshless methods, because essential
boundary conditions can be imposed directly, without det-
riment to the other properties (linear consistency, smooth-
ness, . . .). It was originally proposed by Traversoni [39],
Sambridge et al. [34] and was widely investigated in elasto-
static problems by Sukumar [36]. Moreover, it was success-
fully applied in fluids dynamics simulations using updated
Lagrangian formulations involving polymer injection and
metal forming simulations [31,32,1], in problems involving
cracks [42] and in phase change problems involving moving
discontinuities [43].

2.1. Constrained natural element interpolation

We briefly touch upon the foundation of Sibson’s natu-
ral neighbor coordinates (shape functions) that are used in
the natural element method. For a more in-depth discus-
sion on the Sibson interpolant and its application for solv-
ing second-order partial differential equations, the
interested reader can refer to Braun and Sambridge [34]
and Sukumar et al. [36]. The NEM interpolant is con-
structed on the underlying Voronoi diagram. The Dela-
unay tesselation is the topological dual of the Voronoi
diagram.

For the sake of simplicity we only consider in the pres-
ent work the 2D case, the 3D case being a direct extension.

Let S = {n1,n2, . . . ,nN} be a set of nodes in R2. The
Voronoi diagram is the subdivision of R2 into regions Ti

(Voronoi cells) defined by

T i ¼ fx 2 R2 : dðx; xiÞ < dðx; xjÞ; 8j 6¼ ig; 8i ð1Þ

The Sibson coordinates of x with respect to a natural
neighbor ni (see Fig. 1) is defined as the ratio of the overlap
area (volume in 3D) of their Voronoi cells to the total area
3

(volume in 3D) of the Voronoi cell associated with the
point x:

/iðxÞ ¼
AreaðafgheÞ
AreaðabcdeÞ ð2Þ

If the point x coincides with the node ni, i.e. x = xi then
/i(xi) = 1, and all the other shape functions vanish, i.e.
/i(xj) = dij (dij being the Kronecker’s delta). The properties
of positivity, interpolation and partition of unity are then
verified [36]:

0 6 /iðxÞ 6 1

/iðxjÞ ¼ dijPn
i¼1/iðxÞ ¼ 1

8><
>: ð3Þ

The natural neighbor interpolation satisfies the local coor-
dinate property [35], namely:

x ¼
Xn

i¼1

/iðxÞxi ð4Þ

which combined with Eqs. (3), implies that the natural
neighbor interpolant spans the space of linear polynomials
(linear completeness).

Natural neighbor shape functions are C1 at any point
except at the nodes, where they are only C0, and on the
boundaries of the Delaunay circles (spheres in 3D) where
they are only C1, because of the discontinuity in the neigh-
bor nodes across these boundaries. Hiyoshi and Sughara
[18] have shown that the Sibson interpolant belongs to a
more general class of Voronoi-based interpolants, called
kth order standard coordinates, proving that the interpolant
generated by the kth order standard coordinates have Ck

continuity on the Delaunay circles (spheres) boundaries.
Thus, the Sibsonian and non-Sibsonian (Laplace) coordi-
nates [37] results to be the standard coordinates of order
1 and 0, respectively.

Another important property of this interpolation is its
ability to reproduce linear functions on the boundary of
convex domains. The proof can be found in Sukumar
et al. [36], that we illustrate in Fig. 1 (b): due to the fact that
the Voronoi cells areas associated to points on the bound-
ary become infinite, the contribution of internal points van-
ishes in the limit when the point approaches the convex
boundary, and the shape functions associated with nodes
n1 and n2 become linear on the segment (n1 � n2). This is



not the case when non-convex boundaries are considered.
This drawback will be considered later.

Consider an interpolation scheme for a vector-valued
function uðxÞ : X � R2 ! R2, in the form:

uhðxÞ ¼
Xn

i¼1

/iðxÞui ð5Þ

where ui are the vectors defining the nodal degrees of free-
dom at the n natural neighbors of point x, and /i(x) are the
Sibson coordinates defined in Eq. (2) associated with each
node ni. It can be noticed that Eq. (5) defines a local inter-
polation scheme which will be used to define both the trial
and the test functions considered in the discretization of
different variational formulations.

A recent development in the NEM, the constrained nat-
ural element method (C-NEM), was proposed in [42,43] in
order to circumvent the problems induced by non-convex
domains. In this approach, a visibility criterion is intro-
duced to restrict the natural neighbors (influent nodes).
For this purpose the constrained Voronoi diagram is con-
structed, from which the shape functions can be easily com-
puted. In this manner, linear interpolation is recovered
along the boundary of non-convex domains, making possi-
ble the introduction of essential boundary conditions as
well as the treatment of fixed or moving discontinuities.

In the C-NEM framework, the interpolation can be
expressed by

uhðxÞ ¼
XV

i¼1

/C
i ðxÞui ð6Þ

where V is the number of natural neighbors visible from
point x and /C

i is the constrained natural neighbor shape
function, which is actually the Sibson interpolant com-
puted using the constrained Voronoi diagram [42].

2.2. Elastostatic formulation

We consider the 2D small displacement elastostatic
problem, which is described by the equilibrium equation:

$ � rþ b ¼ 0 in X ð7Þ
where X 2 R2 is the material domain, $ is the divergence
operator, r is the Cauchy stress tensor and b is a body force
term.

The constitutive relation is given by

r ¼ C� ð8Þ

where r and � are the vector form of the stress and linear-
ized strain tensor (symmetric part of the gradient of dis-
placements tensor) respectively, and C is the elastic
tensor matrix form.

The essential and natural boundary conditions are given
by

u ¼ �u on Cu

rn ¼ �t on C
ð9Þ
t
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where C = Cu [ Ct is the boundary of X, n is the unit
outward normal vector defined on C, and �u and �t are the
prescribed displacements and tractions, respectively.

The variational formulation associated with the elasto-
static problem results:

Find u 2 H1(X) kinematically admissible ðu ¼ �u on CuÞ
such thatZ

X
r � �� dX ¼

Z
X

b � v� dXþ
Z

Ct

�t � v� dC; 8v� 2 H 1
0ðXÞ

ð10Þ

where H1(X) and H 1
0ðXÞ are the usual Sobolev functional

spaces.
On substituting the trial and test functions (both

approximated in the C-NEM framework) in the above
equation and using the arbitrariness of the field v*, the fol-
lowing linear system of equations is obtained after numer-
ical integration (whose details will be presented in the next
section):

Kd ¼ fext ð11Þ

where d is the vector containing the nodal displacements,
the matrix K and the vector fext being given by

K ¼
Z

X
BtCBdX ð12Þ

fext ¼
Z

Ct

Nt�tdCþ
Z

X
NtbdX ð13Þ

where N and B are the matrix containing the shape func-
tions and their derivatives respectively.

2.3. Stabilized conforming numerical integration

Recently, new numerical integration procedures have
been proposed in the framework of meshless simulations.
Domain integration using Gauss quadrature introduces
significant numerical errors due to the following state-
ments: (i) the integration cells do not match shape function
supports; (ii) the non-polynomial character of the meshless
shape functions [13]. On the other hand, direct nodal inte-
gration, using the nodes as integration points, leads to
numerical instabilities [9].

In this work, we use the integration procedure proposed
by Chen et al. [8]: the stabilized conforming nodal integra-
tion (SCNI), which was applied to the NEM by Gonzalez
et al. [15] and Yoo et al. [40]. In this approach, a strain
smoothing stabilization is performed to stabilize the nodal
integration. The SCNI is based on the assumed strain
method, in which a modified gradient is introduced at the
integration point (node) [8]:

~$uhðxiÞ ¼
1

Ai

Z
Xi

$uhðxÞdX ð14Þ

where xi are the coordinates of node ni.
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Fig. 2. Integration domains for the SCNI procedure: (a) intersection
between the Voronoi diagram and the domain closure and (b) constrained
and bounded Voronoi diagram.
Thus the modified strain vector is given by

~�hðxiÞ ¼
1

Ai

Z
Xi

�hðxÞdX ¼ 1

Ai

Z
Xi

ouh
1ðxÞ
ox1

ouh
2ðxÞ
ox2

ouh
1ðxÞ
ox2

þ ouh
2ðxÞ
ox1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

dX

ð15Þ
Now, by applying the divergence theorem, it results:

~�hðxiÞ ¼
1

Ai

Z
Ci

uh
1ðxÞn1

uh
2ðxÞn2

uh
1ðxÞn2 þ uh

2ðxÞn1

8><
>:

9>=
>;dC ð16Þ

Xi is the Voronoi cell related to the node ni whose bound-
ary will be noted by Ci, being Ai its area, as depicted in
Fig. 2.

Introducing now the natural element approximation of
the displacement field according to Eq. (6) we obtain:

~�hðxiÞ ¼ ~Bid ð17Þ
which can be expressed explicitly by

~�hðxiÞ¼

o~/1ðxiÞ
ox1

0 o~/2ðxiÞ
ox1

0 � � � o~/N ðxiÞ
ox1

0

0 o~/1ðxiÞ
ox2

0 o~/2ðxiÞ
ox2

� � � 0 o~/N ðxiÞ
ox2

o~/1ðxiÞ
ox2

o~/1ðxiÞ
ox1

o~/2ðxiÞ
ox2

o~/2ðxiÞ
ox1

� � � o~/N ðxiÞ
ox2

o~/N ðxiÞ
ox1

8>>><
>>>:

9>>>=
>>>;

u11

u12

u21

u22

..

.

uN1

uN2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼ ~Bid

ð18Þ
where the components of ~Bi are defined by

o~/jðxiÞ
ox1

¼ 1

Ai

Z
Ci

/jðxÞn1ðxÞdC ð19Þ

o~/jðxiÞ
ox2

¼ 1

Ai

Z
Ci

/jðxÞn2ðxÞdC ð20Þ

Obviously, most of the components in the matrix ~Bi are
zero due to the compact support of the shape functions.
Chen et al. [8] proposed to use the intersection between
the Voronoi diagram and the domain closure to define
the integration cells Xi. Introducing the C-NEM approxi-
mation, the smoothed strain and the nodal integration,
the global stiffness matrix is obtained by assembling the
contribution of each node ni:

K ¼
X

i

~Ki ¼
X

i

Ai
~Bt

iC
~Bi ð21Þ

and then, the stress in each cell can be deduced from:

~rh
i ¼ C~Bid ð22Þ

which results also constant inside each Voronoi cell.
The use of the divergence theorem avoids the computa-

tion of the shape functions derivatives, requiring only the
evaluation of the shape functions on the boundary of the
Voronoi cells.
5

This integration technique can be naturally applied in
the C-NEM context, where the nodal integration domains
coincide with the intersection between the constrained
Voronoi cells and the domain. Moreover, it must be
noticed, as illustrated in Fig. 2, that the intersection
between the standard Voronoi diagram and the domain
does not define accurately the integration domain.

3. Adaptation procedure

Error indicators are used in numerical simulations to
provide some information about the refinement or nodal
adaptation to carry out, for improving the solution accu-
racy. In this section, an error indicator is proposed and
tested in the C-NEM context, that will be used to define
an adaptation strategy.

3.1. Error indicator based on natural neighbor recovery

stress

The Zienkiewicz–Zhu estimator was proposed in [47]. Its
aim is to estimate k$u� $uhkL2ðXÞ. For this purpose, a
higher-order recovery Gu of $u must be constructed using
only uh. We first consider an approximation Gu more accu-
rate than $uh, i.e.

k$u�GukL2ðXÞ 6 C1hak$u� $uhkL2ðXÞ; a > 0 ð23Þ

The effectivity index is a measure of the error estimate com-
pared to the exact error. We have

k$uh �GukL2ðXÞ ¼ kð$uh � $uÞ � ðGu� $uÞkL2ðXÞ ð24Þ

Using triangle inequality, we have

k$uh � $ukL2ðXÞ � kGu� $ukL2ðXÞ 6 k$uh �GukL2ðXÞ

6 k$uh � $ukL2ðXÞ þ kGu� $ukL2ðXÞ ð25Þ
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Fig. 3. Computing errors in each Voronoi cell.
Then dividing each term by k$uh � $ukL2ðXÞ it leads

1�
kGu� $ukL2ðXÞ

k$uh � $ukL2ðXÞ
6 h 6 1þ

kGu� $ukL2ðXÞ

k$uh � $ukL2ðXÞ
ð26Þ

If Eq. (23) is verified, then the effectivity index is supposed
approaching 1 as h approaches zero, and thus leads to
asymptotically exact error indication. Let wi(x) and /i(x)
two sets of shape functions with zero and first order of con-
sistency, respectively. We have for a > 0:

$u�
Xn

i¼1

/iðxÞ$uhðxiÞ
�����

�����
L2ðXÞ

6C1ha $u�
Xn

i¼1

wiðxÞ$uhðxiÞ
�����

�����
L2ðXÞ

By choosing wi(x) as the Thiessen natural neighbor shape
function

wiðxÞ ¼
1 if x 2 Xi

0 otherwise

�
ð27Þ

where Xi is a Voronoi cell. By choosing /i(x) as the Sibson
natural neighbor shape functions and by using the stabi-
lized conforming nodal integration scheme previously de-
scribed, we define

~$uhðxiÞ �
1

Xi

Z
Xi

$uhðxÞdX ð28Þ

~$uhðxÞ ¼
Xn

i¼1

wiðxÞ~$uhðxiÞ ð29Þ

We then construct Gu using:

GuðxÞ ¼
Xn

i¼1

/iðxÞ~$uhðxiÞ ð30Þ

Using Eqs. (30), (29) and (23) we have

k$u�GukL2ðXÞ 6 C1hak$u� ~$uhkL2ðXÞ; a > 0 ð31Þ

Now we define

~rhðxÞ ¼ C~Bd ð32Þ

with ~B defined in Eq. (18), as well as

r̂ðxÞ ¼
Xn

i¼1

/iðxÞ~rhðxiÞ ð33Þ

In the case of linear problems, ~B is linear with respect to
~rhðxÞ. We thus have

kur̂ðxÞ � urðxÞkEðXÞ 6 C1haku~rðxÞ � urðxÞkEðXÞ; a > 0

ð34Þ

where kur(x)kE(X) denotes the energy norm with respect to
u(x), defined as

kurðxÞkEðXÞ ¼
Z

X

1

2
rTC�1r

� �1=2

ð35Þ
6

Finally, using (26) and (34), we have

1�
kur̂ � urkEðXÞ

ku~r � urkEðXÞ
6 h 6 1þ

kur̂ � urkEðXÞ

ku~r � urkEðXÞ
ð36Þ

Then h is an effectivity index associated with the proposed
error indicator, assumed to be asymptotically exact.

Remark. The choice of /i(x) is not unique, one could
consider higher-order reproducing shape functions. For
example, we have proposed in [45] a quadratic NEM
interpolant, that may lead to more accurate error indicator.
Nevertheless, the higher cost of that interpolant may not be
worth as compared to the simplicity of the proposed
indicator. A study of such indicator is outside the scope of
this paper.

In order to evaluate the integral in Eq. (35), the Voronoi
cells are triangulated, as depicted in Fig. 3, and Gauss inte-
gration is performed in each triangle. As the constrained
Voronoi cells define a partition of the whole domain, the
global error can be expressed as a function of local contri-
butions by

kur̂ � u~rk2
EðXÞ ¼

XN

i¼1

kur̂ � u~rk2
EðXiÞ ð37Þ

where N is the total number of nodes in the domain. We
can also define a local relative contribution to the global
error from:

gi ¼
kur̂ � u~rkEðXiÞ

kur̂kEðXÞ
ð38Þ
3.2. Refinement strategy

To improve the solution approximation without a detri-
ment in the computational efficiency, meanwhile to adapt
the nodal density and distribution according to the solution
behavior, the knowledge of local error contributions is
crucial.

For this purpose, we define a permissible error indica-
tion �g and the permissible error indication in each cell �gi

satisfying:



(a)

(b)

Fig. 4. Strategies of nodal refinement based on the Voronoi cells. (o):
additional nodes.
�g2 ¼
XN

i¼1

ð�giÞ2 ð39Þ

If we are looking for a similar amount of error in each cell,
then �gi ¼ �g�; 8i:

�g� ¼
�gffiffiffiffi
N
p ð40Þ

Following Zienckiewicz et al. [48], we can compute the char-
acteristic length of the new cell with respect to the old one by
assuming a p-order convergence (H(hp)). Thus, we can write

hnew
i

hold
i

¼ �g�
gi

� �1
p

¼
�gkur̂kEðXÞffiffiffiffi

N
p
ku~r � ur̂kEðXiÞ

" #1
p

ð41Þ

From our experience, the C-NEM rate of convergence is
very close to that obtained using triangular finite elements
with linear interpolation (due to the linear consistency of
Sibson’s interpolation). Thus, p is expected to be the rate
of convergence using an energy norm.

To decide whether a Voronoi cell should be subdivided,
we define the characteristic length h of a Voronoi cell as the
mean distance between the central node and its visible
neighbors, which using any of the refinement strategies
shown in Fig. 4, leads to

hnew

hold
6

1

2
ð42Þ

Thus, the refinement must operate if

�gkur̂kEðXÞffiffiffiffi
N
p
ku~r � ur̂kEðXiÞ

" #1
p

6
1

2
ð43Þ

The strategy depicted in Fig. 4(a) has been considered by
several authors [41,29] and is suitable to refine irregular
clouds of nodes. Starting from an initial cloud of nodes,
we first construct the associated Voronoi diagram. If the
condition (43) is valid in a given Voronoi cell, then new
nodes are added on the vertices of the cell. This operation
is repeated for all cells. Then We reconstruct the Voronoi
diagram of the new cloud of nodes, and so on until the glo-
x1

L0

x2

(a)

Fig. 5. (a) Square plate with plane stre
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bal error is below the given tolerance. A different strategy is
described in Fig. 4(b), where the new nodes are inserted be-
tween the central node and the natural (visible) neighbors.
In the following, this strategy (b) has been applied to treat
the numerical examples.

4. Numerical examples

4.1. Plane stress plate problem

A square plate of length L is subjected to the following
system of loads (as depicted in Fig. 5):

Fd ¼
2x1

L
� 1

� 	
e1 �

x2

L
1� x2

L


 �
e2 on x1 ¼ 0 ð44Þ

and
(b)

sses. (b) Constrained Voronoi cells.
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Fig. 7. Convergence of the different errors in a plane stress plate problem.
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Fig. 8. Effectivity index associated with the NN1 and the NN2 error
Fd ¼
x2

L
1� x2

L


 �
e2 on x1 ¼ L ð45Þ

where e1 and e2 are the unit vectors defining the x1 and the
x2 axes directions.

This benchmark was investigated in the finite element
context by Ladevèze and Pelle [23]. The exact stress solu-
tion is given by

r11 ¼
2x2

L
� 1

� 	
x1

L
� 1


 �
ð46Þ

r22 ¼ 0 ð47Þ

r12 ¼
x2

L
1� x2

L


 �
ð48Þ

In order to evaluate the error indicators, the energy norms
related to the exact stress and the different computed stres-
ses are plotted in Fig. 6 for different nodal densities. We
can notice that the reference solution r̂ converges faster
than ~r. The effectivity index is then expected to approach
asymptotically to one in this particular problem. The en-
ergy norm of the different errors indications are depicted
in Fig. 7, from which we can notice the higher rate of con-
vergence of kur̂ � urexkEðXÞ.

Fig. 8 and Table 1 present the effectivity index associ-
ated with the proposed error indicator. The index is close
to one, and the accuracy increases asymptotically, as
expected. Nevertheless, the stress field is smooth in this
problem, and in order to evaluate the error indicator for
nodal refinement purpose, we will study in the next section
problems involving stress concentration.

4.2. Traction of a plate with a central hole

A traction load is applied on a square plate as depicted
in Fig. 9 under plane stress conditions. The exact stress
solution for an infinite plate subjected to a unit traction
on the boundaries whose unit normal vector coincides with
the x1 direction, is given by [38]
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Fig. 6. Convergence of the exact and computed stresses for the plane
stress plate problem.

indicators for the plane stress plate problem.

Table 1
Effectivity indexes for the different problems

Nb.
nodes

Example 1 Example 2 Example 3

Smooth stress field Stress concentration Stress singularity

5 · 5 0.925 0.746 0.721
10 · 10 0.967 0.891 0.748
20 · 20 0.984 0.969 0.722
30 · 30 0.989 0.969 0.720
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rex11
¼ 1� a2

r2

3

2
cosð2hÞ þ cosð4hÞ

� �
þ 3

2

a4

r4
cosð4hÞ ð49Þ

rex22
¼ � a2

r2

1

2
cosð2hÞ � cosð4hÞ

� �
� 3

2

a4

r4
cosð4hÞ ð50Þ

rex12
¼ � a2

r2

1

2
sinð2hÞ þ sinð4hÞ

� �
þ 3

2

a4

r4
sinð4hÞ ð51Þ
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Fig. 10. Energy norm of the errors in the plate with a hole problem.
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Fig. 11. Effectivity index in the plate with a hole problem.
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Fig. 9. (a) Square plate with a central hole. (b) Computational domain and boundary conditions.
To avoid the error introduced by the finite size of the plate,
exact traction Fd = rexn are imposed on the square plate
boundaries. For reasons of symmetry, only a quarter of
the plate is analyzed. From Fig. 10 we can notice that
the reference solution r̂ still converges faster than other
ones. The effectivity index is presented in Fig. 11 as well
as in Table 1, exhibiting the asymptotically increase of
accuracy, despite of the stress concentration. A refinement
sequence using the criterion (43) is depicted in Fig. 12. As
we can notice the refinement is activated in the regions with
a significant stress concentration.

4.3. Mode-I crack problem

In this last example, a mode-I crack problem is consid-
ered, whose geometry is depicted in Fig. 13(a).

The exact stress solution in the crack tip neighborhood
is given by [26]
9

r11 ¼
KIffiffiffiffiffiffiffi
2pr
p cos

h
2

1� sin
h
2

sin
3h
2

� 	
ð52Þ

r22 ¼
KIffiffiffiffiffiffiffi
2pr
p cos

h
2

1þ sin
h
2

sin
3h
2

� 	
ð53Þ

r12 ¼
KIffiffiffiffiffiffiffi
2pr
p sin

h
2

cos
h
2

cos
3h
2

ð54Þ

To extend this solution to the whole domain, we impose on
the square plate boundary the exact traction: Fd = rexn,
where we assume L = 1 mm, a = L/2 mm and KI = 1.
The constrained Voronoi diagram allow us to introduce
easily and accurately the presence of the crack as well as
continuity around the crack tip without any special treat-
ment due to the salient features of the C-NEM shape func-
tions support [42].

The effectivity index is plotted in Fig. 14. We can notice
that the error indicator is reasonable and remain constant
for different nodal densities, perhaps due to the fact that
the stabilized conforming nodal integration regularizes



Estimated error : 11.3 % Estimated error : 7.2 %

Estimated error : 4.41 % Estimated error : 2.88 %

Exact error : 15.2 % Exact error : 8.1 %

Exact error : 4.60 % Exact error : 3.00 %

Fig. 12. Adaptive refinement in the plate with a hole problem.

(a) (b)

Fig. 13. (a) Mode-I crack problem geometry. (b) Exact boundary conditions.
the singularity, making it a useful tool for nodal
refinement.
10
A sequence of the adaptive refinement using the pro-
posed error indicator is depicted in Fig. 15. We can observe
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Fig. 14. Effectivity index in the mode-I crack problem.

Estimated error : 22.1 %

Exact error : 31.1 %

Estimated error : 9.6 %

Exact error : 12.6 %

Fig. 15. Refinement procedure in

11
that the stress concentration in the singularity neighbor-
hood is accurately accounted.

5. Conclusions

In this paper a refinement strategy able to operate with
accuracy in the C-NEM framework was presented and has
been tested in some linear elastostatic problems. A simple a
posteriori error indicator based on recovery stress in tan-
dem with stabilized nodal integration has been proposed
and tested in some benchmarks problems involving differ-
ent levels of difficulty (stress concentration, solution singu-
larity,. . .) all of them with a known exact solution. The
indicator exhibit asymptotically exact error estimation in
problems with different level of stress concentrations. In
problems involving singularities, the effectivity is reason-
able and constant, which makes it a useful tool for nodal
refinement in the context of the natural element method.
Estimated error : 15.3 %

Exact error : 21.3 %

Estimated error : 7.7 %

Exact error : 8.8 %

the mode-I crack problem.



Different adaptation procedures have been performed suc-
cessfully, proving the utility of the procedure.
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