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A simple critical-state-based double-yield-surface model for clay
behavior under complex loading

Zhen-Yu Yin • Qiang Xu • Pierre-Yves Hicher

Abstract The critical state concept has been widely used

in soil mechanics. The purpose of this study is to apply this

concept in the framework of multi-mechanism elastoplas-

ticity. The developed model has two yield surfaces: one for

shear sliding and one for compression. In this model, the

location of the critical state line is explicitly considered and

related to the actual material density to control the peak

strength and the phase transformation characteristics. The

stress reversal technique is incorporated into the model for

describing clay behavior under complex loading including

changes of stress direction. The determination of the model

parameters is discussed; it requires only one drained or

undrained triaxial test up to failure with an initial isotropic

consolidation stage. The model is used to simulate drained

and undrained tests under monotonic loading with different

over-consolidation ratios on various remolded and natural

clays, including true triaxial tests with different Lode’s

angles. Drained and undrained tests under cyclic loadings

are also simulated by using the set of parameters deter-

mined from monotonic tests. The comparison between

experimental results and numerical simulations demon-
strate a good predictive ability of this new simple model.

Keywords Clay � Constitutive modeling � Critical state �
Cyclic loading � Elastoplasticity

1 Introduction

The mechanical behavior of clay has been widely investi-

gated by numerous researchers during the last decades [3,

8, 11, 18, 20, 23, 33, 42]. A clayey material is contractive

(decreasing void ratio in drained condition in Fig. 1a and

decreasing mean effective stress in undrained condition in

Fig. 1b) in a normally or lightly over-consolidated state

and becomes dilative (increasing void ratio in drained

condition in Fig. 1a and increasing mean effective stress in

undrained condition in Fig. 1b) when the over-consolida-

tion ratio increases, with the stress state and the void ratio

converging to the critical state (CSL in p0–q plane and CSL

in e–logp0 / plane, shown in Fig. 1a, b). The location of

the CSL in the e–logp0 / plane is a key factor for deter-

mining the magnitude of contraction or dilation (see dif-

ference between B and B0, C and C0 in Fig. 1c) from an

initial given void ratio.

Based on experimental observations, conventional el-

astoplastic models for clay have been developed, and

generally can be classified into two categories:

(1) Critical-state-based elastoplastic models [4, 9, 20, 21,

23, 25–27, 30, 33, 34, 36, 41]. In these models, the

slope of CSL in the e–logp0 / plane ( k ) w is

explicitly used as a parameter, and the location of this

CSL is implicitly governed by the intersection point

of the yield surface with the CSL in p0–q plane.
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(2) Multi-mechanism models [13, 14, 16, 19, 24]. The

model by Hujeux [16] used the location of CSL as

presented in the first category, and twelve parameters

are needed. In other models, the CSL in the

e–logp0 / plane has not been used. As a result, the

contraction and dilation up to critical states during

compression and shearing are not guaranteed. Thus,

these models are difficult to simulate clay behavior

along various stress paths and loading conditions.

Different from them, other models have also been

developed for clay. For instance, Mašin [22] and Huang

et al. [15] proposed clay models based on the hypoplas-

ticity framework; Calladine [5] and Schweiger et al. [28]

proposed clay models based on the concept of multi-lam-

inate modeling. In these models, the CSL in the e–logp0 /
plane has not been used, thus the contraction and dilation

up to critical states cannot be guaranteed.

In sand modeling, the critical state concept has been

explicitly used [2, 10, 31]. This explicit method has also

been adopted by the authors to account for the interlocking

effect and neighboring effect of sand grains and clay

aggregates at inter-particle contact level in different ver-

sions of the micromechanics-based model [6, 7, 37–40].

Good predictive performance has been achieved for both

sand and clay, and note that the models are physically

attractive on describing the behavior of anisotropy. How-

ever, the micromechanics-based models are usually com-

putational demand. Therefore, this paper is an attempt to

explicitly use the CSL in the double-yield-surface-model-

ing method in order to propose a model simple to use and

at the same time well adapted to the modeling of clay

behavior.

In the following sections, the development of the dou-

ble-yield-surface model using the critical state concept for

clay is firstly presented. The implementation of the stress

reversal technique into the model is then presented in order

to be able to simulate tests with shear stress reversal.

Finally, the model is validated by comparing experimental

results and numerical simulations of drained and undrained

tests on isotropically and anisotropically consolidated clay

samples with different OCRs (over-consolidation ratio)

under both monotonic and cyclic loadings.

2 Constitutive model

According to elastoplasticity theory, the total strain rate is

additively composed of the elastic strain rates and plastic

strain rates

_eij ¼ _ee
ij þ _ep

ij ð1Þ

where _eij denotes the (i,j) component of the total strain rate

tensor, and the superscripts e and p stand, respectively, for

the elastic and plastic components.

2.1 Elastic behavior

The elastic behavior is assumed to be isotropic, as follows:

_ee
ij ¼

1þ t
E

r0ij �
t
E

r0kkdij ð2Þ

where t and E are Poisson’s ratio and Young’s modulus; r0ij
is the effective stress tensor; dij is Kronecker’s delta.

E can also be replaced by the elastic bulk modulus K by

E ¼ 3Kð1� 2tÞ. For clay, the elastic bulk modulus K can

be determined by the relationK ¼ p0 1þ e0ð Þ=j, with the

mean effective stress p0 ¼ r0kk

�
3 (see Roscoe and Burland

[26]), the slope of the swelling line j and the initial void

ratio e0. Assuming a common value of t = 0.25 for clay,

only the parameter j is then needed for the elastic

behavior.

Fig. 1 Schematic plot for the mechanical behavior of clay a drained behavior; b undrained behavior; c influence of critical state line
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2.2 Plastic behavior

Based on conventional elastoplasticity theory, the plastic

strain can be obtained, as follows:

_ep
ij ¼ dk

og

or0ij
ð3Þ

where dk is plastic multiplier depending on the stress rate

and the plastic hardening law; g is plastic potential.

The proposed model uses two yield surfaces: one for

shear sliding (fS) and one for compression (fC) (see Fig. 2).

Equation (3) can be expressed as follows:

_ep
ij ¼ _epS

ij þ _epC
ij ¼ dkS ogS

or0ij
þ dkC ogC

or0ij
ð4Þ

where the superscripts S and C represent the shear sliding

and compression components, respectively. For one com-

ponent with f \ 0, the corresponding dk is taken equal to

zero.

2.2.1 CSL-related density state

One of the important elements to be considered in soil

modeling is the critical state concept. At critical state, the

clay material remains at a constant volume while it is

subjected to a continuous distortion. The void ratio corre-

sponding to this state is ec. The critical void ratio ec is a

function of the mean effective stress p0. The relationship

has traditionally been written as follows:

ec ¼ ecr0 � k ln
p0

pcr0

� �
ð5Þ

The critical state line in the e–logp0 plane is explicitly

located by three parameters: ecr0 and pcr0 determine a ref-

erence critical state point in the e–logp0 plane and k
determines the slope of critical state line. For convenience,

the value of pcr0 is taken equal to 100 kPa. The critical state

line can then be defined by the two parameters ecr0 and k.

Using the critical state concept, the density state of the

soil is defined as the ratio ec/e, where e is the actual void

ratio and ec is the critical void ratio obtained by Eq. (5) for

the value of p0 at the given stress state (see Fig. 2 for the

state A). This implies: ec/e \ 1 for normally consolidated

and slightly over-consolidated clay, ec/e [ 1 for heavily

over-consolidated clay, and ec/e = 1 when the initial state

of clay lies on the CSL in the e–logp0 plane.

2.2.2 Shear-sliding criterion

In several models for sand and silt [10, 17, 32], the shape of

the yield surface for the plastic shear component is linear in

the p0–q plane. Here, we adopt the same shear criterion for

clay, written as follows:

fS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rijrij

r

� H ð6Þ

where rij ¼ sij=p0 with sij ¼ r0ij � p0dij; H is the hardening

parameter defined by a hyperbolic function in the H � ep
d

plane given by

H ¼ Mpe
p
d

1
�

Gp þ ep
d

ð7Þ

where Gp controls the initial slope of the hyperbolic curve

g� ep
d g ¼ q=p0ð Þ. Equations (6) and (7) guarantee that the

stress ratio g reaches the peak stress ratio Mp.

According to Biarez and Hicher [3], the peak friction

angle /p (related to Mpc ¼ 6 sin /p

�
3� sin /p

� �
) depends

on the internal friction angle /l (related to the critical state

value Mc ¼ 6 sin /l

�
3� sin /l

� �
) and the density state of

soil (ec/e).

tan /p ¼
ec

e
tan /l ð8Þ

Equation (8) shows that, in a loose structure, the peak

friction angle /p is smaller than /l. On the other hand, a

dense structure provides higher degree of interlocking.

Thus, the peak friction angle /p is greater than /l. When

the loading stress reaches the peak friction angle /p, the

dense structure dilates and the degree of interlocking

relaxes. As a consequence, the peak friction angle is

reduced, which results in a strain-softening phenomenon.

Adopting the idea of the OCR effect on the shear

modulus proposed by Hardin [12], Gp is considered as a

function of OCR as follows:

Gp ¼ Gp0OCR2 ð9Þ

where Gp0 is an input parameter instead of Gp; OCR can be

computed based on the size of the compression yield sur-

face as shown in the next section.

p’
log(p’)

q =

e

fS
fC

CSL

Elastic region

CSL

Undrained path

Drained path

e

ec

3

2 ij ijs s

A

A

M

Fig. 2 Principle of the critical state double-yield-surface model for

clay
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In order to take into account dilation or contraction

during shear sliding, a non-associated flow rule is intro-

duced. We propose an explicit derivation of the potential

surface, given by

og

or0ij
¼ og

op0
op0

or0ij
þ og

osij

osij

or0ij
with

og

op0
¼ D Mpt �

ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rijrij

r !

;
og

osij

¼
ffiffiffi
3

2

r
rij
ffiffiffiffiffiffiffiffi
rijrij
p ð10Þ

which implies the following stress-dilatancy relationship

dep
v

dep
d

¼ D Mpt � g
� �

ð11Þ

where the contractancy or dilatancy depends on the sign of

‘‘Mpt - g’’; and D is a material constant controlling the

magnitude and evolution of the contractancy or dilatancy.

Mpt is the slope of the phase transformation line for clay

which can be derived from the friction angle /l by

assuming a formula similar to the peak friction angle

tan /pt ¼
ec

e

� 	�1

tan /l ð12Þ

Equation (10) combined with Eq. (12) implies that in a

loose structure with e [ ec, the phase transformation

angle /pt (related to Mptc ¼ 6 sin /pt

�
3� sin /pt

� �
) is

bigger than /l; in a dense structure with e \ ec, the phase

transformation angle /pt is smaller than /l which allows

the dense structure to be first contractive and then dilative

during deviatoric loading. For both loose and dense

structures, when the stress state reaches the critical state

line, the void ratio e becomes equal to the critical void

ratio ec, then zero dilation or contraction takes place.

Thus, the constitutive equations guarantee that stresses

and void ratio reach simultaneously the critical state in

the p0–q–e space.

In order to interpolate Mp and Mpt between their values

for compression and those for extension by means of the

Lode’s angle h (see Sheng et al. [29]), the following

expressions of Mp and Mpt are proposed as follows:

Mp ¼ Mpc

2c4
1

1þ c4
1 þ 1� c4

1

� �
sin 3h

" #1
4

;

Mpt ¼ Mptc

2c4
2

1þ c4
2 þ 1� c4

2

� �
sin 3h

" #1
4

ð13Þ

where c1¼ 3� sin/p

� ��
3þsin/p

� �
and c2¼ 3�sin/pt

� ��

3þ sin/pt

� �
, assuming the same peak friction angle and

phase transformation angle for different Lode’s angle; the

Lode’s angle is expressed as �p
6
�h¼ 1

3
sin�1 �3

ffiffi
3
p

J3

2J
3=2

2

� �
� p

6
.

J2 and J3 are the second and the third invariants of the

deviatoric stress tensor, given by J2¼ sijsij

�
2;J3¼

sijsjkski

�
3.

2.2.3 Compression criterion

In order to describe the compressible behavior of clay, a

second yield surface is added. The second yield function is

assumed to be as follows:

fC ¼ p02 þ 3

2

sijsij

R2
� p2

c ð14Þ

where the constant R controls the shape of the yield surface

and pc is the hardening parameter controlling the size of the

yield surface. The yield surface expands with the plastic

volumetric strain. The hardening rule of the Cam-Clay

model is adopted:

dpc ¼ pc

1þ e0

k� j
dep

v ð15Þ

An associated flow rule is adopted for the compression

behavior.

Parameter R can be derived as follows:

One-dimensional straining corresponds to

ded

dev

� �

K0

¼ 2

3
ð16Þ

Assuming that elastic strains are much smaller than plastic

strains, Eq. (13) can be approximated by

dep
d

dep
v

� �

K0

¼ 2

3
ð17Þ

Combining Eq. (14) with the flow rule derived from Eq.

(11), for the condition of one-dimensional consolidation, R

can be expressed by

R ¼
ffiffiffiffiffiffiffiffiffiffi
3

2
gK0

r

ð18Þ

where gK0 ¼ 3Mc= 6�Mcð Þ for normally consolidated clay

adopting Jacky’s formula K0 ¼ 1� sin /l

� �
. Therefore, R

is not needed for input.

2.3 Incorporation of shear stress reversal technique

The above constitutive equations were developed based on

experimental clay behavior, considering isotropically con-

solidated samples under monotonic loading. When the

direction of the shear stress changes during the loading, the

stress reversal effect on the stress–strain relationship needs

to be incorporated.

Let us denote the stress state and plastic strain state at

the moment of shear reversal to be the residual stresses

4



(marked as r0Rij ) and the residual plastic strains (marked as

eR
ij). These two mechanical state variables have a significant

influence on the subsequent shear behavior (see Fig. 3). As

a consequence, the yield function (see Eq. (6)), the hard-

ening rule (see Eq. (7)) and the flow rule (see Eq. (10))

have been revised as follows:

fS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rij � rR

ij

� 	
rij � rR

ij

� 	r

� H ð19Þ

H ¼
M�pe

p�
d

Gp þ ep�
d

with ep�
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
e

p
ij � e

pR
ij

� 	
e

p
ij � e

pR
ij

� 	r

ð20Þ

og

op0
¼ D M�pt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
rij � rR

ij

� 	
rij � rR

ij

� 	r !

;

og

osij

¼
ffiffiffi
3

2

r

nij with nij ¼
rij � rR

ij

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rij � rR

ij

� 	
rij � rR

ij

� 	r ð21Þ

M�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
Mpnij � rR

ij

� 	
Mpnij � rR

ij

� 	r

;

M�pt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
Mptnij � rR

ij

� 	
Mptnij � rR

ij

� 	r ð22Þ

where rR
ij ¼ r0Rij

.
p0R � dij (with p0R ¼ r0Rij

.
3) is the mobi-

lized stress ratio at the moment of stress reversal; e
pR
ij ¼

epR
ij � epR

kk dij

�
3 is the plastic deviatoric strain tensor at the

moment of stress reversal. The estimation of Lode’s angle

to calculate Mp and Mpt is modified as h ¼ 1
3

sin�1 �3
ffiffi
3
p

J0
3

2J
03=2

2

� �

with J02 ¼ r0ijr
0
ij

.
2; J03 ¼ r0ijr

0
jkr0ki

.
3 where r0ij ¼ rij � rR

ij .

Equation (20) indicates that the same form of hardening

rule can be used for both loading and unloading, but that

some scaling process on the values of Mp is required.

Eq. (21) implies that the amount of dilation is different

upon shear reversal. This concept is similar to that pro-

posed by Balendran and Nemat-Nasser [1] and Gajo and

Muir Wood [10]. This stress reversal technique is similar to

that used in Masing’s rule, in bounding surface plasticity

(Taiebat and Dafalias [31]) and in subloading surface

plasticity (Yamakawa et al. [35]).

2.4 Determination of model parameters

The model contains six material parameters divided into

four groups (see Table 1). Based on their physical mean-

ings, these parameters can be determined as follows:

(1) the slope of the swelling line j can be measured from

the unloading curve of an isotropic compression test;

(2) the internal friction angle /l can be obtained from Mc

measured from drained or undrained triaxial tests up

to failure /l ¼ arcsin 3Mc= 6þMcð Þ½ �
� �

;

(3) the slope of the CSL k is assumed to be the same as

the slope of the isotropic compression line and can,

therefore, be measured from an isotropic compression

test;

(4) the position of the critical state in the e–logp0 plane

can be obtained from drained or undrained triaxial

tests up to failure; then, the reference critical void

ratio ecr0 corresponding to p0 = 100 kPa can be

measured in the e–logp0 plane;

(5) the plastic stiffness Gp0 can be obtained by curve

fitting from the deviatoric stress–strain curve at small

strain level (see Fig. 4a for the effect of Gp0 on the

R

d
pR

d
p

Current point

Reverse point

3

2
R R

R ij ijr r

* 3

2
R R

ij ij ij ijr r r r

* 2

3
p p pR p pR
d ij ij ij ije e e e

2

3
pR pR pR

d ij ije e

Fig. 3 Principle of stress reversal in loading and unloading

Table 1 Values of model parameters for simulated clays

Group Parameter Definition Black White Fujinomori Mixture BBC LCT

Elasticity j Slope of swelling line 0.079 0.034 0.02 0.034 0.023 0.008

Critical state k Slope of compression line 0.244 0.089 0.093 0.173 0.171 0.066

ecr0 Reference critical void ratio 1.33 0.653 0.77 0.977 0.986 0.435

/c Critical friction angle 21.4� 23� 34� 19.2� 35� 30�
Plastic stiffness Gp0 Plastic hardening modulus 50 70 115 40 155 170

Dilatancy D Dilatancy constant 1 1 1.2 0.3 1 0.8
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deviatoric stress–strain curve, keeping other param-

eters (White clay in Table 1) constant);

(6) the dilatancy constant D can be finally obtained by

curve fitting from the effective stress path of an

undrained test (see Fig. 4b for the effect of D on the

effective stress path, keeping other parameters (White

clay in Table 1) constant) or, alternatively, from the

evolution of the volumetric strain during a drained

test (see Fig. 4c for the effect of D on the evolution of

the volumetric strain).

Additionally, the model involves two state variables (the

void ratio e and the size of the compression yield surface

pc) which require their initial values to be determined. e0

can be measured from the tested sample. The initial size pc0

is determined by the consolidation history of the tested

sample (i.e., the consolidated stress for reconstituted clay

and the preconsolidation stress for natural clay).

In summary, all values of the model parameters and

state variables can be easily determined based on one

drained or undrained triaxial test up to failure with an

isotropic consolidation stage.

3 Experimental verification

The experimental verification is presented herein with

reference to drained and undrained tests results under

monotonic loading on various remolded and natural clays

(Black clay by Zervoyanis [42]; White clay by Biarez and

Hicher [3]; Fujinomori clay by Nakai and Hinokio [23];

Boston blue clay by Ladd and Varallyay [18]; Lower

Cromer Till by Gens [11]; and clay mixture by Li and

Meissner [20]). These tests were performed on clays of

different mineral contents and Atterberg limits. Figure 5

shows the classification of these clays using Casagrande’s

plasticity chart. According to this chart, the selected

experimental results consist of both low and high plastic

inorganic clays, as indicated in Fig. 5.

Drained tests on Fujinomori clay and undrained tests on

clay mixture under cyclic loadings were also simulated for

the validation.

3.1 Different over-consolidation ratios

3.1.1 Black clay

Drained triaxial tests on black kaolinite clay samples were

performed by Zervoyanis [42]. Four tests began with an

isotropic consolidation up to 800 kPa, then three of them

were unloaded to 400, 200, and 100 kPa, respectively

(OCR = 1, 2, 4, and 8), then followed by axial loading up to

failure under drained condition. The tested Black clay is a

remolded clay prepared from a slurry obtained by mixing

clay powder and water at a water content equal to two times

the liquid limit. The parameters presented in Table 1 were

calibrated from one triaxial compression test on the normally

consolidated specimen with an isotropic consolidation stage.

In Fig. 6a, the stress–strain curves for OCR = 1 and 2

show a continuous strain hardening due to a continuous

contractancy corresponding to the paths in Fig. 6c above

the critical state line, and the stress–strain curves for

OCR = 4 and 8 show strain hardening followed by strain

softening corresponding to the paths in Fig. 6c below the

critical state line, as respected by using Eq. (8). The pre-

dicted void ratio changes in Fig. 6b, c show a contractive

0

50

100

150

0 50 100 150
wL

Ip

Black clay

White clay

Fujinomori clay

Clay mixture

Boston Blue clay

Lower Cromer Till

U-line: Ip = 0.9(wL-8)

A-line: Ip = 0.73(wL-20)
OL

OH

CH

CL

CL: Low plastic inorganic clays, sandy and silty clays
OL: Low plastic inorganic or organic silty clays
CH: High plastic inorganic clays
OH: High plastic fine sandy and silty clays

Fig. 5 Classification of clays by liquid limit wL and plasticity index
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Fig. 4 Parametric study a Gp0 effect on the deviatoric stress versus axial strain for undrained triaxial test on NC clay; b D effect on the effective

stress path for undrained triaxial test on NC clay; c D effect on the volumetric strain versus axial strain for drained triaxial test on NC clay
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behavior for OCR = 1 and 2, and a dilative behavior for

OCR = 4 and 8, as respected by using Eq. (12). The paths

in the e–logp0 plane in Fig. 6c show that the void ratio

approaches the critical state line when the stress state

approaches the CSL in the p0–q plane. An overall good

agreement is observed between experimental and numeri-

cal results for different OCRs.

3.1.2 White clay

Two drained triaxial tests on normally consolidated White

clay and three undrained triaxial tests on normally and

over-consolidated White clay were reported by Biarez and

Hicher [3]. In the case of drained tests, specimens were

isotropically consolidated up to 400 and 800 kPa, respec-

tively, and then loaded to failure keeping the confining

stresses. In the case of undrained tests, three samples were

isotropically consolidated up to 800 kPa, and two of them

were unloaded to 400 and 67 kPa (OCR = 1, 2, 12). The

parameters presented in Table 1 were calibrated from one

drained compression test at the confining stress r03c ¼
800 kPa with an isotropic consolidation stage.

Using the calibrated parameters, the predicted test

results are plotted in Fig. 7. For drained tests, the stress–
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strain curves in Fig. 7a and the void ratio change in

Fig. 7b, c shows good agreement between experimental

and numerical curves. For undrained tests, the computed

and measured stress–strain curves are also in good agree-

ment (Figs. 7d–f). The effective stress paths indicate that,

for the normally consolidated and slightly over-consoli-

dated samples, the stress paths do not overpass the critical

state line; whereas, for the strongly over-consolidated

specimen, the stress path goes above the critical state line,

at which dilation occurs, leading to an increase in the mean

effective stress, before converging toward the critical state

line. Overall, by using parameters calibrated from one

drained test, the model is capable of predicting the stress–

strain behavior of undrained tests for specimens with dif-

ferent OCRs.

3.1.3 Natural clays

Undrained triaxial tests on isotropically consolidated

samples of clay mixture with different OCRs (OCR = 1.0,

1.6, and 4.0) were performed by Li and Meissner [20]. The

main minerals of the clay mixture are kaolinite (60 %),

illite (5 %), and quartz. The parameters presented in

Table 1 were calibrated from the undrained triaxial test

performed on the over-consolidated specimen (OCR = 4)

with its consolidation stage. The determined parameters

were used to simulate undrained triaxial tests on samples

with OCR = 1 and 1.6. As shown in Fig. 8, the model

predictions are in good agreement with the experimental

results.

Numerical simulations of tests performed on samples of

Boston blue clay (BBC) by Ladd and Varallyay [18] were

also undertaken, as well as tests performed on samples of

Lower Cromer Till (LCT) by Gens [11]. The database for

both clays includes undrained triaxial tests on both iso-

tropically and anisotropically consolidated specimens with

different OCRs. Figure 9a, b shows the computed results of

anisotropic compression and oedometer tests compared to

experimental data on BBC. Figures 9c, d and 10a, g, j show

the comparisons between measured and predicted results of

undrained triaxial tests on isotropically consolidated sam-

ples of LCT and BBC. For both natural clays, the present

model gives good prediction for tests on lightly and heavily

over-consolidated samples using the set of parameters

determined from the tests on normally consolidated clay

samples. The predictions for tests on anisotropically con-

solidated samples will be discussed later.

3.2 Influence of Lode’s angle

3.2.1 Fujinomori clay

Drained triaxial tests on Fujinomori clay were performed at

constant p0 in compression and extension on isotropically

consolidated samples with different OCRs (OCR = 1, 2, 4,

8) by Nakai and Hinokio [23]. Drained true triaxial tests on

normally consolidated Fujinomori clay samples were also

performed at constant p0 with different Lode’s angles (0�,

15�, 30�, 45�). The parameters presented in Table 1 were

calibrated from one drained test in compression on a nor-

mally consolidated specimen with an isotropic consolida-

tion stage.

Comparisons between experimental and numerical

results for triaxial tests in compression and extension are

presented in Fig. 11. One can see that the peak stress ratio

of the over-consolidated clay samples and the amount of

dilatancy increase with increased OCR. The model was

able to capture the trend of the stress–strain behavior of

clay with different OCRs under both compression and

extension conditions.

The observed and predicted responses of normally

consolidated Fujinomori clay in true triaxial tests with

different Lode’s angles are shown in Fig. 12. The stress

ratio
ffiffiffiffiffiffiffi
3J2

p �
p0 is plotted against the principal strains (major

strain in Fig. 12a, intermediate strain in Fig. 12b, minor

strain in Fig. 12c, respectively). The predictions agree
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reasonably well with the experimental data in all cases. The

comparisons demonstrate that the proposed model can take

into account the influence of the intermediate principal

stress on the stress–strain relationship.

3.2.2 Other natural clays

Undrained triaxial tests in extension were also carried out

on Boston blue clay by Ladd and Varallyay [18] and on

Lower Cromer Till by Gens [11]. Figures 9e, f and 10j, k

show the comparisons between measured and predicted

results of undrained triaxial tests on BBC and LCT. For

both natural clays, the present model gives good prediction

for tests in extension (h = 60�) using parameters deter-

mined from the test in compression (h = 0�).

3.3 Influence of consolidation stress ratio

3.3.1 Boston blue clay

Two undrained triaxial tests on anisotropically consoli-

dated sample of BBC under compression and extension

were also performed by Ladd and Varallyay [18]. The

model parameters determined from tests on isotropically

consolidated samples were used for the predictions.

Figure 9e, f shows a good agreement between the numer-

ical and the experimental results for these two tests. It is

interesting to point out that the undrained softening

response following an anisotropic consolidation is repro-

duced by the model.

3.3.2 Lower Cromer Till

Drained and undrained triaxial tests in compression and

extension with different OCRs on anisotropically consoli-

dated samples of LCT were conducted by Gens [11].

Simulations were carried out to evaluate the model’s

performance for predicting the compression and extension

tests on anisotropically consolidated samples (Fig. 10b, c).

The samples were first anisotropically consolidated under

K0 = 0.5 up to r0a ¼ 350 kPa. Then, they were unloaded

along a different stress path to four different over-consol-

idation ratios (OCR = 1, 2, 4, 7) before being sheared in

compression and extension under undrained condition.

Figure 10b, c shows the comparisons between the experi-

mental data and the model predictions. The comparisons

indicate a good agreement in the major features of the

undrained behavior for anisotropically consolidated

samples.
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Figure 10d–f shows the comparisons between experi-

mental data and model predictions of drained tests on

anisotropically consolidated specimens with different

OCRs. Similar to the undrained tests, the samples were first

anisotropically consolidated under K0 = 0.5, then unloa-

ded to different values of OCR (1, 1.5, 2, 4, and 7) with

different values of K0 (0.4, 0.5, 0.67, 1.0) along a different

stress path. Then, the samples were subjected to an axial

compression until a vertical strain of 15 %. Maximum

shear strength and volume change for samples with dif-

ferent values of OCR are well captured by the present

model using the same set of parameters as for undrained
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tests. However, some discrepancies between experiments

and simulations can be observed in the evolution of the

deviatoric stress and volume change with the axial strain.

Four drained triaxial compression tests on normally

consolidated samples were also selected for simulation.

After being consolidated to different values of K0 (0.4, 0.5,

0.67, 1.0), the samples were loaded to failure in drained

condition. Figure 10g–i shows a good agreement between

the numerical and the experimental results of the drained

triaxial tests, using the set of parameters determined from an

undrained test (Table 1). The measured volumetric strain

increases with the value of K0, which can be explained by the

position of the compression lines in the e–logp0 plane

(Fig. 10i).

Undrained triaxial tests on normally consolidated sam-

ples with different consolidation stress ratios were also

simulated. The samples were first anisotropically consoli-

dated with four different consolidation stress ratio K0 (i.e.,

the ratio of radial to axial stress r0r
�
r0a): 0.4, 0.5, 0.67 and

0.8. Then, for each K0, two subsequent undrained shearing

tests were conducted: one in compression (with an increase

in the axial strain) and the other in extension (with a

decrease in the axial strain). For all the eight loading paths

mentioned above, Fig. 10j–k shows a good agreement

between the numerical and the experimental results using

the set of parameters given in Table 1.

3.3.3 Softening response under undrained compression

following anisotropic consolidation

A peculiar behavior worth to be noted is the softening

response in undrained compression for the two cases with

K0 consolidation (see K0 = 0.4 and 0.5 in Fig. 10). The

same form of softening response has been observed in

other types of clay (e.g., Fig. 9e, f on Boston blue clay by

Ladd and Varallyay [18]). The measured softening

response cannot be attributed to the destructuration process

since the tested clays were reconstituted in the laboratory.

This form of softening response is difficult to model by the

conventional methods using kinematic hardening of the

yield surface (e.g., Ling et al. [21]; Wheeler et al. [33]).

However, using specific rotational kinematic hardening

rules and yield-surface shapes, Pestana et al. [25] and

Dafalias et al. [9] have managed to simulate the softening

response after K0 consolidation.

Different from the approach via kinematic hardening of

the yield surface, the proposed approach employs the

density state variable ec/e. This assures the void ratio as

well as the stress state to approach the critical state

simultaneously, for any loading path. At large shear strains,

the stress state converges toward the critical state. Thus, the

magnitude of the mean effective stress p0 is governed by

the location of the critical state line (in the e–logp0 plane).

The void ratio also approaches the critical state, thus the

shear strength q (on the p0–q plane) is determined from p0

corresponding to the critical state ec (see the schematic plot

in Fig. 10l). As a consequence, the softening response will

occur when the deviatoric stress at the end of the K0 con-

solidation is higher than the undrained shear strength

determined from the critical state.

Overall, for all the examples selected in this study, the

numerical simulations are in agreement with the
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experimental results. For two parameters (Gp0 and D) dif-

ferent from Cam-Clay models, the value of D varies from

0.3 to 1.2 and mostly around 1 (see Table 1); and the value

of Gp0 is suggested to be determined from the plasticity

index based on widely selected clays (see Fig. 13), thus is

not needed as input. Therefore, the proposed model

incorporating the density state controlling explicitly the

location of the critical state is simple in terms of parame-

ters determination, and is able to describe drained and

undrained behaviors of clay subjected to monotonic load-

ing after isotropic or anisotropic consolidation.

3.4 Cyclic loading

3.4.1 Fujinomori clay

The parameters determined from the drained compression

test under monotonic loading (see Table 1; Fig. 11) were

used to simulate three drained triaxial tests under cyclic

loading on Fujinomori clay performed by Nakai and

Hinokio [23]. The model predictions of the clay response

are compared with the experimental results: Fig. 14a, b

presents the results of a drained cyclic test under con-

stant confining stress; Fig. 14c, d presents the results of a

varying-amplitude cyclic test under constant mean

effective stress, in which the stress ratio increases with

the number of cycles; Fig. 14e, f presents the result of a

constant-amplitude cyclic test under constant mean

effective stress. For each test, the curves giving the

stress ratio versus the deviatoric strain and the stress

ratio versus the volumetric strain are plotted. All com-

parisons between the test results and the numerical

simulations demonstrate that the model can reasonably

well describe the cyclic behavior of clay in drained tri-

axial tests.

3.4.2 Clay mixture

Undrained triaxial tests were conducted on normally con-

solidated samples under cyclic loading by Li and Meissner

[20]. The cyclic loading program involves one- and two-

way cyclic tests. All the cyclic tests were stress controlled,

with a sinusoidal wave form at frequency of 0.1 Hz. The

cyclic stress ratio, defined as the ratio of the applied cyclic

shear stress to the monotonic shearing strength in com-

pression, ranges from 0.50 to 0.80.

The set of parameters determined from the monotonic

tests were used to simulate the undrained cyclic tests. Note

that the initial slopes of the q� ed curve for monotonic,

one- and two-way cyclic tests are different from each
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others due to different loading rates. Since the rate-

dependency behavior of clay was not considered in the

elastoplastic model, different values of Gp0 were selected

for each case (Gp0 = 670 for one-way test, Gp0 = 5,000

for two-way test), as done by Li and Meissner [20] and Yu

et al. [41]. Simulations are given in Fig. 15a, b for one-way

cyclic tests and in Fig. 15c, d for two-way cyclic tests and

compared with experimental results. The excess pore

pressure (Du) and the deviatoric stress are plotted as a

function of the number of cycles and deviatoric strain,

respectively. One can see that the proposed model can

capture with reasonable accuracy, the undrained behavior

of clay subjected to one- and two-way cyclic loading.

4 Conclusions

A simple critical-state-based double-yield-surface model

was developed for describing the mechanical behavior of

clay. The model has two yield surfaces: one for shear

sliding and one for compression. A CSL-related density

state was defined to link the peak strength and the phase

transformation characteristics to the material’s void ratio.

Therefore, the strain-hardening behavior with contraction

for normally consolidated clay and the strain-softening

behavior with dilation for over-consolidated clay can be

modeled. The model guarantees also that stresses and void

ratio reach simultaneously the critical state line in the p0–q–

e space. The stress reversal technique was incorporated into

the model for describing the mechanical behavior of clay

under loading with changes in stress direction (for instance,

anisotropic consolidation followed by monotonic loading/

unloading, cyclic loadings). The model has 6 material

parameters and 2 state variables which can be easily

determined based on one drained or undrained triaxial test

up to failure with an isotropic consolidation stage.

The capability of the model to reproduce the main fea-

tures of clay behavior was examined by comparing

experimental results and numerical simulations of drained

and undrained triaxial tests under monotonic loading with

different conditions (different OCRs, different Lode’s

angles, different consolidation stress ratios) on various

remolded clays (Black clay and White clay) and natural

clays (Fujinomori clay, Boston blue clay, Lower Cromer

Till, and clay mixture). Drained and undrained tests under

cyclic loadings were also simulated by using the sets of

parameters determined from monotonic tests.

All comparisons between experimental results and

numerical simulations demonstrate that the proposed

model is capable of reproducing the behavior of clays with

different stress histories, different stress paths, different

drainage conditions and different loading conditions.
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