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A Rate Dependent Constitutive Model for Carbon-Fiber
Reinforced Plastic Woven Fabrics

S. Marguet, P. Rozycki, and L. Gornet
Ecole Centrale de Nantes, France

This paper deals with the modelling until rupture of composite
structures made of carbon-fiber/epoxy-resin woven fabrics submit-
ted to dynamic loadings. The model is built at the mesoscale of the
elementary ply. It takes into account the slightly nonlinear brittle
behavior of the fibers under tensile solicitations, their nonlinear
behavior in compression as well as the strongly nonlinear and ir-
reversible behavior of the ply in shear. Strain rate effects are also
introduced and special attention is paid to the objectivity of the
model in the context of finite element calculation. Therefore the
choice of a delayed damage mesomodel coupled with viscoplastic-
ity is made. In order to identify the values of the parameters of the
model, an optimization procedure based on a gradient-free direct
search method has been developed. As a logical procedure to this
study, the models ability to avoid strain localization and mesh de-
pendence is then checked on simple uniaxial examples. The last part
of this paper is devoted to structural calculation. The results of the
simulations of both the impact on composite plate and the crush-
ing of thin-walled tube demonstrate the capability of the model to
reproduce observed physical phenomena.

Keywords composite woven fabrics, delayed damage mesomodel,
viscoplasticity, identification, direct search method, dy-
namic loadings

1. INTRODUCTION
Nowadays composite materials take a growing importance in

the design and manufacture of multihull oceanic sailing ships.
Their ability to provide significant stiffness combined with lim-
ited weight perfectly matches the more and more constraining
needs of competition. Designing the ships with reduced safety
margins is also a good way to improve the performances mea-
sured in term of the “velocity/wind power” ratio. Still, during
great oceanic races, structural failures caused by extreme cli-
matic conditions lead lots of ships to give up the race. The knowl-
edge of the material behavior under dynamic loadings such as
slamming or wave impacts then appears to be determinant for
the design of safe structures.

Carbon-fiber/epoxy-resin woven fabrics composite materi-
als have been studied for many years. Their linear orthotropic
elastic behavior is now well known as can be seen in [1]. The
use of homogenization procedures to find the equivalent me-
chanical properties of stacking sequences of these materials has
allowed the development of huge numerical models dedicated
to the design of the sailing ships [2]. However, in a context of
competition, the knowledge of the elastic properties of the con-
stitutive material is not enough for an optimized design of the
structures. Nonlinear effects which correspond to the local dete-
riorations of the composite materials and eventually lead to the
failure of the whole ship have to be dealt with.

Since the end of the 80s, important work has been performed
on the understanding and modelling of the damage effects. Four
principal modes of degradation of the elementary ply were iso-
lated:

• the tensile fragile rupture of fibers in tension;
• the local buckling of the fibers in compression (respon-

sible of the observed nonlinearity);
• the microcracking of the resin under shear or transverse

loadings (which explains the nonlinearity and the irre-
versible strains);

• and the decohesion between the fibers and the matrix.

To these modes can be added the delamination between the
different staked layers of the composite which also plays an
important role in the failure of macroscopic structures. Based
upon these observations, several models written at the homoge-
nized mesoscale of the elementary ply have been developed and
especially by Ladevèze and his co-workers [3–5]. In a first step,
damage mesomodels have demonstrated their ability to take
into account the loss of stiffness observed in experiments. The
adjonction of plastic models with isotropic hardening has also
enabled the representation of irreversible strains. Yet, in the
context of finite element calculation, local softening damage
models are subjected to the strain localization phenomenon
which results in a state of damage dependent from the spatial
discretization. To circumvent this issue, several strategies have
been tested. Nonlocal models [6], gradient dependent models [7]
or delayed damage mesomodels [4] are some of them. The aim
is to introduce an internal length linked, for the delayed damage
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mesomodel, with a maximal rate of damage. As a consequence,
the damage cannot immediately reach its critical value, and
so, information can be passed through the mesh. Numerous
studies have then been performed in order to check the ability of
delayed damage mesomodels to avoid strain localization [8]. By
the way, the identification of the values of the parameters and the
validity of such models on large strain rate ranges still remain a
matter. More recently, a model resting on classical damage and
plastic theories was developed by [9] to deal with the strain rate
dependency of the glass-fiber/epoxy-resin composite materials.
Satisfying results were obtained but the mesh independence was
not ensured. The object of this study is to propose a local me-
somodel dedicated to carbon-fiber/epoxy-resin woven fabrics
submitted to high strain rate loadings. An optimization proce-
dure based on a gradient-free direct search method (the pattern
search algorithm) is also implemented in order to perform the
identification of the parameters of the model. To check the be-
havior of the model in finite element calculations, the example of
uniaxial tensile tests on bars was taken. The ability of the model
to reproduce the failure of composite structures was eventually
shown thanks to the simulation of the impact on a woven fabric
composite plate, and of the crushing of a thin-walled composite
tube.

2. MODELLING OF THE FABRIC
The present model is written at the mesoscale of the layer

which brings a good compromise between the scales of both
the constitutive materials (fibers and resin) and the structure.
Moreover, and thanks to the thin aspect of most of the compos-
ite structures, the assumption of plane stress is made. At last,
the effects of temperature are neglected and only small strains
are considered. From now on, the subscripts 1 and 2 stand for
the orthogonal fiber directions while 3 stands for the direction
normal to the woven fabric ply.

2.1. Thermodynamic Potential and State Laws
To deal with both the reversible and the irreversible effects,

the classical split of the total train εt is assumed:

εt = εe + εvp (1)

where εe stands for the elastic strain which is an internal variable
and εvp stands for the viscoplastic strain. As viscoplasticity only
occurs in shear, where fibers cannot prevent viscoplastic flow, the
different strain vectors take the form εt = [εt

11 εt
22 εt

12]T ; εe =
[εe

11 εe
22 εe

12]T and, for irreversible strains, εvp = [0 0 ε
vp
12 ]T .

To take into account the irreversible strains, the loss of rigid-
ity, the different tensile and compressive behavior in fiber direc-
tion and the strain rate dependency, the thermodynamic poten-
tial is derived from the Helmholtz’s volumic free energy ψ, and

written as follows:
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(2)

where:

• ε̇e must be considered as a parameter, it allows the elas-
tic modulus to increase with the strain rate as observed
in experiments;

• �0
i i are the coefficients of the stiffness matrix asso-

ciated with the undamaged material which is sup-
posed to be the initial one: �0

11(ε̇11) = E11·V11(ε̇11)
1−ν12ν21

;

�0
22(ε̇22) = E22·V22(ε̇22)

1−ν12ν21
;

�0
12(ε̇11; ε̇22) = �0

21(ε̇11; ε̇22) = ν12·E22·V12( ε̇11;ε̇22)
1−ν12ν21

;

�0
1212(ε̇1212) = G12·V1212(ε̇1212) with E11, E22 and G12

the elastic moduli and ν12, ν21 the Poisson’s moduli;
• d11 and d22 are damage variables that drive the brittle

rupture of the fibers under tensile sollicitations;
• dc

11 and dc
22 are pseudo damage variables that stand

for the nonlinearity under compressive state due to
the microbuckling of the fibers, at time t , they are ex-
plicitly expressed as a function of the stresses: dc

ii =
�i i · σt−δt

i i for i i = {11; 22} and with �i i material
parameters;

• d12 is a damage variable associated with the loss of
stiffness in shear due to the matrix microcracking;

• and h(p) is the volumic energy associated with a
nonlinear isotropic hardening (p is the cumulated
plastic strain).

To complete the description of the state potential, the following
functions have been introduced:

• P+(σt−�t ) = 1 if σt−�t ≥ 0, 0 otherwise (this is an
explicit pragmatic way to check for the tensile or com-
pressive state of the material from the state of stress at
one step time before the actual time t);

• P−(σt−�t ) = 1 if σt−�t < 0, 0 otherwise;
• Vii (ε̇e

ii ) = (1 + vi i · ln( |ε̇e
ii |

ε̇ref
)) for i i = {11; 22; 1212}

and for ε̇e
ii ∈ [ε̇e

min; ε̇e
max] are functions that drive the

rate dependency of the stiffness of the material;
• and V12(ε̇e

11; ε̇e
22) = V21(ε̇e

11; ε̇e
22) = (1 +

ln( |ε̇e
11|v11 +|ε̇e

22|v22

ε̇
v11+v22
re f

)
1
2 ) for (ε̇e

11; ε̇e
22) ∈ [ε̇e

min; ε̇e
max]2 do the

same for the nondiagonal terms of the stiffness matrix
and allows to conserve its symmetry.
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Here it has to be noticed that the introduction of all the
preceeding functions preserves the symmetry and the positive
definite property of the stiffness matrix.

The state laws can now be derived from Eq. (2) leading to the
expressions of σ, the Cauchy’s stress vector dual of the elastic
strain, Y the thermodynamic forces associated with the damage
state and R the stress linked to the isotropic hardening:




σ = ∂ψ

∂εe

Y = − ∂ψ

∂d

R = ∂ψ

∂p

(3)

Taking the volumic energy due to isotropic hardening under the
form h(p) = Q

β+1 · pβ+1(with Q and β material parameters), the
preceeding expressions once developed, the state laws become:
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(4)

2.2. Dissipation Potential and Evolution Laws
To obtain the evolution laws, the existence of a dissipation

potential that is a function of the stress variables is assumed [10].
The following expression is adopted in order to deal with both
the rate dependent irreversible effects and the degradations:

φ(σ; Y ; R; (d)) = φvp(σ; Y ; R; (d)) + φd (σ; Y ; R; (d)) (5)

where φvp stands for the dissipated energy per unit volume due
to viscoplasticity and φd is the volumic energy dissipated during
the microcracking of fibers and resin.

Introducing the Perzyna’s viscoplastic theory [11], and re-
membering that irreversible strains only occur in shear, the vis-
coplastic dissipation potential is:

φvp(σ12; R; (d12)) = K

m + 1

〈
f (σ12; R; (d12))

K

〉m+1

+
(6)

with f , the yield surface, K and m parameters that drive the rate
sensitivity of the material, and d12 the damage variable associ-

ated to the microcracking of the resin in shear. The choice of
such a potential is motivated by two different aspects:

• the dependence of the woven fabric to the loading rate
(material aspect that should come from the viscoelastic
nature of the epoxy resin);

• and the viscoplastic regularization effects on strain lo-
calization phenomenon (numerical aspect).

The coupling between viscoplasticity and damage is realized
through the introduction of the effective stress in the expression
of the yield surface f :

f (σ12; R; (d12)) = f (σ̃12; R) = |σ̃12| − R − σy (7)

with σ̃12 = σ12
1−d12

the effective shear stress which stands for
the stress that should be applyied to the undamaged material to
obtain the same state of deformation as the one obtained with
σ12 on the damaged material.

From Eq. (6) it is now possible to determine the evolution
laws of both the inelastic strain ε

vp
12 and the cumulated plastic

strain p:

{
ε̇

vp
12 = ∂φ

∂σ12
= λ̇vp ∂ f

∂σ12

ṗ = − ∂φ

∂R = −λ̇vp ∂ f
∂R

(8)

where:

λ̇vp =
〈

f

K

〉m

+
(9)

corresponds to a Lagrange’s multiplier that drives the viscoplas-
tic flow and is named viscoplastic multiplier. The function 〈x〉+
stands for the Heaviside’s function: 〈x〉+ = x if x > 0 and
0 elsewere. If f ≤ 0 no viscoplastic flow can occur and then
ε̇

vp
12 and ṗ are both equal to zero. If f > 0 then viscoplasticity

appears and the material flows in the direction normal to the elas-
tic surface. To completely define the dissipation potential φ, the
choice of the damage dissipation potential φd has to be carried
out. Assumption is made that a dissipation potential, depending
only on the damage state, exists. The following evolution laws
for the damage variables are then stated:

{
ḋi i = 1

τi i
· (

1 − e−αi i ·〈zii 〉+)
if d < dc

ii ; 0 elsewhere,
and i i = {11; 22; 12} (10)

where αi i and τi i are material parameters and zii stand for the
functions that drive the appearance of the damage and its rate.

In fiber direction, zii =
√

Yii −
√

Y o
ii√

Y c
ii −

√
Y o

ii

− dii (i i = 11, 22) whereas

in shear direction z12 = ln(Yeq )−ln(Y o
12)

ln(Y c
12)−ln(Y o

12) − d12 with Y o
ii the yield

thermodynamic force that initates the damage and Y c
ii a critical

thermodynamic force.
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The evolution equations of the damage variables d define
a damage mesomodel as was introduced by Ladevèze and his
coworkers [4]. It is particularly interesting for its ability to avoid
the strain localization phenomenon which results in mesh de-
pendence of the results (see [8] for more details). The material
parameter τi i represents the inverse of the maximum damage rate
and is linked to an internal length supposed to be the thickness
of the layer for the mesomodel. As a consequence, the damage
has to be constant through the out-of-plan direction of a layer of
the composite ply.

A last key point in the construction of the model is to check
the positivity of the intrinsic dissipation, coming from the second
law of thermodynamics, and definied by the equation:

D = σT ε̇vp − Y T ḋ − R ṗ (11)

As no simple expression can be obtained at this point, partic-
ular attention should be paid to the verification of the second
thermodynamic law.

2.3. Implementation and Numerical Aspects
This section deals with the following problem: “given the

state of the material on the whole model at time tn , known the
step time δtn+1 = tn+1 − tn and the prescribed conditions εt

n+1,
the state of the material at time tn+1 is to be found.”

The integration is performed in two major steps which are:

1. integration of the delayed damage model in fiber directions;
2. integration of the coupled viscoplastic/delayed damage me-

somodel in shear thanks to a modified Radial Return Mapping
algorithm [12].

For the behavior in fiber direction, no special difficulty occurs
so that the integration method is not detailed. The damage state
at time tn+1 is simply computed implicitly by the mean of a
Newton Raphson’s procedure considering whether the type of
sollicitation at time tn is tension or compression. At the end of
this first part, the damage variables dt

11 and dt
22 are updated and

are used to check for the failure of the fibers in tension. Under
compressive state, a simple criterion based on a critical stress
drives the rupture.

The next step deals with the integration of the coupled vis-
coplastic/delayed damage mesomodel. The system of equations
to solve comes from the implicit backward Euler’s scheme ap-
plied to the variables from strain space (d, ḋ ,εvp and ε̇vp stand
for d12, ḋ12,εvp

12 and ε̇
vp
12 respectively):




dn+1 = dn + δtn+1 ḋn+1

ε
vp
n+1 = ε

vp
n+1 + δtn+1 ε̇

vp
n+1

pn+1 = pn + δtn+1 ṗn+1

(12)

where the evolution laws give the last right hand term of
Eqs. (12). To condense these expressions, it is introduced the

vector of unknows � = (d; εvp; p)T which leads to:

�n+1 = �n + �tn+1 �̇n+1 (13)

As the expression of �̇ is a non linear expression of �, the
solution of the system is not trivial. In order to solve it, an incre-
mental procedure of Newton Raphson is once again employed.
At the increment k of the iterative procedure a solution to the
problem at time tn+1, noted �k

n+1, is supposed to be known (for
the first iteration k = 0, the approximation �0

n+1 = �nis used).
This hypothesis leads to the formation of a residual vector:

Resk
n+1 = �k

n+1 − �n − �tn+1 �̇
k
n+1 (14)

If the norm of the residual is greater than a given tolerance, the
solution is not acceptable, and an iteration has to be performed.
Linearizing the Eq. (14) conducts to the following expression of
the increment in strain variables:

δ�k
n+1 = −

([
∂Res

∂�

]k

n+1

)−1

Resk
n+1 (15)

with

[
∂Res

∂�

]k

n+1

=




1 − �tn+1
∂ḋ
∂d −�tn+1

∂ḋ
∂εvp −�tn+1

∂ḋ
∂p

−�tn+1
∂ε̇vp

∂d 1 − �tn+1
∂ε̇vp

∂εvp −�tn+1
∂ε̇vp

∂p

−�tn+1
∂ ṗ
∂d −�tn+1

∂ ṗ
∂εvp 1 − �tn+1

∂ ṗ
∂p




k

n+1

(16)

which clearly shows the coupling between viscoplasticity and
dalayed damage. From the preceding two equations, it is then
possible to infer a new estimation of the state of the material at
time tn+1 with:

�k
n+1 = �k

n+1 + δ�k
n+1 and k = k + 1 (17)

which leads to the formation of a new residual vector until the
tolerance is reached.

Once �n+1 has been obtained, the state laws allow the compu-
tation of the stress variables and the next step can be performed.
Finally, the model is implemented in the commercial finite ele-
ment code Abaqus Explicit thanks to a user subroutine VUMAT
dedicated to the material behavior.

3. PARAMETERS IDENTIFICATION OF THE MODEL
The identification procedure consists in determining, thanks

to experimental data, the values of the mathematical constants
involved in the constitutive relations of a model. To perform the
identification, two major different methods depending on the
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complexity of the material and its associated model can be used.
First, when the following constraining conditions can be met:

• possibility to associate a physical or phenomenologi-
cal interpretation to a given parameter and a given test
(Young modulus to account for linear elasticity during
a uniaxial test . . . );

• possibility to make the distinction beween the different
physical phenomena (inelastic strain, loss of rigidity,
rate dependence . . . );

• ability to make simplifying assumptions;
• capacity to use different experimental curves in a se-

quential order to find the parameters;

a sequential identification procedure can be developed. This
method is quite empirical and gives very satisfying results for
numerous models. However, in this context, the identification
procedure is specific to a given material and its associated con-
stitutive model and it is not possible to consider strongly coupled
phenomena.

In our case, all the aspects of the behavior are imbricated and
it is not a simple matter to isolate the influence of each param-
eter in the global rate dependent response of the specimen. One
way to circumvent this difficulty is to consider the identification
procedure as an optimization problem. It constitutes the second
major class of methods.

The basic idea consists in minimizing the gap between exper-
imental data and results coming from numerical simulations. In
order to achieve this goal, the first step is to define the variables
of comparison. For example, one can compare the experimental
and numerical stress versus strain curves or, with recent optic
mesurement methods, fields of displacements. The next step is
then to create a “cost function” that estimates the error made by
the model while simulating the observed phenomena. Such an
indicator can be an error within the meaning of least squares.
Finally, from the knowledge of some sets of parameters and of
the quality of their fit, a new set has to be determined in order
to improve the numerical solution.

In this study, the identification procedure is based on a Pattern
Search Algorithm which comes from the direct search (gradient-
free) methods and enables to find minima of functions. This
algorithm has been chosen for three principal qualities:

• its ability to deal with numerous variables;
• its robustness (if an incompatible sets of parameter

leading to non real cost result is encountered, the algo-
rithm goes through the trap);

• and for its capacity to check a wide area in the parame-
ters space which limits the starting point dependence in
comparison with other methods such as descent ones.

Another point of interest in this algorithm is that the gradient
of the cost function is not needed. However, it has to be noticed
that the miminum found is a local one and so, the solution ob-
tained is a particular solution that is expected to give a satisfying
behavior to the model. In what follows, our attention is focused

on the identification of the model in shear direction which is the
part involving the most coefficients. Similar developments are
used to identify the model in fiber direction for both tensile and
compressive behaviors.

3.1. Experimental Data Available
In this first study and while waiting for the begining of an

imminent experimental campaign, “pseudo experimental data”
are generated from the model described in [9]. This model in-
cludes both plasticity and static damage under the same frame-
work as the present one. Here it is really important to notice
that the “pseudo experimental data” follows the mechanical be-
havior of glass-fiber/epoxy-resin woven fabrics. So, in all that
follows, the identification will also be made for this kind of
materials. However, the method developed below is quite gen-
eral and will be applied soon on new experimental data to deal
with carbon-fiber/epoxy-resin woven fabrics. A fundamental
point in an identification procedure is to solicit all the aspects
of the model as was shown by [13, 14]. For composite wo-
ven fabrics, this involves irreversible strains, loss of stiffness,
and rate dependence. To match these requirements, the gener-
ated “pseudo experimental data” represent cyclic shear tests for
strain rates evolving from 1 · 10−3 s−1 to 1 · 103 s−1. When
the strain exceeds 0.1 m.m−1, the strain rate is multiplied by
a factor 10 in order to test more efficiently the strain rate ef-
fects. The stress versus strain curves obtained are plotted on
Figure 1.

The “pseudo experimental data” are then computed in ta-
bles with the time and the associated total strain and stress. For
each given strain rate, a table named data X P

ε̇
= [

t ; εt ; σXP
]
ε̇

is
generated for comparison with numerical results.

3.2. Pattern Search Method
This section deals with the Pattern Search Algorithm. Let χ

be a set of parameters that is part of ϒ the space of the admissible
parameters delimited by lower and upper bounds. As presented
below, ϒ is composed of all the parameters involved in the shear

FIG. 1. “Pseudo experimental data” for identification in shear direction.
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FIG. 2. Pattern search algorithm.

direction of the model.

χ = [
G12; vG

12; σy ; K ; m; Q; β; α12; τ12;

Y o
12; vY o

12 ; Y c
12; vY c

12 ; wY c

12

]T

ϒ = {
χ/χ lower

i ≤ χi ≤ χ
upper
i , i ∈ {1; dim(χ)}}

For each set of parameters the time t and the strain εt are used
to drive the numerical simulations. Tables of numerical results
are then computed under the form dataNum

ε̇
= [

t ; εt ; σNum
]
ε̇
. It

has to be noticed that the identification procedure is performed
at the level of an integration point. By substraction, stress error
vectors � are introduced and calculated by:

� = σXP − σNum (18)

where each composant of � stands for the error on one point be-
tween the experimental and numerical values of stress. A global
indicator of the quality of the identification is then computed
from the norm of �. It takes into account all the experimental
data available. In the least squares means, the indicator ||�|| can
be defined as:

γ = ||�|| = 1

2
�.� (19)

To summarize, the problem can be expressed as:

“Find χ the set of parameters whose cost function γ is minimum
with χ ∈ ϒ the space of the admissible parameters.”

To solve this problem, the Pattern Search Algorithm pre-
sented in Figure 2 is employed.

Starting from a given set of parameters χ k , the algorithm
computes the cost and then prospects for a better candidate χ k+1

by forming a “mesh” of points generated by the translation of χ k

in each direction ei of the space of the parameters at a distance
of ak

i . If a better candidate appears, then a dilatation phase starts
around χ k+1 in the meaning that the next increment will be larger
than the previous one (||ak+1|| > ||ak ||). If there is no better
candidate, the algorithm contracts its search by decreasing the
distance of prospect (||ak+1|| < ||ak ||). The procedure goes on
until a tolerance on ||a|| or a maximum number of iterations is
reached. For more information, consult [15].

3.3. Implementation of the Method
The identification procedure is performed with the commer-

cial software Matlab and the Genetic Algorithm Toolbox that
includes a Pattern Search Algorithm. To conduct the procedure
to success, some simplifications and assumptions have to be
made on the set of parameters to identify. First of all, the huge
vector of parameters:

χ =[
G12; vG

12; σy ; K ; m; Q; β; α12; τ12; Y o
12; vY o

12 ; Y c
12; vY c

12 ; wY c

12

]T
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FIG. 3. Cost and associated number of iterations obtained for various initial sets of parameters.

can be reduced with special considerations:

• G12 the elastic mudulus and vG
12 its associated pa-

rameter that drives the strain rate dependence can be
identified separately from the other parameters by con-
sidering only the linear reversible part of the experi-
mental data;

• τ12 that upper bounds the damage rate and α12 can be
estimated “à priori” from the litterature [4, 8] since
there is, to our knowledge, no simple experimental test
that enables to give a value to this parameters.

Finally, and with the preceeding assumptions, the set of pa-
rameters to identify becomes:

χ = [
σy ; K ; m; Q; β; Y o

12; vY o

12 ; Y c
12; vY c

12 ; wY c

12

]T

A huge campaign of identification has been performed on sev-
eral sets of data. The upper and lower bounds of the parameters
were determined upon litterature and physical considerations:

χ lower = [0; 0.1; 1.01; 0.1; 0.1; 0.001; 0.001; 0.1; 0.001; 0.001]T

χupper = [30; 2000; 5; 25000; 0.99; 1; 1; 1000; 1; 1]T

Figure 3 shows the final set of parameters and its associated
cost versus the position ξ of the initial set of parameters χ0

from the bounds. ξ = 0 means that χ0 = χ lower and ξ = 1
means that χ0 = χupper. The calculations are performed for ξ =
{0; 0.25; 0.5; 0.75; 1} with G12 = 6396 MPa, vG

12 = 0.015 (ob-
tained from a first step of minimization upon the linear reversible
parts of the experimental curves), τ12 = 1 · 10−6 m2.(m−2.s−1)
and a reference strain rate ε̇ref = 1 · 10−3 m.(m.s)−1.

First of all, it is visible that two curves differ from the others:
ξ = 0 and ξ = 0.75. Next, for the initial sets of parameters
located in the middle of the interval (ξ = 0.25 and ξ = 0.5), the

final sets of parameters obtained after the optimization procedure
are close to the ones from the others. Concerning the parameters
of the delayed damage mesomodel, it appears that Y o

12, vY o

12 , Y c
12,

vY c

12 and wY c

12 all lie between their lower bound and 12 percent
of their upper bound. The relative independence of these results
from the starting point, and the satisfying global costs, lead us
to think that the adequate parameters for the delayed damage
mesomodel are close to the one determined in this first step of
identification. The upper bounds of these parameters are then
reduced to 15 percent of their initial value in the next steps of
optimization.

Now, regarding the part of the model that deals with irre-
versible strains and strain rate dependence (viscoplasticity), the
conclusions are more delicate to draw. For β and Q, and if we do
not consider the curves ξ = 0.75 and ξ = 0, the results are quite
homogeneous and close to the identified values obtained in [9]
that were used to generate the “pseudo experimental data.” As β

and Q drive the isotropic hardening phenomenon, the capability
of the Pattern Search Algorithm to find the same values starting
from very different points is quite interesting. For K , the Pattern
Search Algorithm always leads nearby the lower bound. Except
for ξ = 0.75, the same results are obtained for σy which actually
means that there is no elasticity, and that viscoplasticity occurs
immediately. Last, m seems to be limited by the imposed upper
bound.

From the preceeding considerations, three conclusions can
be drawn:

• the parameters of the delayed damage mesomodel are
almost identified (even if the model is coupled, various
sets for the “viscoplastic part” do not seem to affect
them);

• the isotropic hardening parameters β and Q have been
determined, and their value is similar to the one used
to generate the “pseudo experimental curves”;

7



FIG. 4. Comparison between experimental and numerical curves for both shear and fiber directions.

• efforts have to be made to finalize the optimization
process on the viscoplastic part of the model.

After this first step, the bounds of the almost identified pa-
rameters are severly reduced, and the Pattern Search Algorithm
is launched again with the objective to specify the values of the
parameters of the viscoplastic part of the model. Several inter-
vals of admissible parameters are generated with higher upper
bound for m and lower upper bound for K .

3.4. Results
Finally, after a last step of optimization with a descent method

to ensure that the minimum found is really a local minimum, the
obtained results can be observed in the Figure 4 for shear di-
rection (left side) and fiber direction (right side). The associated
cost is equal to 34.

They clearly highlight the capacity of the optimization pro-
cedure to determine the parameters of the model. Moreover,
the order of magnitude of the identified parameters seems to be
physically reasonable (although the initial bounds were rather
broad), which can give more confidence in the method. The Pat-
tern Search Algorithm has demonstrated its ability to help with
the identification of models dealing with strongly coupled phys-
ical phenomena. It has led to usable sets of parameters for the
model in shear and fiber directions as summarized in Tables 1
and 2 below.

The model presented in this paper allows to perform simula-
tions on composite woven fabric structures upon six decades of
strain rate.

4. APPLICATIONS
In the two first parts of this section, the case of the dynamic

extension of a bar is studied to check the ability of the model
to avoid strain localization and mesh dependence. This unidi-
rectional example allows to differentiate the behavior of the el-
ementary ply in fiber direction (first part) and in shear direction
(second part). In the two following parts, structural calculations

are presented. The third part deals with the impact of carbon-
fiber/epoxy-resin woven fabric plates, and the fourth is related
to the dynamic crushing of composite tubes.

4.1. Tensile Simulations on a Bar—Behavior
in Fiber Direction

The bar considered in this study measures 100 mm length for
a cross section area of 1 mm2. One extremity is clamped whereas
a constant velocity is imposed on to the other one. Mesh depen-
dence is investigated through the use of three different meshes
involving 100, 200 and 400 linear truss elements. The equation
of motion is integrated through the time with a standard explicit
central difference scheme. The material behavior is implemented
in the finite element code Abaqus via a VUMAT subroutine. The
material parameters employed for the model in fiber direction
are given in Table 1.

Many numerical simulations have been performed, and con-
vergence of the material behavior integration scheme was
achieved in all cases with satisfying accuracy in fiew iterations.
The left side of the Figure 5 presents the profile of the damage
obtained after 2.5 ·10−5 s along the bar for different meshes and
for a prescribed velocity of 5 · 105 mm.s−1 (which corresponds
to an average macroscopic strain rate of 5000 m · (m.s)−1). On
the right side, the damage distribution along the bar for a mesh
of 100 elements is ploted for various strain rates.

TABLE 1
Parameters for the model in fiber direction

Elastic properties Damage properties

E11 30780 MPa Y o
11 2.523 MPa

vE
11 0.0211 vY o

11 0.041
ρ 1400 kg.m−3 Y c

11 275.38 MPa
�11 3.64 · 10−4 vY c

11 −0.018
vvY c

11 2.07 · 10−4

α11 1
τ11 1 · 10−5 m2 · (m−2.s−1)
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TABLE 2
Parameters for the model in shear direction

Elastic properties Damage properties Viscoplastic properties

G12 6396 MPa Y o
12 8.8 · 10−3 MPa σy 16 M Pa

vG
12 1.5 · 10−2 vY o

12 0.17 K 0.41
ρ 1400 kg.m−3 Y c

12 281 MPa m 1.79
vY c

12 7.9 · 10−2 Q 17315 MPa
wY c

12 6.47 · 10−3 β 0.79
α12 1
τ12 1 · 10−6

The first observation that can be made about the preceeding
curves is that the mesh objectivity of the results is ensured. In-
deed, a modification of the mesh size of a factor 4 does not influ-
ence the response of the model in terms of damage distribution.
Moreover, the curves obtained for various strain rates show that
the fully damaged zone is not confined into a single element
when the mesh is fine enough to capture the internal length
associated with the delayed damage mesomodel and when the
strain rate is high enough to make the damage propagate. It also
has to be added that the positivity of the dissipation was verified
in all cases.

In conclusion, one can say that:

• the model is mesh objective;
• spurious localization phenomenon is avoided.

Hence, the introduction of strain rate dependent moduli in the
formulation of the delayed damage mesomodel has not removed
the interesting properties of the initial model but has, on the
contrary, enlarged its domain of validity in terms of strain rates.
It can be noted that the integration step time has to be chosen
with care, which means that:

• the elastic wave should not propagate to more than
one element at a step time of integration �t < min(le)√

Emax
ρ

(with le the characteristic lengths of the elements of
the model);

• the damage should not pass from 0 to 1 in one step
time (which is traduced by the condition ḋmax�t < 1
or written differently: δt < τ ).

Finally, these considerations lead to:

�t = min


min(le)√

Emax
ρ

; τ


 (20)

and within these conditions, the Newton-Raphson procedure al-
ways converges in less than 5 or 6 iterations depending on the
mesh size.

4.2. Tensile Simulations on a Bar—Behavior
in Shear Direction

This part goes on with the preceeding example to study
the behavior of the elementary ply submitted to shear loadings.
The parameters used for the calculations are given in Table
2. The distribution of the damage along the bar is ploted
in Figure 6. The influence of mesh size is presented for an

FIG. 5. Damage along the bar for the model in fiber direction—influence of the mesh and of the strain rate.
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FIG. 6. Damage along the bar for the model in shear direction—influence of the mesh and of the strain rate.

imposed velocity taken equal to 5 · 105 mm.s−1 on the left and
to 5 · 107 mm.s−1 on the right.

The coupling between viscoplasticity and delayed damage
mesomodel disturbs neither the independence of the results from
the mesh size nor the absence of localization phenomenon.
Moreover, to check the influence of the step time on the re-
sponse of the model, several calculations have been performed.
The left curves of Figure 7 below focus on the distribution of
the damage along the bar for a given loading but for different
step times. As a result, it can be seen that a modification of
the step time of a factor 100 does not modify the response of
the model. The integration of the constitutive laws of behavior
then appears to be sufficiently reliable to face more sophisticated
simulations.

Eventually, and in order to show the mesh objectivity of the
model on a “viscoplatic” variable, the right side of Figure 7 plots
the repartition of the cumulated plastic strain among the bar. In
conclusion, the uniaxial example of the extension of a bar has
demonstrated the capacity of the model to give similar results
whatever the meshes and the step times are. This fundamental
intrinsic characteristic of the model allows to predict the behav-
ior of structures independently from the spatial and temporal
discretizations.

To go further on the analysis of the model, two structural
applications are now presented.

4.3. Impact of a Composite Plate
The simulation of the impact of a composite plate is in-

spired from the work of Johnson et al. [16] performed within
the German Aerospace Center (DLR). A square plate, of thick-
ness 4.6 mm and length 300 mm, lying on a rigid square frame
of length 250 mm, is impacted normaly to its surface by a sphere
of mass 21 kg launched at an initial velocity of 6280 mm.s−1.
The layup sequence is [ 0 45 0 45 0 45 0 45 ] where each ply is
a woven fabric with the properties described in Tables 1 and 2.
The Poisson’s ratio ν12 is taken equal to 0.13.

It is important to notice that the experiment was performed
on a carbon-fiber/epoxy-resin woven fabric whereas the simu-
lations are done with a glass-fiber/epxoy-resin material. As a
consequence, the model presented in this paper will be qualita-
tively checked to show its ability to reproduce observed physical
phenomena.

In the finite element model, the plate is meshed with the mul-
tilayer and reduced integration shell elements S4R available in
Abaqus Explicit. These elements are 4 nodes linear elements
with 6 degrees of freedom per node. Several spatial discretiza-
tions, leading to similar results (for fine enough meshes), are
tested. Both the impactor and the square frame are modelled as
rigid solids. The contact beween these two solids and the plate is
considered to be a hard normal contact with no frictional sliding.
All the degrees of freedom of the square frame are constrained

FIG. 7. Damage and cumulated plastic strain distribution along the bar—influence of the step time and of the mesh.
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FIG. 8. Damage state in the direction 1 of the fibers after impact and evolution of the reaction force during the impact.

whereas the impactor is only free to translate normally to the
glass-fiber/epoxy-resin woven fabric plate. The calculations are
performed up to a time of 20 ms so that the penetration of the
impactor can be observed. Figures 8 below plot the state of dam-
age on the upper and lower sides of the plate in fiber direction
1, and the evolution of reaction force through the time for two
initial velocities of 6280 and 2330 mm.s−1 (in which case, the
impactor rebounds on the plate).The state of damage presented
here, for a time t equal to 3 ms, corresponds to the begining of
the failure of the plate as can be seen on the right curve with
the abrupt decrease of the reaction force. The left figure clearly
shows that the lower side of the plate is more damaged than the
upper one. This numerical result is correlated with experimental
observations. Moreover, as in Figures 9, the global kinematics
of damage is well predicted by the model. A macroscopic cross-
shaped crack propagates under the impactor and finally causes
the failure of the plate.

4.4. Axial Dynamic Crushing of a Composite Tube
This last structural example studies the dynamic crushing of

a square composite thin-walled tube. Its interest lies in the pre-
ponderant sollicitation of the fibers in compression. Qualitative
comparisons are made with the experimental results of Mamalis
et al. [17].

The section of the tube measures 100 by 100 mm and its
height is also equal to 100 mm. The staking sequence is [ 0 ]14

with layers made of carbon-fiber/epoxy-resin woven fabric. The
total thickness is 3.5 mm. The thin-walled tube lies on a rigid
ground and is impacted by a mass of 1 ton launched at an ini-
tial velocity of 5400 mm.s−1. The modelling of this experiment
is done in the same manner as before. Several discretizations
of the tube have been checked, all leading to similar results.
Ground and impactor were modelled as rigid solids and con-
tact conditions were imposed on the tube. Figure 10 presents
the macrocrack due to the failure of fibers in compression on

FIG. 9. Fully damaged zone after impact—experimental carbon-fiber/epoxy-resin on the left—numerical-glass-fiber/epoxy-resin on the right.
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FIG. 10. Simulation of the crushing of a composite tube—mid-length collapse mode.

the left, and the evolution of the force applied by the tube on
the impactor on the right. The calculation was stopped just after
failure. The global collapse mode of the structure, a propaga-
tion of a mid-length macroscopic crack, is in agreement with
the experimental observations. Moreover, the brittle failure of
the thin-walled composite tube after a crushing displacement of
2 mm is in a correct order of magnitude. These results, despite
the fact they were obtained from a model identified on glass-
fiber/epoxy-resin experimental data, are quite encouraging.

5. CONCLUSION
A model dedicated to carbon-fiber/epoxy-resin woven fabrics

was presented in this paper. The brittle failure of the fibers under
tensile loading, their nonlinear response due to the microbuck-
ling in compression, the loss of stiffness and the irreversible
strains observed in shear were all taken into account, and that,
for a large range of strain rates. Moreover, special attention was
paid to the construction of the model in order to avoid both
the mesh dependency and the strain localization shortcomings
that are often met in finite element simulations associated with
softening material behaviors. After a successful step of identi-
fication based on a particular direct search method of optimiza-
tion, calculations of uniaxial tensile tests on bars have shown the
robustness of the model. Two structural applications have then
been presented:

• the impact on a composite plate;
• and the crushing of a thin-walled tube.

In the first example, the model has predicted the kinematics
of the failure of the plate with great accuracy. In the second ex-
ample, the brittle rupture of the tube at mid-length was founded,
in perfect agreement with the experimental observations.

To recall with the design of huge sailing ships, having a model
able to reproduce various degradation phenomena is essential to
ensure à priori the integrity of the structure submitted to dy-
namic loadings. Moreover, as numerical models of these boats
involve numerous degrees of freedom, it appears really inter-

esting to have reliable predictions whatever the meshes used
for spatial discretization and the time steps of integration are.
As encouraging results were obtained on the modelling of the
glass-fiber/epoxy-resin woven fabrics, it can be said that the de-
velopment of the model looks promising.

The next step of this study will be an experimental campaign
on carbon-fiber/epoxy-resin woven fabrics. Other outlooks for
this study deal with the modelling of the Nomex honeycomb
core which connects the two composite skins in the panels used
in nautical construction. First developments have been made
in [2] concerning the linear elastic behavior until rupture of these
structural materials. Further ones, dealing with the rate effects,
will come next. A delaminating interface between the skins and
the core will also be investigated in order to be more accurate
on the design of oceanic ships subjected to dynamic loadings.
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localization and damage computation in laminates,” Computer Methods in
Applied Mechanics Engeneering 183, 105–122 (2000).
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