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he rheology of Newtonian concentrated fibre-bundle suspensions with nearly planar orientation states
s investigated within the framework of the homogenization method for periodic discrete structures.
hese suspensions are seen as forming a connected network of bundles. At their contact points, the flow
nduces local Newtonian interaction forces and moments. “Numerical rheometry experiments” are per-
ormed on representative elementary volumes of these suspensions to explore the influence of bundle
olume fraction and orientation state on the rate of change of bundle orientation. Three bundle orien-
ation distributions are particularly investigated: Gaussian-based, uniform and crenellated orientation
istributions. Two types of numerical simulations are performed, i.e., instantaneous and time-evolution
nes. The obtained numerical results permit to discuss the role of the shape of the orientation distri-
ution, typically on the rate of change of the second-order orientation tensor. They are also compared
o the well-known Jeffery theory and its subsequent modifications like the Folgar–Tucker theory. The
ccuracy of some well-known closure approximation functions of the fourth-order orientation tensor is
xamined. It appears that, in the case treated here where the suspending fluid and the fibre–fibre inter-
ctions are Newtonian, the Jeffery’s equation gives a fairly good fit (the best fit of all examined theories)
f the homogenization results, despite the completely different physics of both approaches. Some dif-
erences are observed in situations where fibre-bundles are highly aligned along the flow direction. It is

lso observed that the shape of the orientation distribution strongly affects the rate of the orientation
hange. At last, the tested closure approximations can lead to good description of some particular cases of
rientation distributions. Nonetheless, in general cases, they are not relevant at all so that other strategies
ould have to be used in order to compute the evolution of fibre orientation.
. Introduction

Polymer composites reinforced with short fibre-bundles [1–3]
re increasingly used in many industrial processes to produce parts
aving complex shapes, due to their lightweight and cost-effective
roperties. The main issue for these materials is to control the fibre
ontent homogeneity and the fibre-bundle orientation induced by
he forming processes. Practical applications for structural parts
nvolve highly concentrated suspensions (typical volume fraction
f fibres ≈10–30%), where short range bundle–bundle interac-
ions given by relative motion at bundle–bundle contacts are not

egligible and can even be regarded as the dominating physical
echanism [4–7].
This observation is the starting point of the approach presented

ere, which has already been developed and validated in previ-

∗ Corresponding author. Tel.: +33 2 40 37 25 27; fax: +33 2 40 37 25 66.
E-mail address: steven.le-corre@ec-nantes.fr (S. Le Corre).
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ous papers [6,7]. In Le Corre et al. [6], a theoretical framework was
developed to obtain the mechanical behaviour of a planar network
of fibre-bundles using the homogenization technique for periodic
discrete structures. In Le Corre et al. [7], efforts aimed at (i) propos-
ing a simple acceptable local bundle–bundle interaction model,
(ii) developing numerical simple schemes to mimic real networks
of fibre-bundles and to compute their macroscopic behaviour and
(iii) comparing the prediction of the micro–macro model with the
rheological experiments performed on a non-linear viscous planar
suspension, i.e. an industrial Sheet Moulding Compounds (SMC).

Another observation is that numerical simulation works, which
aim at predicting the fibre orientation evolution occurring during
the flow of this type of industrial concentrated suspensions,
are commonly but quite surprisingly based on theories whose

domains of validity are a priori restricted to dilute or semi-dilute
suspensions [8,9]. The models based on this approach are obtained
from the well-known Jeffery’s equation [10] for a remote fibre in
a Newtonian fluid. This model can be modified in order to account
for hydrodynamic interactions between fibres by involving the
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odifications proposed by Tucker and Advani [8]. Usually, this
pproach leads to describe the evolution of fibre orientation by an
quation for the rate of the second-order orientation tensor. This
quation has the drawback to include the fourth-order orientation
ensor and consequently raises the underlying problem of choos-
ng an appropriate closure approximation to solve the problem.
ere the main issue is to investigate the relevance of this type of
pproach for concentrated suspensions of fibre-bundles.

Hence three ways are followed along this study. Firstly, the pre-
ictions of the commonly used models (Jeffery and Folgar Tucker
ype theories) for fibre orientation evolution are compared with the
irect calculation results provided by the presented micro–macro
pproach. Secondly, the influence of the shape of the fibre ori-
ntation distribution on the rate of the orientation evolution is
uantified: i.e., a broad spectrum of concentrated suspensions,
hich may exhibit three different orientation distributions, are
umerically tested. Thirdly, as it is known that some closure approx-

mations were developed to work for some characteristic fibre
rientation distributions [9], the accuracy of some well-known
losure approximations is examined for all considered microstruc-
ures.

For that purpose, a non-exhaustive review of commonly used
bre orientation models, based on Jeffery’s work, is given in Section
. In Section 3, a brief presentation of the micro–macro approach,
hich has been extensively developed in [6,7], is achieved. Some
etails are given on the numerical technique used to generate
he Representative Elementary Volumes (REV’s) of the stud-
ed suspensions, in particular on the three different considered
bre orientation distributions, i.e., Gaussian-based, uniformly dis-
ributed and crenellated. Furthermore, the principle of calculations
erformed to compute the evolution of the fibre-bundle orientation

s explained. Then instantaneous simulation results are presented
n Section 4 in order to discuss the influence of the fibre volume
raction and the role of the current orientation state on the rate
f the second-order orientation tensor. These results are compared
ith predictions of the common theories. The same type of com-
arison is also performed for time-evolution calculations under
omogeneous mechanical loading conditions in Section 5.

. State of the art in fibre orientation modelling

.1. Motion of a single fibre immersed in a Newtonian fluid

Jeffery’s theory [10] forms the basis of most current approaches
o describe fibre suspension rheology and in particular fibre ori-
ntation modelling. One of the main contribution of this theory
onsists in giving an expression for the angular velocity ω of an
llipsoidal particle in an incompressible infinite Newtonian sus-
ending fluid with no external forces or torques. Later, Hand [11]
ompared and showed that the Jeffery equation is a special case of
more general equation obtained by Ericksen [12] in his invariant-
ased theory of anisotropic fluid (the so-called TIF theory) for the
volution of an unit vector p, characterizing a preferred direction
t each material point x of the fluid. If the main axis of revolution
f the ellipsoidal particle is described by this unit vector p and if
e consider the cylindrical shape being an approximation to the

llipsoid, the following Jeffery–Ericksen equation may be used to
escribe the motion of the fibre:

˙ = ω × p = �.p + � (D · p − (p · D · p)p) , (1)

here ṗ denotes the material derivative of p, � is the shape factor

f the fibre (� = (r2 − 1)/(r2 + 1) with r = l/d the fibre aspect ratio
here l and d are respectively the length and the diameter of the
bre), � the vorticity tensor and D the strain rate tensor, i.e., the
kew-symmetric and symmetric parts of the velocity gradient L =
radv, respectively, with v the fluid velocity.

2

2.2. Evolution equation for the orientation distribution function 

In the case of a suspension of fibres, a reasonable way to describe
the orientation of fibres and its evolution consists in adopting a
global statistical approach at each material point. For that purpose,
the distribution function of orientation , as a function of x, p, and
t, can be used. At each material point x, the elementary probability
dP of finding a fibre whose orientation is located in the portion of
space delimited by the elementary solid angle dp is written as

dP =  (x,p, t)dp. (2)

The distribution function is �-periodic:  (x,p, t) =  (x,−p, t). It
is normalized so that the probability of an orientation on the whole
orientation space is unity:∮
 (x,p, t)dp = 1. (3)

The evolution equation of  has the following alternative forms
[13]:

d 

dt
+ divp(ṗ) = 0, (4)

where

d 

dt
= ∂ 

∂t
+ v · gradx + ṗ · gradp . (5)

If the following notation is adoptedD /Dt = (d /dt) − ṗ · gradp ,
Eq. (4) writes:

D 

Dt
+ divp ( ṗ) = 0. (6)

Following Dupret and Verleye [9], ṗ can be expressed by a con-
stitutive equation, which is a function of p. For instance, the Jeffery
equation, whose assumptions are very restrictive, is applicable to
describe the evolution of the orientation of fibres contained in
dilute suspensions, where hydrodynamic interactions of long and
short range between fibres can be considered as negligible.

2.3. Evolution equation for the second-order orientation tensor

Determining the orientation state by solving the evolution equa-
tion for is quite cumbersome since (x,p, t) has six independent
variables in the 3D case and this task asks for heavy calcula-
tions. This is why orientation tensors were introduced. Orientation
tensors are obtained by averaging the n th dyadic products over
orientation space, with  as the weighting function [14]. Due to
the normalization and the periodicity of  , the odd-order orienta-
tion tensors are all zero. Usually only the second and fourth-order
orientation tensors are used. They are defined as follows:

A(2) =
∮

p ⊗ p (p)dp, (7)

A(4) =
∮

p ⊗ p ⊗ p ⊗ p (p)dp. (8)

These tensors only depend on space x and time t variables. It is then
easy to show that the time-evolution equation of the second-order
orientation tensor using (4) writes:

Ȧ
(2) =

∮
{ṗ ⊗ p + p ⊗ ṗ} (p)dp. (9)
Injecting for instance the form of ṗJ given by Eq. (1) provides the

following equation for Ȧ
(2)

:

Ȧ
(2) = � · A(2) − A(2) · � + �(A(2) · D + D · A(2) − 2A(4) : D). (10)
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otice that, given the imposed macroscopic velocity gradient L =
radv, the above equation implies that Ȧ

(2)
is a linear function of L.

n particular, we have:

˙ (2)
(−L) = −Ȧ

(2)
(L). (11)

The evolution equation of the second-order orientation tensor
as the drawback to involve the fourth-order orientation tensor
(4). This difficulty is usually circumvented by defining a closure
pproximation expressing A(4) in terms of A(2). This problem has
ed to several developments by different authors which first can
e found in a paper of Prager [15]. A large variety of closure forms
re reviewed in some papers by Advani and Tucker [16] and Dupret
nd Verleye [9] or Doghri and Tinel [17]. Among the different closure
pproximations, we will examine in this paper the linear [18,14], the
uadratic [19], the hybrid [14] and the natural [9] closure approx-
mations. They are detailed below in their 2D forms, i.e., for fibre
rientation contained in a plane (e1, e2), using indicial notations
i, j, k, l∈ {1,2}):

Linear closure approximation [18,14]:

A(4)L
ijkl

= − 1
24 (ıijıkl + ıikıjl + ıilıjk)

+ 1
6 (Aijıkl+Aikıjl+Ailıjk+Aklıij+Ajlıik+Ajkıil), (12)

Quadratic closure approximation [19]:

A(4)Q
ijkl

= A(2)
ij
A(2)
kl
, (13)

Hybrid closure approximation [14]:

A(4)H
ijkl

= 4 det A(2)A(4)linear
ijkl

+ (1 − 4 det A(2))A(4)quadratic
ijkl

, (14)

Natural closure approximation [9]:

A(4)N
ijkl

= 1
3 (AijAkl + AikAlj + AilAjk) + 1

6 det A(2)(ıijıkl

+ ıikılj + ıilıjk). (15)

.4. Models of hydrodynamic interactions between fibres

In order to take into account fibre–fibre hydrodynamic inter-
ctions in semi-dilute suspensions and to provide a constitutive
quation for the material derivative ṗ, Jeffery’s equation can be
odified as follows:

˙ = ṗJ + qd, (16)

here ṗJ is given by (1) and qd is a term, which concept in the case
f non-Brownian fibre suspension has been first proposed by Fol-
ar and Tucker [13] and later modified and called by Rahnama et
l. [20]“orientational dispersion flux”. Detailed analyses of the ran-
omization effects of this term on the fibre orientation distribution
re given in different studies by Shaqfeh and Koch [21,22] and Rah-
ama et al. [20] for shear and uniaxial flow kinematics. A general

orm for this term is proposed by Koch [23] and Petrich et al. [24]:

d = −Dr · gradp , (17)

here tensor Dr is called the orientational diffusion tensor. Dif-
erent isotropic and anisotropic forms of this diffusion term are
roposed. For instance, Folgar and Tucker [13] have first suggested
n isotropic diffusion term:
r = Drı with Dr = CI�̇, (18)

here CI is the interaction coefficient, which needs to be deter-
ined from experiments or simulation results (see for instance

25,26] or [27]) and �̇ = √
2D : D the generalized shear strain rate

3

of the fluid. Some anisotropic diffusion terms have also been pro-
posed. For example, the one given by Fan et al. [28] reads:

Dr = C�̇, (19)

where C is a second-order symmetric tensor, which components
have to be determined experimentally.

In the case of isotropic diffusion, the form of the equation for

Ȧ
(2)

is consequently modified as follows [14]:

Ȧ
(2) = �.A(2) − A(2).� + �

(
A(2).D + D.A(2) − 2A(4) : D

)
+ 2Dr(ı − ˛A(2)), (20)

with ˛ = 2 or 3, respectively in 2D or 3D fibre orientation. To the
best of our knowledge, it must be pointed out that all these forms

for Dr break the linearity (11) of Ȧ
(2)

with respect to L.

3. The present micro–macro approach

This section summarizes the micro–macro model developed in
[6,7] to model the rheology of highly concentrated fibre-bundle
suspensions with planar bundle orientation.

3.1. Micromechanical model and upscaling

The considered suspensions are sheets of thickness h in which
slender fibre-bundles of length l (h < l) are immersed in an
incompressible Newtonian fluid. These bundles form connected
networks, i.e., with no isolated bundle or group of bundles. Bun-
dles have elliptical cross-section �dmaxdmin/4, which main axis
dmax(� dmin) is contained in the plane of the sheets P ≡ (e1, e2).
The thickness h being small compared to l, it will be assumed
that each bundle b has a main and mean orientation along a unit
vector pb = cos �be1 + sin �be2 contained in P [29,30]. This does
not mean that bundles are straight: indeed, because of the very
high bundle content f (0.05< f < 0.3) and h < l, bundles may be
initially slightly bent or wavy around their major axis dmax. Like-
wise, since dmax � dmin, we will (i) neglect bending efforts in the
thickness of the sheet, and (ii) neglect the bending of the bun-
dle in P. The last assumption is similar to the one stated in [7,5].
It is supported by experimental evidences. Observations on indus-
trial [3,29] and model [30] concentrated planar bundle suspensions
show that the small axis dmin of bundles’ cross-section in these sus-
pensions are aligned in the e3-direction. Furthermore, bundles are
highly compliant compared with “classical” fibres: they can bend
and flatten along e3 without any significant effort, at least within
the investigated strain range. Therefore, this justifies the presented
simple micromechanical model for the interactions between bun-
dles where forces in the e3-direction are neglected. This leads also
to the two following consequences:

(a) The motion of a bundle b inP is simply given by the translational
ṽb and angular �̇be3 velocities of the centre of mass Gb of the
bundle (x̃ being the projection of x in P). Moreover, the out-of-
plane shearing at the macroscale has not been studied: noting
L = gradv, respectively, with v the macroscopic velocity gradi-
ent of the suspension, only situations for which Li3 = L3i = 0
(i = 1,2) are explored.

(b) As explained in Le Corre et al. [7], it is assumed that during
the deformation of the suspension, contacting bundles inter-
act with forces and local moments induced by the shearing of

a small amount of a fluid entrapped in contact zones. As the
suspensions under consideration are very concentrated, such
deformation mechanisms are supposed to be the main mechan-
ical contributions to the overall stress of the suspension. In this
paper, the entrapped fluid is simply considered as Newtonian,
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ig. 1. Modelling of bundle–bundle interactions: (a) view of a connection between
urface of the sheared zone.

its viscosity � being that of the suspending fluid. Concerning
this last point, very simple assumptions are stated to model the
geometry and the mechanics of the entrapped fluid: at a given
contact zone k between bundles b and c, of centre K, such a
complex situation is assumed to be equivalent to the shearing
of thin prism of height˛, which in-plane dimensions and orien-
tation depend on dmax, the orientation of the bundles pb and pc ,
as well as the relative orientation of the bundles��k (see Fig. 1).
During the relative motion of b and c, the entrapped Newtonian
fluid is subjected to (i) a simple shear induced by the difference
of in-plane translational velocities�ṽk = ṽc(K) − ṽb(K) at point
K, and (ii) a torsion along e3 induced by the difference of angu-
lar velocities��̇k = �̇c − �̇b. It is then possible to obtain simple
estimations of the interaction force f̃ k and the local interaction
momentMk(K)e3 the bundle c exerts on the bundle b [7]:

f̃ k = �

˛

d2
max

| sin��k|
�ṽk, Mk(K) = �

4
�

˛

d3
max

| sin��k|2
��̇k. (21)

Therefrom, by neglecting acceleration and external volume
orces and moments, by applying the homogenization technique for
iscrete periodic structures [31–33], and by assuming that the local
omentsMke3 are small compared to the moments of interaction

orces f̃ k it can be shown that the self-equilibrium of a Representa-
ive Elementary Volume (REV) of the suspensions (of volume Vrev)
an be put in the form [6,7]:

b∈Vrev,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k∈ Cb

f̃
[0]
k = 0

∑
k∈ Cb

M[0]
k

e3 +
∑
k∈ Cb

sbpb × f̃
[0]
k = 0

(22)

here Cb is the set of bundles c connected to bundle b, and sb is
he local abscissa (from the centre Gb of b) along pb of the contact-

ng point K. In this Eq. (22), f̃
[0]

and M[0] represent the first-order
k k

pproximations of f̃ k andMke3. They are expressed as follows:

˜[0]
k = �

˛

dmax
2

| sin��k|
�ṽ[1]

k
, (23)

4

neighbouring fibre-bundles, (b) side view of the sheared zone, (c) top view of the

where

�ṽ[1]
k

= 	ṽ[1]
c − 	ṽ[1]

b
+ L̃ · �̃k + sc�̇[0]

c e3 × pc − sb�̇[0]
b

e3 × pb, (24)

with �̃k the projection of GbGc in P, and

M[0]
k

= �

4
�

˛

d3
max

| sin��k|2
(�̇[0]
c − �̇[0]

b
). (25)

In these last equations, �̇[0]
b

is the first-order approximation of �̇b,

εṽ[1]
b

is the first-order fluctuation of ṽb around its first-order approx-

imation ṽ[0]
b

, L̃ = gradṽ[0] is the macroscopic velocity gradient,
which is considered as given and imposed for all fibre-bundles con-
tained in the REV. Please notice that due to the previous kinematical
constraints, i.e., incompressibility and Li3 = L3i = 0 (i = 1,2), this is
equivalent to impose L. Hence, Eq. (22) represents a system of 3N
linear equations with 3N kinematical unknowns, N being the total
number of bundles contained in the REV. It is easily shown from
(23)–(25) that the unknowns are linear functions of L̃ [6].

Moreover, the homogenization results show the following prop-
erties for the suspensions:

(a) the equivalent continuous medium of the studied suspension
is a Cauchy medium, whose symmetrical macroscopic stress
tensor � is:

� = −pı + �̃(f ) with �̃(f ) = 1
Vrev

C∑
k=1

�̃k ⊗ f̃
[0]
k , (26)

where p is the incompressibility pressure, ı the identity ten-
sor, Vrev the volume of the considered REV, C the number of
bundle–bundle connections in the REV.

(b) the suspension is a linear viscous anisotropic fluid:

�̃(f ) = �̃(f )(D̃,�,microstructure), (27)

where D̃ is the strain rate tensor, i.e.. the symmetric part of L̃.

Such a theoretical result is a consequence of the previous point
(a) and of the system of Eqs. (22)–(25).

(c) at the first-order, the rate of change

ṗb = �̇[0]
b

e3 × pb = �̇[0]
b

(cos �be2 − sin �be1) (28)
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of any orientation vector pb is a linear function of L̃:

∀i, j∈ {1,2}
∀Lij ∈R
∀b∈Vrev

}
ṗb(Lijei ⊗ ej) = Lijṗb(ei ⊗ ej), (29)

where the Einstein convention has been used for the summa-
tion on indices i and j. This also a direct consequence of the
system of Eqs. (22)–(25).

d) Consequently, the rate of the corresponding distribution func-
tion  and of the n th-order orientation tensors A(n) are also
linear functions of L. In particular, property (11) is also verified.

.2. Microstructure generation

In order to mimic real fibrous microstructures of industrial
olymer composites such as Sheet Molding Compounds (SMC) or
lass Mat Thermoplastics (GMT), a very simple deterministic tech-
ique directly inspired from the statistical tube model [34–36]
as been developed [7]. Following this tube model, the number
f bundle–bundle contacts per unit volume should be a quadratic
unction of the volume fraction f of bundles. Including the tube

odel in the previous homogenization approach [7] induces that
he macroscopic extra stress tensor, (e.g., the term �̃(f ) of the Eq.
26)) is proportional to the number of contacts in the suspension,
nd thus evolves as a quadratic function of the fibre volume fraction
. Experimental results [3,30] depict also such quadratic evolution of
tress levels with f: this reinforces the relevance of the tube model
espite its simplicity.

Therefore, this generation process will be used in the following
ections to study the evolution of the orientation of the bundles
uring mechanical loading. Briefly, N bundles (elementary volumes
dmaxdminl/4) which orientation vectors pb are contained in P are
enerated inside a 3D REV of volume Vrev = d× d× h (see Fig. 2,
being the thickness of the REV). The centre of mass Gb of each

undle has a random position (xb, yb, zb) inside the volume of the
EV.

The in-plane dimension d of the REV must be chosen larger
han the bundle length l, in order to avoid the possibility to gen-
rate a continuous fibre-bundle. Practically, d was set to a length
% higher than l, in order to enhance the computation time. Within
he bundle content range for which the micro–macro approach
as initially developed (>8–10% for the considered bundle aspect

atio), i.e., when the number of bundle–bundle contacts per bundle
s greater or equal to 2 (largely above the percolation thresh-
ld), a preliminary study has proved that numerical results were
ot affected by this choice of d. At lower fibre-bundle content,
oth the physics at the bundle scale and the adopted generation
rocedure may become questionable so that the size of the REV
hould be reconsidered and increased (see for instance Section
.1).

The generation process permits to obtain three different shapes
or the fibre orientation distribution of bundle angles �b of the
tudied planar networks, i.e., uniform, Gaussian-based and crenel-
ated, the two latter ones being centred on � = 0. They are shown in
ig. 2(a–c). The characteristics of the uniform distribution are that
ts amplitude is chosen and that there are no privileged classes of
bre angles �b (cf. Fig. 2(a)). The Gaussian-based distribution con-
ists first in starting from a Gaussian distribution of orientation
ngles �b for fibres, and then in using the �-periodicity of  with
espect to �b to normalize the resulting histograms (cf. Fig. 2(b)).

he crenellated distribution is detailed hereafter. It exhibits a peak,
hich intensity and amplitude can be varied. More precisely, given

he number N of fibres in the REV, two orientation amplitudes
1 and ˛2 are imposed to two populations of N1 and N2 = N − N1
bres, respectively. A random distribution is set for both popula-

5

tions of fibres, leading to superimpose two random distributions
between −˛1/2 and +˛1/2 and between −˛2/2 and +˛2/2, respec-
tively (fibrous microstructures are oriented in the e1-direction).
As depicted in the simplified graph of Fig. 2(c), fibre orientation
in generated REV’s can be characterized by ˛1, the base orienta-
tion amplitude, r˛ = ˛2/˛1, the amplitude ratio and rN = N2/N, the
fraction of fibres in the peak exhibited by this type of orientation
distribution. Notice that at fixed values of N and ˛1, the increase of
rN is accompanied with an increase of r˛.

In order to detect bundle–bundle contacts, a control volume
Vb is assigned to each bundle b: every bundle c which centre-
line intersects Vb is added to the connectivity set of bundle b.
The control volume Vb is chosen as a rectangular box with dimen-
sions l × dmax × ı∗dmin, where ı∗ is a dimensionless parameter [7].
In the following, the generated bundle networks will be charac-

terized by their bundle volume fraction f, and by the second Ã
(2)

and fourth Ã
(4)

2D-orientation tensors. These macroscopic descrip-
tors of the microstructure are respectively defined in a discrete
way by:

f = N�dmaxdminl
4Vrev

,

Ã
(2) = 1

N

N∑
b=1

p̃b ⊗ p̃b, Ã
(4) = 1

N

N∑
b=1

p̃b ⊗ p̃b ⊗ p̃b ⊗ p̃b. (30)

3.3. Computational rheometry

Two types of calculations will be presented in the following:

(1) Instantaneous mechanical responses of the generated REV’s
—Thanks to the linearity property (29), the mechanical response
of a microstructure at a given time can be entirely determined
imposing on the studied REV’s four independent macroscopic
velocity gradients, i.e., ei ⊗ ej(i, j∈ {1,2}). In practice, given one
of these four macroscopic velocity gradients, this consists in
inverting the linear system (22) in order to compute (i) the
unknown kinematical fields 	ṽ[1]

b
and �̇[0]

b
, (ii) the overall stress

tensor of the suspension � (according to (26)) and (iii) the rate
˙̃A

(2)
of the orientation tensor Ã

(2)
defined as (according to (28)

and (30)):

˙̃A
(2)

= 1
N

N∑
b=1

( ˙̃pb ⊗ p̃b + p̃b ⊗ ˙̃pb). (31)

(2) Time-evolution of microstructures —In order to determine the
time-evolution of a REV during a given mechanical loading,
both a Lagrangian point of view and an explicit time-integration
scheme have been adopted. More precisely, after each “snapshot
calculation” performed at a given time t, the position xt+ıt

b
of the

centre of mass Gb as well as the orientation pt+ıt
b

of a bundle b
at time t + ıt are updated from the knowledge of the position
xt
b
, the orientation pt

b
and the computed velocity fields 	v[1]

b
and

�̇[0]
b

e3 at t:{
xt+ıt
b

= xt
b

+ (L · xt
b

+ 	v[1]
b

)ıt

pt+ıt
b

= pt
b

+ (�̇[0]
b

e3 × pt
b
)ıt.

(32)
Therewith, the connectivity of the updated REV is achieved
following the method given in Section 3.2, and a new time
iteration can be achieved. A preliminary study has been per-
formed in order to determine the time-step values ıt that give
reproducible and time-step insensitive simulations.
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ig. 2. (a) Uniform fibre orientation distribution ranging between −60◦ and 60◦ , (b) G

ith their corresponding second-order orientation tensors Ã
(2)

, (d) example of a ge
f = 0.188) (symbols © represent the connections location, lines represent the m
eformation until an axial Hencky strain ε33 = ln(h/h0) = −1.

In order (i) to underline the role of both the fibrous microstruc-
ure (bundle content and orientation) and the loading path on
he macroscopic response of the suspension, and (ii) to test the
apability of usual fibre orientation models in the concentrated
egime, numerical simulations presented below were performed
ith the following microstructural parameters which values are

ypical of those encountered in polymer composites (SMC or

MT):

the dimensions of the bundles were l = 25 mm, dmax = 0.6 mm,
dmin = 0.06 mm, and the REV’s are 25 mm × 25 mm × 2.5 mm
rectangular boxes [7],

6

an-based fibre orientation distribution, (c) crenellated fibre orientation distribution,

d REV (V (s) = 25 mm × 25 mm × 2.5 mm) containing 437 bundles of length 25 mm
enter-line of the bundles). (e) Same REV after flowing under a unit plane strain

• bundle networks were generated with the procedure described
in Section 3.2(Ã(2)

12 ≈ 0). The principal orientation of the networks

Ã(2)
11 ranged between 0 and 1, the volume fraction of bundles f

between 0.05 and 0.3,
• the thickness˛of the equivalent sheared contact prisms was fixed

to 2 �m, the dimensionless parameter ı∗ to 3 [7].
The generated REV’s were subjected to two mechanical loading
conditions:

• a unit plane strain compression (I) in (e1, e3), i.e., a 1D elonga-
tional flow in P:
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LI = e1 ⊗ e1 − e3 ⊗ e3, (33)

a unit pure shear (II) in (e1, e2), i.e., an irrotational shear flow in
P:

LII = 1
2 (e1 ⊗ e2 + e2 ⊗ e1). (34)

As an example, Fig. 2(b) gives the deformed shape of the REV
lotted in Fig. 2(a) after a unit plane strain compression up to an
xial Hencky strain ε33 = ln(h/h0) = −1.

. Instantaneous responses

The first presented simulation results are snapshots in time of
he instantaneous evolution of fibre-bundle networks. The follow-
ng sections aim at describing the influence of the fibre volume
raction or the influence of current fibre orientation on the rate of

rientation ˙̃pb and on the orientation rate tensor ˙̃A
(2)

. This is first
erformed using micro–macro modelling predictions (cf. Sections
.1 and 4.2). Then a comparison with usual approaches (cf. Section
) is achieved in Sections 4.3–4.5.
.1. Influence of the fibre volume fraction on the orientation rate

Fig. 3 (a) gives the evolution of the components Ã̇(2)
11 and Ã̇(2)

12

f the tensor ˙̃A
(2)

calculated for nearly isotropic Gaussian-based

ig. 3. Influence of the fibre volume fraction f on the rate of the components of the orie
nd d) in P- (a) and (c): nearly isotropic REV’s (Ã(2)

11 ≈ 0.5) - (b) and (d): highly oriented
rientation distributions.

7

microstructures (Ã(2)
11 ≈ 0.5) and subjected to a 1D elongational

flow. Fig. 3(b) gives the evolutions of the same components for
highly oriented microstructures (Ã(2)

11 ≈ 0.8) tested for the same
flow kinematics. Whatever the studied microstructure (isotropic
or oriented), we can notice that the Ã̇(2)

12 components are very low

compared to the Ã̇(2)
11 components.

• For f > 0.05, it appears that the fibre volume fraction has not an
important influence on the results.

• For f ≤ 0.05, the same observation can be made despite a larger
scattering of the results. The origin of this scattering is mainly due
to the low number of bundles that are present in REV’s, moreover
some remote bundles or remote clusters of bundles can be found
in the generated REV’s. These elements are not accounted for the
calculations of the macroscopic properties of the generated REV’s
[7]. Typical sizes of these clusters can be of the same order as the
sizes of the REV’s so that the size of the REV’s may be inappropri-
ate for such situations. To obtain reliable results two alternatives
can be followed: the first one consists in increasing the size of the
generated REV’s, the second one consists in performing a large
number of calculations on REV’s of limited sizes in order to get

representative average values of the studied properties [37,38].
Here, this last option was chosen. It has also to be pointed out
that remote bundles or clusters could have an impact on the rate
of the orientation tensor in this range of rather low fibre vol-
ume fractions. In this particular case, the micro–macro approach

ntation tensor Ã
(2)

for 1D elongational flows (a and b) and for pure shear flows (c
REV’s along e1 (Ã(2)

11 ≈0.8). Calculations are performed using Gaussian-based fibre
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ig. 4. Components ṗi of the orientation evolution vector ṗb for each fibre-bundle
symbols) and “Jeffery”(lines) predictions for 1D elongational flows in P along e1. Cal
f = 10%, (b) highly oriented - f = 10%, (c) nearly isotropic - f = 25%, (d) highly orie

should be improved by accounting for bundle–fluid interactions
in order to incorporate the influence of these remote elements
or domains in the description of the rheological behaviour of the
suspension.
When these microstructures are subjected to a pure shear kine-
matics (Fig. 3(c) and (d)), the same trends are observed.
Fig. 4 (a–d) shows the components of ˙̃pb obtained by the
micro–macro approach for each bundle of nearly isotropic and
very oriented cells subjected to 1D elongational flows. Two fibre-
bundle fractions (f = 10% and 25%) are considered. These figures
also underline the strong influence of the global orientation what-
ever the fibre fraction f. For a given orientation, clouds of points
represented in these figures are close when comparing the two
tested fibre-bundle fractions. Nonetheless, it has to be noticed
that the dispersion of results decreases when increasing f: i.e., the
clouds of points is more compact for high bundle fractions. These

observations have to be related to the decrease of the dispersion

of the components of ˙̃A
(2)

of Fig. 3(a–d).
Thus, given the very weak influence of the fibre volume fraction

f on the components of ˙̃A
(2)

for elongational and shear flows for

8

’s having a number of fibre-bundles N = 600. Comparison between micro–macro
ons are performed using uniform fibre orientation distributions. (a) Nearly isotropic
f = 25%.

f > 0.05, we will focus the rest of our study on differently oriented
microstructures with an identical fibre content of 0.2.

4.2. Influence of the current orientation of fibres on the
orientation rate

First results of Fig. 5 (a) and (b) are obtained from calcula-
tions performed using cells where the fibre orientation distribution

is Gaussian-based. In Fig. 5(a), the components of ˙̃A
(2)

are given
as a function of the current orientation Ã(2)

11 for cells having dif-
ferent fibre orientations subjected to an elongational kinematics
(f = 0.2). Micro–macro predictions show that the orientation rate
in the flow direction (given by Ã̇(2)

11 ) strongly depends on the cur-

rent fibre orientation, which is given here by Ã(2)
11 . The maximum of
fibre orientation evolution in the direction of the flow is obtained
for nearly isotropic structures (Ã(2)

11 ≈ 0.5) and this decreases with
the fibre orientation intensity, either in the e1-direction or in the
e2-direction. It is interesting to notice that the evolution of Ã̇(2)

11 is

not exactly symmetrical with respect to Ã(2)
11 = 0.5: the decrease of
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ig. 5. Influence of the orientation intensity Ã(2)
11 on the components of the orienta

ase of Gaussian-based fibre orientation distributions, (c) and (d) are respectively t
etween micro–macro and “Jeffery” predictions.

˙ (2)
11 is higher when Ã(2)

11 < 0.5 than when Ã(2)
11 ≥ 0.5. Notice that

(2)
11 has nearly no influence on Ã̇(2)

12 . Even if it is never exactly zero,

t remains small compared to Ã̇(2)
11 . This can simply be attributed

o the random generation process where the average alignment of
bres along e1 is never perfect.

Fig. 5(b) represents the same kind of results for oriented REV’s
ubjected to pure shear kinematics. In this case, the first principal
alue Ã̇(2)

I and the value of the angle between the major principal

ector eI and the direction e1 of ˙̃A
(2)

are represented with respect
o Ã(2)

11 . The micro–macro predictions show that this angle is close

o �/4 whatever the current fibre orientation given by Ã(2)
11 . Hence,

ven if the subjected kinematical loading is irrotational, the fibrous
icrostructure rotates. The maximum of Ã̇(2)

I is obtained for cells
ighly oriented either in the e1-direction or in the e2-direction.
oreover, this evolution appears to be symmetrical with respect

o Ã(2)
11 = 0.5 in this case.
Fig. 5(c) and (d) give respectively the same type of results as
ig. 5(a) and (b) for calculations performed using uniform fibre
rientation distributions. General trends are quite close to the pre-
ious figures. Nevertheless, the evolution of Ã̇(2)

11 (respectively Ã̇(2)
I )

xhibits a more complex “wavy” shape with two local maxima

9

nsor rate ˙̃A
(2)

: (a) for 1D elongational flows in P along e1, (b) for pure shear in the
e as (a) and (b) in the case of uniform fibre orientation distributions. Comparison

(respectively minima) for the elongational kinematics (respectively
the pure shear) than in the case of the Gaussian-based calcula-
tions. Moreover, the obtained rates can differ quite largely too, e.g.,
Ã̇(2)

11 ≈ 0.3s−1 at Ã(2)
11 = 0.35 for the uniform distributions whereas

Ã̇(2)
11 ≈ 0.24 s−1 for the Gaussian-based case and 1D elongational

flows. Thus, it appears that the shape of the fibre orientation
distribution is preponderant on the rate of the evolution of the
orientation of fibres whatever the tested kinematics.

This important observation is confirmed when using crenel-
lated fibre orientation distributions as depicted in Fig. 6 (a) for
elongational kinematics. This figure indicates that the rate of the
components of the second-order orientation tensor will “slow
down” as the fraction fibres rN of fibres will decrease, i.e., when
the orientation distributions exhibit sharp orientation peaks. As
evident from the graph of Fig. 6(c), for cells having a similar aver-
age value 〈Ã(2)

11 〉 of the orientation tensor (Ã(2)
11 ∈ [0.64,0.68]), a very

large scattering of the orientation rates can be induced by changing
the orientation parameters r and r˛: 0.17 s−1<Ã̇(2)<0.33 s−1. This
N 11
figure shows that the lower the number fraction rN , i.e., the sharper
the peak shape, then the lower the orientation rate Ã̇(2)

11 . This trend

is systematically observed for other orientation states 〈Ã(2)
11 〉> 0.5.

It can also be noticed that calculations carried out with crenel-



Fig. 6. Influence of the orientation intensity Ã(2)
11 on Ã̇(2)

11 , for 1D elongational flows in P along e1. (a) Comparison of the micro–macro predictions in the cases of uniform,
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aussian-based or crenellated fibre orientation distributions with the predictions of
his time the Jeffery predictions instead of the micro–macro ones. Remark: only p
volution of Ã̇(2)

11 for the micro–macro approach with respect to rN (˛1 = �, 0< r˛ <

ated fibre orientation distributions with rN > 0.8 are naturally
lose to the results obtained for uniform orientation distributions.
simple rule therefore can be established: fibre orientation distri-

utions which exhibit some peaks, i.e., like the Gaussian-based or
renellated orientation distributions, will give slower rates for the
rientation evolution than the uniform distribution. The relevance
f a particular type of fibre orientation distributions is investigated
n Section 5.

.3. Influence of the current orientation of fibres on the
rientation rate tensor using “Jeffery” predictions

Results given in Fig. 5 were also obtained for simulations called
Jeffery” simulations. The “Jeffery” simulations consisted in calcu-
ating the rate of orientation change of each generated single fibre
f the tested cells adopting Jeffery’s Eq. (1) and then using these
ata to calculate the components of the orientation rate tensor

˙ (2)

˜ according to Eq. (31). Notice that another equivalent approach

ould have consisted in performing a calculation of Eq. (10), which
s only the rewritten Jeffery equation for the rate of the second-

rder orientation tensor, using a discrete evaluation of Ã
(2)

and Ã
(4)

.
t was checked that both ways of calculation gave similar results.

10
ybrid and natural closure approximations, (b) same type of comparison when using
mial best fits of the simulation results are given to make the figures readable. (c)
V’s with a similar average orientation such that Ã(2)

11 ∈ [0.64,0.68]).

In a sense, our approach could be seen as using an exact closure

approximation for Ã
(4)

in the expression for ˙̃A
(2)

given by Eq. (10).
When comparing this approach to the micro–macro computa-

tions one can check that the predicted trends are, at a first sight,
very similar, which might seem surprising. This observation holds
whatever the tested orientation Gaussian-based and uniform distri-
butions. For the pure shear case, the shape of the both predictions
are very close all over the orientation range. For the elongational
flow, it is interesting to notice that both approaches do not match
exactly. If the Jeffery prediction gives a symmetrical evolution with
respect to Ã(2)

11 = 0.5, this is no more the case of results predicted
by the micro–macro approach. This is particularly evident for rather
oriented networks (Ã(2)

11 > 0.7) along the flow direction. This differ-
ence should be further studied, but could possibly be attributed to
the pronounced anisotropy of the fibrous medium in these situa-
tions: e.g., the Jeffery equation considers the case of the orientation
evolution of a remote fibre immersed in a isotropic viscous medium,

but here the situation is largely different and one would rather have
to consider the case of a fibre immersed in an anisotropic medium
[22]. It should be also pointed out that the influence of local inter-
action moments might increase, as shown in Le Corre et al. [7] for
these particularly oriented microstructures. They might possibly
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ecome no more negligible at the macroscopic level. Accounting for
heir effects in the micro–macro approach could be possible: this
ould lead to an equivalent description of the rheological behaviour

f the suspension, which would be a general Cosserat medium, as
hown theoretically in [6].

Fig. 4(a–d) allows comparing the components of ˙̃pb given for
ndividual cells by the micro–macro and the Jeffery approaches.
redicted shapes of the clouds of points given by the micro–macro
pproach are quite close to the Jeffery prediction, whatever the
bre-bundle fractions and orientations, but the micro–macro one
epicts a more complex situation than the Jeffery one. Indeed, all
esults of the micro–macro approach appear to be dispersed around
he lines given by using the Jeffery theory. This is especially the
ase of nearly isotropic microstructures, but it seems that bigger
ifferences can be observed when the microstructures are highly
riented. This latter result has to be linked with the previous obser-

ation on the evolution of the components of ˙̃A
(2)

.
Jeffery predictions are also close to the micro–macro ones for

renellated orientation distributions as it appears when comparing
ig. 6(a) and (b). Thus, the relative accuracy of the Jeffery prediction
ith respect to the micro–macro one (except for highly oriented
icrostructures) seems to be a general rule.

.4. Influence of the current orientation of fibres on the
rientation rate tensor using closure approximations

Results of Fig. 7 are obtained for Gaussian-based fibre orien-
ation distributions. They enable to compare the predictions for
he evolutions of the components of the orientation rate tensor
˙̃ (2)

given by the micro–macro approach with the predictions of
sual modelling approaches using closure approximations in Eq.
10) for 1D elongational and pure shear kinematics. As in Section
.3, the Jeffery approach is also placed in those figures for com-
arison. Whatever the tested kinematics, the following points are
orth being noted:
For isotropic states of fibre orientation (Ã(2)
11 close to 0.5), the linear

closure approximation gives quite good predictions when com-
pared to the micro–macro ones. This result was expected as the
linear closure approximation is exact for isotropic orientation
states if every fibre rotates according to Jeffery’s equation (see

ig. 7. Influence of the orientation intensity Ã(2)
11 on the components of the orientation tens

re performed using Gaussian-based fibre orientation distributions. Comparison between

11
e.g. [9]). Nonetheless, the predicted orientation rate appears to
be insensitive to current orientation intensity, which is a serious
drawback. For instance, this approximation does not predict that
the orientation decreases for very oriented states and therefore
seems to seriously fails.

• At the opposite, the quadratic closure approximation largely
overestimates the Ã̇(2)

12 and Ã̇(2)
11 for both tested kinematics and

isotropic orientation and is therefore adapted to very oriented
states only. As previously, this latter result was also expected as
the quadratic closure is exact for any aligned orientation states if
every fibre rotates according to Jeffery’s equation (see e.g. [9]).

• The hybrid and natural closure approximations follow correctly
the trends given by the micro–macro approach and by Jeffery’s
type calculations. Their predictions are good for isotropic and
very oriented states and a certain discrepancy is observed for
intermediate regimes, depending on the mechanical loading path.

• Whatever the tested kinematics, usual modelling approaches pre-

dict that the evolution of the components of ˙̃A
(2)

is symmetrical
with respect to the isotropic fibre orientation state. If this symme-
try is observed for the micro–macro approach in the case of the
pure shear kinematics, this is not the case, as we have previously
noticed it, for the 1D elongational kinematics.

Likewise, predictions for the components of ˙̃A
(2)

of the
hybrid and natural closure approximations are compared to the
micro–macro and Jeffery results for crenellated and uniform fibre
orientation distributions in Fig. 6 for the 1D elongational kine-
matics. Whatever the tested orientation distributions, none of
those closure approximation gives results corresponding to the
micro–macro or Jeffery results over the whole range investigated for

Ã
(2)

. Nevertheless, it can be observed that these two closure approx-
imations give trends that belong to the large spectrum of possible
evolution rates that can be reached for all the possible orientation
distributions and orientation intensities.

To summarize, no closure approximation compares with the
micro–macro approach like the Jeffery-type approach, whatever

the tested orientation distributions and the kinematics, which are
not exhaustively presented here. It should be noticed that the com-
putation of the Jeffery approach induces an exact calculation of

Ã
(4)

in a discrete way (see also the remark given at the begin-
ning of the previous section). Thus, the Jeffery approach, which

or rate ˙̃A
(2)

: (a) for 1D elongational flows inP along e1, (b) for pure shear. Calculations
micro–macro predictions and closure approximations predictions.
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dopts a mean field assumption for the macroscopic velocity field,
eems to be the most relevant when compared to the micro–macro
ne. Nevertheless, none of those approaches explains the observed
iscrepancy for elongational flows of oriented fibre networks
Ã(2)

11 > 0.7).

.5. Hydrodynamic diffusion terms

As mentioned in Section 2.4, corrective terms, known as hydro-
ynamic diffusion terms, have been added by several authors in
rder to account for the fibre–fibre interactions, in the case semi-
ilute of suspensions [25,27]. In this section, we compare the
redictions of the micro–macro approach with those of the Jeffery

pproach using a similar technique to compute ˙̃A
(2)

as in Sections
.3 and 4.4, but adding one term, which accounts for the hydro-
ynamic diffusion. All tested microstructures of this section have
aussian-based orientation distributions. One of the simplest dif-

usion model proposed in the literature by Phan-Thien et al.’s (PT)
s chosen here. This diffusion term implies to use an interaction
oefficient, which is written as [27]:

I = 0.03(1 − exp(−0.224fr)). (35)

ere, this coefficient is equal to CI = 0.0251 for f = 0.2. It is impor-
ant to make the following remarks concerning this model.

On the contrary to this model, it has to be noticed that no influ-
ence of the fibre volume fraction f (f ≥ 0.05) is revealed by the
micro–macro approach.

Adding this term to the equation for the evolution of ˙̃A
(2)

leads to
break its linearity (as previously mentioned in Section 2) on the
contrary to the simplest Jeffery or micro–macro predictions.

As clear from Fig. 8, the interaction coefficient influence is not
onsistent with the trends obtained by the micro–macro approach
or the studied concentrated suspensions. In Fig. 8(a), the orienta-
ion rate for Ã̇(2)

11 is overestimated for low orientation whereas it is

nderestimated for high orientation for 1D elongational flow cases.
hus, it seems that the increase of the orientation rate observed for
ighly oriented microstructures in the direction of the 1D elon-
ation cannot be described by this type of interaction coefficient.
or pure shear loading (cf. Fig. 8(b)) the evolution of Ã̇(2)

12 is well

ig. 8. Influence of the orientation intensity Ã(2)
11 on the components of the orientation ten

re performed using Gaussian-based fibre orientation distributions. Comparison with the

12
predicted, but the evolutions of Ã̇(2)
11 , which are obtained by the

micro–macro or PT approaches are drastically different. In the case
of the PT model, Ã̇(2)

11 decreases as Ã(2)
11 increases, whereas it remains

close to zero in the case of the micro–macro approach. This obser-
vation means that both predictions will give completely different
principal orientation axes for the 2D second-order orientation ten-

sor Ã
(2)

.

5. Time-evolution of fibre orientation

The evolution of fibrous microstructures subjected for 1 s to a 1D
elongational flow (constant plane strain compression at 1 s−1, see
(33)) is now analyzed. Notice that simulations were performed with
a reliable time-step of 10−2 s. Also notice that such flow conditions
correspond to a REV height reduction of about 65 %, which is close
to typical processing conditions. Two different methods were used
to compute the evolution of fibre orientations and spatial positions
within the tested REV’s:

• The first method consisted in performing “direct” calculations,
by integrating step by step with Eq. (32) the fibre orientation and
spatial position of each fibre contained in REV’s. This was done
by using the micro–macro and the Jeffery-type approaches. For
the first approach, the translation εv[1]

b
and rotation �̇[0]

b
veloc-

ity fields were obtained by solving the localization problem (22).
For the second approach, the rotation velocities �̇[0]

b
were com-

puted with Jeffery’s Eq. (1), and the εv[1]
b

’s were set to 0 (affine
motion of fibres). The initial fibrous microstructures displayed
random fibre positions and three Gaussian-based distributions
of fibre orientation, aligned in the e1-direction and which ini-
tial orientation tensors were such that Ã(2)

11 = 0.25,0.5 and 0.75,
respectively. All results, that were averaged over 20 REV’s with the
same microstructural parameters, are presented in Fig. 9, which
gives the evolutions of Ã(2)

11 , Ã̇(2)
11 , Ã(2)

12 and Ã̇(2)
12 with respect to time

(a) and Ã(2)
11 (b), respectively.

• The second method, also carried out with the same initial

microstructures, assumed that the positions of fibres always
remained randomly spatially distributed in the REV’s, and that
the orientations of fibres always exhibited Gaussian-based distri-
butions. In order to compute the evolution of fibre orientation,
the values of Ã̇(2)

11 were obtained from polynomial fits of the data

sor rate ˙̃A
(2)

: (a) for 1D elongational flows along e1, (b) for pure shear. Calculations
predictions of Phan-Thien et al.’s interaction model [27].



Fig. 9. Average orientation evolution in time for 20 different cells with initially Gaussian-based distributions: planar compression test along e1 with D11 = −D33 = 1 s−1,

N = 500 fibres: (ai) Ã
(2)

components versus time, (bi)
˙̃A

(2)
components versus Ã(2)

11 - initial value of Ã(2)
11 : 0.25 (x1), 0.50 (x2), 0.75 (x3).
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Fig. 10. Average orientation distributions for 20 different cells. Comparison of
time-evolution calculations and initial Gaussian-based distributions with the same
plotted in Figs. 7(a) and 8(a). Results deduced from this method
have also been reported in Fig. 9 (the so-called “fit” results).
Likewise, Fig. 11 displays results obtained by the first method for
the micro–macro and Jeffery calculations. Results called “hybrid”
and “natural” are given by adopting the second method described
in the previous point. The values of Ã̇(2)

11 are fitted from the data of
Fig. 7 for the natural and hybrid closure approximations. Here, an
average initial orientation of the tested microstructures is taken
into account, i.e., Ã(2)

11 = 0.5.
At last, Fig. 12 shows similar results for initially crenellated ori-
entation distributions with approximately the same value of
Ã(2)

11 ≈ 0.65, but various orientation parameters rN and r˛. The
time-evolution is computed following the two approaches of the
previous “first” method (lines with points for the micro–macro
approach, and continuous lines for Jeffery’s approach). A third
approach of the time-evolution of the tested microstructures is
also used (continuous lines with triangles): it consists in adopt-
ing the Jeffery’s approach to compute the orientation rate �̇[0]

b

of each fibre and incorporating the translation field εv[1]
b

of each
fibre in Eq. (32): this third approach therefore adopts a non-affine
velocity field.

The graphs plotted in these figures conjure up the following
omments:

Whatever the initial fibrous microstructures and the method
adopted to compute the evolution of fibre orientation, fibrous net-
works align in the e1-direction during the flow: Ã(2)

11 increases and

Ã(2)
12 remains very close to 0.

As already pointed out in the previous section, when assum-
ing randomly distributed fibres with Gaussian-based orientations
(“fit” results), predictions given by Jeffery’s equation or by the
micro–macro approach are very close, except for fibrous networks
that are highly oriented in the e1-direction (Fig. 9(a3) and (b3)).
On the contrary, predictions given with the diffusion coefficient
(PT “fit” results) systematically deviate from the two previous
types of simulation: the fibre orientation is slowed down for ini-
tially random or aligned microstructures (Fig. 9(a2,b2,a3,b3)), but
it is enhanced when fibres are initially aligned in the e2-direction
(Fig. 9(a1,b1)).
Whatever the initial fibre orientation, predictions given by
the first calculation method (micro–macro or Jeffery) always
differ from those given by the second method (“fit” results,
micro–macro or Jeffery). In order to analyze more closely such
a discrepancy, we plotted in Fig. 10 the average orientation distri-
bution functions that were obtained at the end of the simulations
with the first method (micro–macro or Jeffery). We also plot-
ted in the same figure the orientation distribution functions of
REV’s having the same second-order orientation tensors but with
Gaussian-based orientation distributions, i.e., similar to those that
were used with the second method. As evident from this fig-
ure, the fibre orientation within flow-induced microstructures
(method 1) severely differs from the Gaussian type orientation
distribution: they may exhibit more than one preferential ori-
entation peak (see Fig. 10(a)), and the corresponding peaks are
sharper. It has to be noticed that this type of fibre orientation
distributions have a shape quite close to the crenellated orien-
tation distributions tested in the previous section. It has been
observed that developing sharp orientation peaks in the fibre ori-

entation distribution has for effect to decrease the orientation
rate Ã̇(2)

11 . This observation may explain the strong decrease of the

orientation rate Ã̇(2)
11 observed in Fig. 9(b1–b3).

For the investigated flow conditions, Fig. 9 also shows that the
Jeffery’s equation and the micro–macro approaches for flow-

average orientation: (a) initial Ã(2)
11

∼= 0.25, (b) initial Ã(2)
11

∼= 0.50, (c) initial Ã(2)
11

∼=
0.75.
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ig. 11. Comparison of time-evolution calculations using the micro–macro and th
longational flows in P along e1: (a) Ã(2)

11 with respect to time, (b) Ã̇(2)
11 with respect t

induced microstructures give, at first approximation, nearly the
same results concerning the second-order orientation tensor
during the simulations. This remark is strengthened by the
graphs of Fig. 10: the corresponding orientation distribution func-
tions are rather close. The observed differences, which are very
weak, are much pronounced for initially oriented microstructures
(Figs. 9(b1) and 10(a)). They may be ascribed to a loss of the
initial random positions of fibres when using the micro–macro
approach, since in this case εv[1]

b
/= 0.

Fig. 11 shows that the natural closure approximation gives results
very close to the Jeffery predictions. This was expected as this
closure approximation was particularly developed to be exact
when starting with an isotropic orientation, and if every fibre

rotated according to Jeffery’s equation. It must be pointed out
that this result holds only for this particular case of fibre ori-
entation and is not a general rule. On the contrary, the hybrid
closure results are not in accordance with the evolution predicted

ig. 12. Evolution of Ã̇(2)
11 with Ã(2)

11 for initially crenellated fibre distributions (1D
longational flows in P along e1).

15
ery approaches, as well as the hybrid and natural closure approximations for 1D
, for initial random orientation (Ã(2)

11 (t = 0) ∼= 0.50).

by the micro–macro or Jeffery-type approaches, the orientation
state and the evolution rates are overestimated.

• Lastly, the continuous lines plotted in the graph of Fig. 12 prove
that Jeffery’s approach proposes reasonable predictions, at first
approximation, of fibre orientation within the considered con-
centrated bundle suspensions even for initially crenellated fibre
orientation distributions. By looking at the continuous line with
the triangles, also notice that the prediction can be improved if
the third approach (cf. above) of time-evolution simulations is
used, i.e., when adopting a non-affine velocity field.

6. Conclusion

A micro–macro approach, i.e., a discrete homogenization
technique, is used to study the rheological behaviour of very
concentrated suspensions seen as connected planar networks of
fibre-bundles with Newtonian viscous interactions. The numerical
tool, which was developed on the basis of this theoretical approach,
enables to generate fibre-bundle networks having various orien-
tation distributions: i.e., Gaussian-based, uniform and crenellated
orientation distribution functions. These networks can be subjected
to any kind of mechanical loadings. In this work, 1D elongational
and pure shear flows were used. It is thus possible to analyze the
influence of microstructural parameters such as the fibre-bundle
content or the fibre-bundle orientation on the evolution of the ori-
entation state.

Results obtained from instantaneous tests first show that there is
no influence of the fibre-bundle volume fraction on the orientation
evolution in the concentrated regime, which is studied here. On the
contrary, for a given type of orientation distribution, the mean aver-
age orientation given by the second-order orientation tensor, has
a strong impact on the orientation rate. Changing the type of ori-
entation distributions has also a drastic effect. For 1D elongational
flows, a rule seems to emerge from the set of results: the sharper the
peak exhibited by the orientation distribution, the lower the rate of
orientation evolution. In spite of the completely different physics of
both approaches, it is also shown that Jeffery’s predictions can be
well compared to the micro–macro results even if some discrepan-

cies are found for microstructures aligned along the flow direction.
Closure approximations are rather deficient. They are only relevant
for some particular cases of orientation states. In the same way, the
approach using a hydrodynamic diffusion term is deficient as well,
and has also the disadvantage of losing the linearity of the rate of
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he second-order orientation tensor with respect to the strain rate.
his is not predicted by the micro–macro or Jeffery’s approaches
or the current case of a local physics based on viscous interactions
etween fibres.

“Full” micro–macro time-evolution calculations were performed.
hey consist in updating the position and orientation of each fibre-
undle of the tested microstructures. Results predict an evolution
owards microstructures having orientation distributions which

ay exhibit sharp orientation peaks. Using Jeffery’s equation to
erform similar calculations for the rotation of fibre-bundles gives
esults that correlate quite well with those of the micro–macro
pproach. This was shown to work, when adopting an affine
isplacement field for each fibre-bundle, and was improved by
pplying also a non-affine one deduced from the micro–macro
alculations. The good comparison between the micro–macro and
effery theories was observed for all tested orientation distribu-
ions. Thus, the Jeffery’s theory seems accurate provided that an
ccurate fibre-bundle orientation is used at each calculation step.
he little differences between both approaches for very oriented
icrostructures are an interesting point that remains to be further

tudied.
Results of the various instantaneous tests can also be fitted

o give equations for the rate of evolution of the orientation of
undles. Solving these equations gives access to another method
o calculate the time-evolution of fibre-bundle orientation. When
dopting this method, it appears that predictions of approaches
sing closure approximations or an hydrodynamic diffusion term
lways largely differ from the micro–macro one. On the contrary,
effery’s predictions appear to correlate quite well with those of
he micro–macro one. Note also the very special case of the natural
losure approximation, which matches the Jeffery prediction when
tarting from an initially isotropic orientation state. This result
as expected as the natural closure approximation was built to

ulfil this situation, but this is not a general result. Furthermore,
t seems illusory to find a closure approximation that covers all
ncountered fibre orientation conformations, so that other solv-
ng strategies should be used to compute the evolution of fibre
rientation.

Results gained by the “full” and “fitted” time-evolution calcula-
ions always differ even when performing a comparison between
he micro–macro predictions for both methods. This result is not
o surprising regarding the development of complex orientation
tates, and consequently complex fibre orientation distributions
hat appear when performing full time-evolution calculations of
he first method. These distributions largely differ from the consid-
red case of Gaussian-based orientation distributions used by the
fitted” method of time-evolution tests, which therefore cannot be
sed as a predictive technique.

Finally, in view of the complexity of fibre orientation states
hat can develop during the flow in concentrated suspensions,
nd of the importance of the fibre orientation distribution on the
rientation rate, the solving strategy based on the use of clo-
ure approximation appears to be rather limited. Recently, a new
iscretization technique [39], which enables to reduce the num-
er of degrees of freedom involved in the evolution equation for
he orientation distribution function of type (6), has emerged.
uch a strategy should preferentially be followed. This latter equa-
ion needs to incorporate a correct description of the motion of
ndividual fibres, e.g., adapted to the physics of the considered
uspension. As shown here, Jeffery’s theory gives quite accurate
redictions for the special case of the Newtonian concentrated sus-

ensions, which have been studied. Future efforts should also focus
n cases of concentrated suspensions where the suspending fluid
nd the interaction between fibres are non-linear. This point has
een only slightly addressed in [40,7] and remains to be deeply

nvestigated.
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