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A partition-of-unity-based finite element method for level sets
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Level set methods have recently gained much popularity to capture discontinuities, including their possible 
propagation. Typically, the partial differential equations that arise in level set methods, in particular the 
Hamilton–Jacobi equation, are solved by finite difference methods. However, finite difference methods 
are less suited for irregular domains. Moreover, it seems slightly awkward to use finite differences for 
the capturing of a discontinuity, while in a subsequent stress analysis finite elements are normally used. 
For this reason, we here present a finite element approach to solving the governing equations of level set 
methods. After a review of the governing equations, the initialization of the level sets, the discretization 
on a finite domain, and the stabilization of the resulting finite element method will be discussed. Special 
attention will be given to the proper treatment of the internal boundary condition, which is achieved by 
exploiting the partition-of-unity property of finite element shape functions. Finally, a quantitative analysis 
including accuracy analysis is given for a one-dimensional example and a qualitative example is given 
for a two-dimensional case with a curved discontinuity.
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1. INTRODUCTION

In the late 1980s, Osher and Sethian [1] have suggested an elegant method to numerically model
hypersurfaces. The starting point is the definition of a scalar level set function �. The zero-isolevel
contour of this function describes the hypersurface, while the signed distance provided by the level
set function enables the simulation of the evolution of the hypersurface.

Initially, level set methods were applied to the computation of phase changes in flows as driven
by a diffusion equation. Subsequent applications have also included weather predictions and image
analysis [2]. More recently, they have also been used in conjunction with finite element methods
that exploit the partition-of-unity property of finite element shape functions to capture crack
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propagation, especially in three-dimensional cases [3, 4], to model holes and inclusions [5, 6], or
to model biofilm growth [7].

Originally, the evolution equations that arise in a level set method have been solved using finite
difference methods. However, difference methods are less suited for irregular domains, and it
seems less elegant and even slightly awkward to use finite differences to capture a discontinuity,
while in a subsequently stress analysis finite elements are employed, e.g. those that exploit the
partition-of-unity property of finite element shape functions. Moreover, for the stress analysis of
bodies with propagating cracks or other evolving discontinuities the construction of the enriched
functions that are utilized in partition-of-unity-based finite element functions is intimately related
to the geometry of the propagating discontinuity. For these reasons, the integration of the level set
method that describes the discontinuity in a finite element method, which also analyses the effects
of the evolving discontinuity, may have advantages.

Finite element schemes for solving the equations that describe the level set evolution are
encountered less frequently in the literature, see [8–10] for exceptions. These contributions give a
solid framework, but can be improved further with respect to the initialization of the zero isolevel
and the treatment of the internal boundary condition that arises from the very condition that the
level set function must vanish at the propagating discontinuity. The issue how to impose essential
boundary conditions in enriched finite element methods that exploit the partition-of-unity property
of the standard polynomial shape functions was addressed in detail in [11], but the procedures
described therein do not seem to be directly applicable to an evolving internal boundary.

This paper begins with a concise review of the governing equations for level set methods,
including the initialization of the level sets, and the discretization on a finite domain using a finite
element method. To properly capture the internal essential boundary condition, the finite element
method is enhanced by exploiting the partition-of-unity property of finite element shape functions.
Since the resulting equations have a non-symmetric character, stability and uniqueness are not
ensured. For this reason, a stabilization term is added using a Galerkin least-squares formalism
[12]. The ensuing algorithm is presented and the section is concluded by a description how to
initialize the level set method from measured (discrete) data. Finally, an accuracy analysis is given
for a one-dimensional example and a qualitative example is provided for a two-dimensional case
with a curved discontinuity.

2. LEVEL SET METHODS

In level set methods a hypersurface �=�(x, t) is defined on the domain of interest �. The basic
idea is that the intersection of this hypersurface with the zero level, i.e. �=0, defines the internal
discontinuity. From a Lagrangian point of view, stationarity of the level set field requires that

D�

Dt
=0 (1)

or, equivalently,

��

�t
+∇�· �x

�t
=0 (2)
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Figure 1. Domains around the internal discontinuity � with ��=��+∪��−.

Equation (2) defines the propagation of the zero-isolevel contour or, equivalently, of the evolving
discontinuity �. We next define the velocity Vn that is normal to the discontinuity �, Figure 1:

�x
�t
·n=Vn (3)

for all points x at the zero-isolevel contour, and n the normal vector at x:

n= ∇�

‖∇�‖ (4)

With these definitions, and adding the initial condition �(x, t=0)= f (x), with f (x) known, the
initial value problem that describes the propagation of the zero-isolevel contour becomes [1]

∀x∈�,

⎧⎪⎨⎪⎩
��

�t
+Vn‖∇�‖=0

�(x, t=0)= f (x)
(5)

Mourad et al. [10] assume that ‖∇�‖=1 is maintained everywhere in � for t>0, so that the
formulation of the initial value problem (5) simplifies to

∀x∈�,

⎧⎪⎨⎪⎩
��

�t
+Vn=0

�(x(t), t=0)= f (x)
(6)

A difficulty resides in the fact that the velocity Vn is defined only at the internal discontinuity �.
A standard methodology to circumvent this difficulty is to extend the velocity field Vn at the
discontinuity � such that

∇Ve ·∇� = 0, x∈�/�

Ve = Vn, x∈�
(7)
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where Ve is the extended velocity field [10, 13]. The orthogonality requirement implied in Equation
(7)1 has some interesting consequences. As shown by Zhao et al. [13], cf. [10], it preserves the
initial signed-distance function for sufficiently smooth � and Ve. Keeping the signed-distance
function smoothens the zero-isolevel contour around the discontinuity and enables a more regular
motion of the front [14].

3. WEAK FORMULATION AND FINITE ELEMENT IMPLEMENTATION

3.1. Propagation equation

To obtain a finite element discretization, we multiply Equation (6)1 by a test function �, integrate
over �, and use Equation (7)2 to obtain∫

�
�

(
��

�t
+Ve

)
dV =0 (8)

With a standard interpolation

�=N/ (9)

N being the array that contains the interpolation polynomials and / the array that contains the
nodal values of �; using a Bubnov–Galerkin method in the sense that the test function � is also
interpolated in the sense of Equation (9), Equation (8) becomes

M
�/
�t
+
∫

�
NTVe dV =0 (10)

with the mass matrix M defined as

M=
∫

�
NTNdV (11)

Using a first-order Euler time discretization scheme

�/
�t
≈ /t+�t−/t

�t
(12)

we obtain the following discrete evolution equation:

/t+�t=/t−�tM−1
∫

�
NTVe dV (13)

3.2. Enforcement of constant gradient norm and zero-isolevel contour

The preceding time-marching scheme holds subject to the requirement that ‖∇�‖=1, which
ensures that the signed-distance function remains valid, and to the constraint that at the evolving
discontinuity the level set function vanishes. Accordingly, the following supplementary conditions
must be imposed locally:

‖∇�‖ = 1 ⇐⇒ ∇�·∇�=1 ∀x∈�/�

� = 0 ∀x∈�
(14)
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Since the first equation of set (14) is non-linear, an iterative procedure at each time step is necessary
for its solution. Adopting a first-order Taylor series at ∇�t one obtains

g(∇�t+��)≈g(∇�t )+
�g

�∇�
(∇�t )�� (15)

where

g(∇�t )=∇�t ·∇�t−1 (16)

Considering that ��
1, a Newton–Raphson procedure can now be used. At iteration k+1 a field
�k+1
t is sought such that

2∇�k
t ·∇�k+1

t = 1+∇�k
t ·∇�k

t ∀x∈�/�

�k+1
t = 0 ∀x∈�

(17)

Subsequently, the problem is cast into a weak format. With U the space of sufficiently regular
fields, e.g. those that belong to H1(�), the weak formulation of Equation (17) becomes

∀�∈U={�∈U|�=0 on �} (18)

Find �k+1
t such that

Ak(�,�k+1
t )=�k(�) (19)

where

Ak(�,�k+1
t )= 2

∫
�

�∇�k
t ·∇�k+1

t dV (20)

�k(�)=
∫

�
�(1+∇�k

t ·∇�k
t )dV (21)

A major difficulty regarding the solution to Equation (19) arises from the essential condition that
is imposed at the internal boundary �, cf. Equation (14)2. General approaches to impose boundary
conditions, or linear relationships between degrees-of-freedom, in finite element methods are to
reduce the projection space either by suppressing degrees of freedom or by using Lagrange multi-
pliers, which effectively enlarges the projection space. Recently, Moës et al. [11] have discussed
solutions within the context of partition-of-unity-based finite element methods, but these solutions
do not seem readily applicable to the case of an evolving internal boundary.

Herein, we impose the internal boundary condition by exploiting the partition-of-unity property
of finite element shape functions [15–17]. In this method, the projection space is enriched by new
functions, which are multiplied by the classical polynomial functions on the support of a node:

�(x)=
N∑
i=1

Ni (x)

(
�̄i+

m∑
j=1

Ñ j (x)�̃i j

)
(22)

where Ni (x) are the traditional polynomial shape functions, Ñ j (x) the enrichment functions at
node i , �̄i and �̃i the degrees of freedom that relate to the standard and the enhanced interpolations,
respectively, N the number of nodes per element, and m the number of enhanced functions per
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node. In the present case the essential boundary condition is imposed at the evolving internal
boundary �, and we have m=1 and

Ñ1(x)=�0
t (x)+�0 (23)

which represents the value of the level set function � at the initialization of the iterative procedure,
i.e. the solution obtained at the end of the previous propagation step, plus a possibly non-zero value
�0 of �(x) that is imposed at �. With the usual interpolation, we can rewrite this enrichment as

Ñ1(x)=
N∑
k=1

Nk(x)�0
t (xk)+�0 (24)

and substitution into Equation (22) subsequently yields

�(x)=
N∑
i=1

Ni (x)

(
�̄i+

N∑
k=1

Nk(x)�0
t (xk)+�0

)
�̃i (25)

We now remove the standard part from the interpolation, i.e. from which a value at � can stem
that is unequal to �0

t (x)+�0, and obtain

�(x)=
N∑
i=1

Ni (x)

(
N∑
k=1

Nk(x)�0
t (xk)+�0

)
�̃i (26)

The first term enforces a vanishing value of �(x) at the zero-isolevel contour, while the second
enrichment sets the value of �(x) at the zero-isolevel contour equal to �0. Accordingly, this
technique enables the imposition of Dirichlet conditions at an internal, possibly evolving, boundary.
For the present purpose of enforcing the zero-isolevel contour, it suffices to include the first term.

Assembling the standard and enriched interpolation functions in a matrix Ne, and assembling
the degrees of freedom needed for the standard interpolation and those that relate to the enrichment
in a single array /̂, we can express Equation (26) in a more compact manner, e.g. [17]

�=Ne/̂ (27)

where, for notational simplicity, the explicit dependence of � and Ne on x has been dropped.
The enrichment is only used in the area of interest, i.e. at the nodes that belong to �0, Figure 1.
A well-known issue of partition-of-unity-based finite element methods is that the enrichment should
be regularized outside the area of interest in order to avoid perturbations [16, 18]. For the present
purpose, we use only the enriched interpolation functions, and this issue does not arise.

Requiring that the set (19)–(21) holds for any variationally admissible �, and using the discretiza-
tion (27), Equation (19) can be expressed in a standard matrix–vector format as follows:

Ak/̂k+1t =bk (28)

where

Ak = 2
∫

�
NT
e (∇Ne/̂

k
t )

T∇Ne dV (29)

bk =
∫

�
(1+(∇Ne/̂

k
t )

T(∇Ne/̂
k
t ))N

T
e dV (30)
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3.3. Stabilization

The weak form (19) is not completely satisfactory owing to its non-symmetric nature. As a
consequence, uniqueness and stability of the solution are not ensured. To overcome this, a Galerkin
least-squares stabilization term is added to the bilinear form Ak [12], so that it transforms into

∀�∈U={�∈U|�=0 on �} (31)

Find �k+1
t such that

Ak(�,�k+1
t )+Ak

GLS(�,�k+1
t )=�k(�)+�kGLS(�) (32)

where

Ak
GLS(�,�k+1

t )=∑
E
4�e

∫
�e

(∇�·∇�k
t )(∇�k

t ·∇�k+1
t )dV (33)

�GLS(�)=∑
E
2�e

∫
�e

(∇�·∇�k
t )(1+∇�k

t ·∇�k
t )dV (34)

and the stabilization parameter

�e= he

2‖∇�k
t ‖

(35)

In Equations (32)–(35) E denotes the set of elements of the mesh, and he is the element size.
Requiring that the set (32)–(35) holds for any variationally admissible�, and using the discretization
(27), Equation (32) can be expressed in a standard matrix–vector format as follows:

(Ak+Ak
GLS)/̂

k+1
t =bk+bkGLS (36)

with Ak and bk defined in Equations (21), and

Ak
GLS =

∑
E
4�e

∫
�e

∇NT
e (∇Ne/̂

k
t )

T(∇Ne/̂
k
t )∇Ne dV (37)

bkGLS =
∑
E
2�e

∫
�e

(1+(∇Ne/̂
k
t )

T(∇Ne/̂
k
t ))∇NT

e (∇Ne/̂
k
t )dV (38)

The set (36) can now be solved in a standard Newton–Raphson manner by repeatedly solving the
set of equations

/̂k+1t =(Ak+Ak
GLS)

−1(bk+bkGLS) (39)

The criterion used for convergence is |‖∇�‖−1|<�, with � a sufficiently small number. The method
is applied only over a small area around the front, i.e. �0∪�1, Figure 1.

3.4. The complete algorithm

As the preceding re-initialization step is achieved using an enrichment, a slight modification must
be applied to the propagation scheme. First, we project the converged solution at the re-initialization
step, �̂n

t , onto the classical Galerkin space:

∀x∈�, min(�̂t−�t )                                                                 (40)
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In a discrete format we then have

/t=M−1
∫

�
NT�̂n

t dV (41)

We subsequently combine this equation with the propagation equation (13) to obtain

/t+�t=M−1
∫

�
NT(�̂n

t −�tVn)dV (42)

The zero-isolevel contour is not completely maintained when the last equation is used with a
vanishing velocity. However, we have found that it generally removes high-frequency oscillations
that can arise from the initialization step. This property is interesting since it prevents the appearance
of artificial shocks without need for auxiliary measures [9].

Algorithm 1 Algorithm for finite element level set computations
Require: ∀x∈�, P(x) and Vn(x) known
/t=0←M−1

∫
�NTP(x) dV

repeat
/̂k+1t ←(Ak+Ak

GLS)
−1(bk+bkGLS)

until |‖∇/̂k+1t ‖−‖∇/̂kt ‖|<�
/t=0←M−1

∫
�NT�̂n

t dV
repeat

repeat
/̂k+1t ←(Ak+Ak

GLS)
−1(bk+bkGLS)

until |‖∇/̂k+1t ‖−‖∇/̂kt ‖|<�
/t+�t←M−1

∫
�NT(�̂n

t −�tVn) dV
until t=T

The method is completed by an approach to construct an initial field, �(x, t=0), from a measured
discrete field, e.g. a bitmap picture, where the interface is defined as a difference in contrast. For
convenience, we reduce the picture to a binary scalar function P :�→R, which is defined by

∀x∈�, P(x)=
{

� if the pixel value at x is superior to s

−� else
(43)

where s is a threshold that states the limit of the contrast difference. Next, the distance between
P and � is minimized on the domain �:

∀x∈�, min
�:�→R

(�(x)−P(x)) (44)

This expression can be cast in a variational formulation along the same lines as before and leads
to a discrete (finite element) formulation given by

/=M−1
∫

�
NTP(x)dV (45)
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To further improve the accuracy of the approximation of ‖∇�‖=1, the two values carried by P
are related to the median element size, i.e. �=He/2, where He stands for the mean element size
of the mesh.

The resulting algorithm (Algorithm 1) thus exhibits two main steps. The first step—the initial-
ization stage—results in the initial field � and includes a propagation step with a zero velocity. This
will initiate the propagation with an already projected field. The second step is the propagation
and the initialization to the signed distance. The initialization to the signed distance is done every
step a priori, notwithstanding whether the error criterion on the gradient norm is satisfied or not.

4. EXAMPLES

First, a quantitative study is carried out for the example of Figure 2, where a straight discontinuity
is initialized at x=1.5. Quadrilateral elements with bilinear shape functions are used and a single
element is employed over the height of the bar. The length of the bar is chosen as �, so as to
prevent the occurrence of trivial solutions. Since there is no discretization error due to a curved
front, it is possible to quantify the performance of the numerical scheme, including its dependence
on the time step, the fineness of the discretization and the spatial numerical integration of the
resulting vectors and matrices.

Two criteria are used to assess the performance of the numerical scheme. The computed error
with respect to the position of the front is measured through

e�= |x− x̃ |L
(46)

where x and x̃ stand for the exact and numerically computed positions of the front, with L the
length of the bar. For the error in the norm of the gradient, we use

e∇ =
∫
� |‖∇�‖−1|dV∫

� dV
(47)

Factors that influence the error with respect to the position of the front at initialization are the
discretization and the number of Gauss points in the elements that are crossed by the zero-isolevel
contour. The latter is important since this number determines the accuracy of the sampling of the
binary scalar function P(x), Equation (43), and therefore provides a spatial filter to the image.
Figure 3 shows the influence of these two factors. Clearly, a minimum number of 64 Gauss points
in the elements, where P(x) has different values, are needed so that mesh refinement results in an
error that is monotonically decreasing.

Figure 2. Initial configuration for the first test case.
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Figure 3. Initialization error in terms of e� as a function of the discretization for
different numbers of Gauss points.

Figure 4 presents the evolution of the error with respect to the signed-distance function at initial-
ization, measured by e∇ , for progressive iterations. Graphs are presented for different reference
domains around the initial position of the discontinuity, namely �0 (left) and �0∪�1, see Figure 1
for the definitions of the domains, in order to bring out the quality of convergence on elements
that contain the front as well as on adjacent elements.

Next, the properties of the finite element schemes are studied for a front that is propagating
with a constant unit velocity. Figure 5 shows that the error is not amplified irrespective of the size
of the elements. Furthermore, the classical Courant–Friedrichs–Lewy (CFL) criterion holds as is
shown in Figure 6. Indeed, this figure shows that for time steps at or below the critical time step
defined as

�tCFL=min
x∈�

he
Vn

(48)

with he being the size of the element that contains the point with spatial coordinates x, the error
is conserved, but the error is amplified when the CFL criterion as formulated above is violated.

The second example concerns a two-dimensional computation of two expanding circular
contours. Owing to the increased complexity of the problem, a quantitative assessment is no
longer possible. The initial positions of the circles, which are used for the initialization of the
level set field, are shown in Figure 7. After initialization, the velocity field is chosen constant and
the time step depends on the discretization according to the CFL criterion, Equation (48).

When linear polynomials are used as the finite element shape functions, the projection space
for the signed-distance field is rather poor. Indeed, the only signed-distance function that can be
represented properly is that which represents straight lines. Figure 8 underscores this, since the
performance in terms of a neat representation of the curved contour is not impressive, although the
results of course improve with mesh refinement. The results show a marked improvement when
quadratic polynomials are used as the finite element base functions, Figure 9. Indeed, the results
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Figure 4. Error in the signed-distance function: e∇ as a function of the number of iterations for different
discretizations. Top: for initialization on �0 and bottom: for initialization on �0∪�1.

obtained for this case on a 10×10 mesh are already better than those computed for the finest mesh
(40×40) with linear interpolants.

5. CONCLUDING REMARKS

In this contribution we have presented a finite element approach to solve the evolution equation
for level set functions. The first element of the approach is the extension of the velocity field
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Figure 5. Evolution of the error e� during propagation of the front as a function of the
discretization for a constant velocity.

Figure 6. Evolution of the error e� during propagation of the front as a function of the time
step for a fixed discretization.
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Figure 7. Initial position of the two circular contours.

Figure 8. Expanding circles at a constant velocity for different discretizations with linear shape functions.
From left to right: 10×10, 20×20, and 40×40 elements.

Figure 9. Expanding circles at a constant velocity for different discretizations with quadratic shape
functions. From left to right: 10×10, 20×20, and 40×40 elements.
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that is normally known only at the zero-isolevel contour to the entire domain of interest. This
is done via a standard orthogonality requirement between the gradients of the level set function
and the extended velocity field, which is tantamount to the requirement that the norm of the
gradient of the level set function maintains a unit value. The latter equation is solved throughout
the domain using a finite element method. Secondly, a unit constant gradient norm is maintained
in the propagation equation. Prior to the propagation step a re-initialization to the signed distance
is performed for this. Here, a major difficulty is to enforce the vanishing of the level set function at
the zero-isolevel contour during the re-initialization. Indeed, this requirement induces a Dirichlet
condition at an internal boundary, for which a straightforward solution was not readily available.
Herein, this internal boundary condition has been imposed by exploiting the partition-of-unity
property of finite element shape functions, which enables the imposition of a possibly non-zero
internal boundary condition of the Dirichlet type in a rigorous and elegant manner. The resulting
equations can be solved in a manner that is now well established for the partition-of-unity method.
To improve stability the discretized equations are augmented by Galerkin least-squares terms. The
accuracy of the method is assessed for a one-dimensional example, while a qualitative example
that involves expanding circular contours is given to demonstrate the versatility of the method in
two-dimensional applications with curved discontinuities.
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