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A NUMERICAL PROCEDURE FOR REGULARIZED INTEGRAL EQUATIONS FOR ELASTOSTATIC PROBLEMS OF FLAT CRACKS IN OPENING MODE

Abdract-The regularid integral equations for flat cracks in opening mode are solved numerically by means of a simple procedure using new interpolation functions. The convergence and the accmncy of the method are tested on problems of circular and elliptical cracks embedded in the infinite medium, which admit analytical solutions. Computational results ensure the validity of this new approach. then they are compared with those already obtained without reguk&ation by the authors.

INTRODUCTION

FEW TIUDIMENSIONAL crack problems admit an analytical solution. Treated in the inWte medium case, they mainly concern cracks of particular geometries and subjected to particular loadings. The most well-known among these problems is that of the penny-shaped crack under an axisymmetrical pressure [l]. More recently, the case of more general loadings is fully studied in refs [2] and [3]. Like the penny-shaped crack, the elliptical crack also attracts many authors' attention because of its particular geometry. The elliptical crack subjected to a uniform pressure is treated in ref. [4], whereas the case of a linear pressure is studied in ref.

[4 and the case of a polynomial pressure in ref. [6]. For elliptical cracks subjected to shear loadings, the main contributions may be found in ref. [7] and more recently in refs [8] and [9]. The rectangular crack, though not very realistic, is another crack geometry amenable to analytical solutions [lO, 111. For more general crack configurations, one often has to turn to numerical computations. Integral equations derived from the potential theory have the common feature of being singular in the sense of the principal value. The numerical treatment of the principal value is difhcult; a recent successful attempt to deal with this singularity in two dimensions can be found in ref. [12]. However, computations without l5articular treatment of the singular part are able to yield highly satisfactory results as shown in ref. [START_REF] Van | Boundary element analysis of an inte8ral equation for threbdhnmsional crack problems[END_REF].

The regularization task aims at lessening the principal value singularity, In theoretical respects, this yields weakly singular integral equations, which must be more tractable than principal value ones. In numerical aspects, the kernel of regularized equations is found to be lengthy and its discretization in the three-dimensional case remains for the time being inextricable. Recently, a numerical procedure based on the least squares global displacement gradient smoothing method was worked out in ref. [START_REF] Polch | solutions for flat cracks[END_REF] for flat cracks in opening mode.

The present paper describes a different approach to problems of flat cracks in opening mode, using new interpolation functions denoted by MC" and J The proposed numerical procedure has the advantage of being simple: similar to the non-regularixation method, the solution of the discretixed equation is carried out by the collocation method and the integration classically by Gaussian points.

DISCRETIZATION OF THE REGULARIZED INTEGRAL EQUATION

Consider a planar crack S embedded in the in6nite medium and subjected to an arbitrary internal pressure (Fig. 1). it is know!@ jl that under these conditions the opening mode is uncoupled from the other ones. The crack surface can be parametrized with Cartesian coordinates: (Implicit sums on Greek indices are made from 1 to 2.) Denoting by S, a neighbourhood of y, one can split up the surface integral in eq. ( 1) as follows: v = r A II, r is the vector tangent to the crack edge 8s.

Let us introduce the following notations for the discretixation of eq. ( 2). In a general way, the symbol ( ) relates to a row-vector, whereas ( } relates to a column-vector, and [] to a matrix.

The geometry transformation will be denoted: e. 3 t? +y E e, where e, is the reference element of the physical element e. The coordinates of point y are expressed in the usual way: Va E { 1,2}, y. = (iV(e)){y,}:, (N(t)) designates the shape function.

The Jacobian matrix of the geometry transformation is denoted by WOI = [ J&> = ~G,lD m.c, *)9 II * .

its determinant by either detJ(t) or D(y)/D(<), and its inverse by

The last three integrals are quite regular and thus require no particular investigation. For instance if use is made of isoparametric elements, one has for any element e lying in S\S,,,:

It has been shown in ref. [START_REF] Levan | Theoretical basis of regularized integral equations for elastostatic crack problems. 8%[END_REF] that the first integral in eq. ( 2) is ordinary improper. So its study is less critical than that of a principal vahae integral integral. However, for numerical purposes an adequate integration scheme remains to be devised in order to take into account the weakly singular behaviour of the type r -*+r, 0 < y' d 1. In this study, a numerical procedure will be proposed which makes it possible to solve this weak singularity. First we define from (N(t)), [.I(<)] and b(r)], the following five functions which will be referred to as "mod&d". The first of them was introduced in ref.

[17J and widely used in I&S [START_REF] Polch | solutions for flat cracks[END_REF] and [18]. For each couple of points (<, &,) in e, we will consider the poiar ~~i~~ (A, (3) of 4, related to centre &, defined by (Fig. 

J(t) -det J(G) = AC!&&, 4, @)
The modified inverse of the Jacobian matrix Lf(&,, A, t?)] is such that:
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For simple elements, e.g. six-node triangles and eight-node quadrilaterals, the existence of functions (m) and (M(")), a E { 1,2}, can easily be verified, and their expressions are also readily available. Concerning the other modified functions, the following proposition shows how to determine them: ,1,8)) a E (1,2} In the first or last two terms in eq. ( 4b), t: and to are interchangeable. Clearly, d # det .?. The foregoing proposition, which can easily be shown, enables us to obtain systematically the expressions for [s], a and [I], provided the existence of (M@)), a E { 1,2}. Expressions for the mod&d function (fi) can be found in ref. [18]i for the sake of completeness, we give them in the Appendix, together with the new functions (M@)) and [j]. Now we divide the neighbourhood S,,, of the singular point into elements e 3 yo, and transform the improper integral in eq. ( 2) over such an element as follows:

Pl-OpOSltlOBl If there exist (M@)(&,
From eq. (3a): y, -y, = (W(0) -W(~o)))W = UWO, A, W{Y.zY Furthermore, the difference in the kernel in eq. ( 5) can be transformed, using eqs (3b) and (3e):

A&) -L&o) = ~j^,,<ro, 1, 0 w Lastly, by noting that: D({,, t2)/D(Iz, 0) = 1, the integral (5) can be rewritten hereafter where the square of polar radius A2 is now cancelled out:

This time the integration is to be carried over (A, f?) and eq. ( 7) involves only regular integrals which should yield no dBculties for the numerical purposes. It should be noticed that the common feature between the approaches in refs [START_REF] Polch | solutions for flat cracks[END_REF] and [18] and"the method herein propo&tf is ttiat regular integrals proceed merely from a numerical procedure. The kernel in eq. ( 5) actually remains (weakly) singular of the type r -2+r, 0 < y I; 1. Here the.use of the interpolation type functions has made it possible to force the kernel to behave as a regular function in eq. ( 7). In the following study, the discretixation of eq. ( 5) is carried out considering only two usual elements: the six-node triande and the eight-node quadrilateral. Nevertheless, the principle remains the same for any more general element.

Use of eight-node quadrilaterals

The integration over (A, 13) in the reference element e, is effected by dividing this element into subtriangles and by making another change of variables in each of these subtriangles. This operation will allow us to bring again the integration domain onto the square [ -1, + 11' (Fig. 3).

According to whether the antecedent I& of pointy, is located at a comer or on a side of element e,, the subtriangle number is 2 or 3. Case when to is located at a corner of element eo: Let point to be located at node i E { 1,3,5,7} of element e. (Fig. 4). There are two subtriangles and it can be checked for the expressions of the polar coordinates (A,@ and the Jacobian of the transformation (u,, z+) --) (n,(I):

Subtriangles of type 1:

Subtriangles of type 2: Case when I& is located at a mid-side of e,:

1 1 +vi = cos ( > i(l + 01) A 1 +v, =
The four possible subcases are shown in Fig. 5. The node number of to is i E {2,4,6,8}. Here there are three subtriangles. By putting 0, = tan-l(2), the following relations can easily be established: 

Use of six-node triangles

Here use is made of the same technique of dividing element e, into subtriangles and making the change of variables [ -1, + 112 3 v = (v,, vl) + (A, 6). If co is at a comer (resp. at a mid-side) of e,, the number of subtriangles is 1 (resp. 2). For triangular elements, there is no general rule and the six possible cases are to be considered separately. We recall the notation 0, = tan-'(2).

Case of to at node 1 (Fig. 6a) x-00 D(v)

1 _ l/%1+ 4)

Discretized regularized equation

Eventually, the integral in eq. ( 5) assumes the following form: 84,

*(y)-%(yo) ay, II

The integration over the variables (v,, v2) is made in the v-squares [-1, + l]*. Since the kernels involved are regular, the Gaussian scheme for numerical integrations is quite acceptable. Rgure 7 presents the successive steps to pass from the former square. [ -1, + 112 3 (v,, q) to the final physical element in which the point y = (yl, y2) lies. 9

Equation ( 8) together with eq. ( 2) constitutes the discretized regularized equation for a flat crack in opening mode. As remarked above, the weak singularity in eq. ( 2) has been removed with the aid of functions fi, Mea) and J ; of the numerical scheme there remains only <regular integrals.

NUMRRICAL PARTS Convergence test: the circular crack problem

Consider the problem of a circular crack centred at 0, with radius a, imbedded in the infinite medium and subjected to a uniform internal pressure p.

Like any flat crack in the infinite medium, the opening mode is uncoupled from the other modes. Four crack mesh configurations are chosen, containing respectively 85, 161, 209 and 321 interior nodes; the first and the last of them are presented in Fig. 8. Use is made of both six-node triangular and eight-node quadrilateral elements; those adjacent to the crack edge are quarter-point elements [l9,20]. All elements have straight edges; apart from the comer and quarter-point nodes the others are located at the mid-side of the edges.

For elements not containing the collocation point (i.e. lying in S\S,, see notations in eq. ( 2)), the integration is performed with 7 points over triangles and 9 points over quadrilaterals. Integration over elements containing the collocation point must be carried out using the change of variables which leads to a square integration region in the plane (a,, Q) (Fig. 7). The Gaussian quadrature scheme requires 3 x 3 = 9 points. Here the number of Gaussian points is twice as high as that used in the same study without regularization[l3]. This is accounted for by the fact that the original physical element is more "distorted" through the transformation (see Fig. 7) leading to the square element in the v-plane.

As expected, the numerical results show a revolution symmetry for the values of the displacement discontinuity & (Fig. 8). It should be noticed that the Young modulus E datum is unnecessary for computing the stress intensity factor K,. On the contrary, the Poisson ratio v must be specified; here it is set to be equal to 0.3.

Table 1 shows minimal and maximal errors on the displacement discontinuity & as well as errors on the stress intensity factor K,, with respect to the well-known analytical solution[l]: As remarked in the study of notched strips in ref.

[l9], although the stiffness of quarter-point elements is reasonably accurate, the local values of stress and displacement in these elements are poor, thus our error estimations on & do not take into account quarter-point node values. Furthermore, the &-error is not maximal at the crack centre but at some radial distance varying according to the mesh configuration; in present cases it remains about 5% in magnitude. As regards tie &error, it markedly decreases as the mesh becomes denser. On the strength of these results, another investigation concerning an elliptical crack is treated in the next part.

Elliptical cracks

Consider an elliptical crack of semi-axes a, b, imbedded in the infinite medium and subjected to a uniform internal pressure p. Figure 9 shows the meshes for two cracks with semi-axes ratio a/b respectively equal to 1.5 and 2; they include 161 (resp. 113) interior nodes and 64 (resp. 48) elements. Here use is also made of quarter-point elements along the crack edge. As predicted, the values of the stress intensity factor at vertex B are always worse than those at vertex A, since the mesh is not smooth enough at 3, especially in the second mesh. The maximal &-error in the last mesh occurs at a point of the major axis, close to vertex B; it undoubtedly contributes to the large error on &(A). In order to improve the results, more sophisticated mesh configurations must be devised, which result in an adequate refinement at the crack front and at the same time less elements at the crack centre where there is a small displacement gradient.

CLOSURE

The results show that the regularization method allows a high convergence and is quite operational for plane crack problems. Nevertheless, when computing rectangular cracks, for unknown reasons the results obtained by the authors are too poor to be published here. For circular cracks, the errors on K, are quickly reduced to less than 1%. For elliptical cracks, despite a coarse mesh and a bad crack contour representation, &-values remain quite acceptable where they are larger. Obviously, the circular mesh type (with radial rays) leads to too many elements at the crack centre without enough elements along the crack front. Thus more sophisticated mesh generation techniques are required to obtain better results.

Moreover, compared to the classical transformation (c,, &) + (y,, y2), the transformation (tr,, oz)-Q,, yz) entails a greater distortion of the physical element and implies a denser integration scheme as a compensation. The Gaussian point number used here is twice or four times as high as that for the method without regularization (9 or 16 points instead of 4). The above distortion may also account for the faet that the elements seem to be very sensitive to their aspect ratio (ratio of their longer to shorter side): the longer elements are, the worse the results. In connection with the non-regularization method, there appear two questions which call for answers.

Can one avoid using quarter-point elements? Indeed, the use of quarter-point elements condemned us to the range of six-node triangles and eight-node quadrilaterals. The non-regularization method, as shown in ref.

[l3], gave good results without using special elements.

The regularized eq. ( 8) was obtained and used in Cartesian coordinates. Is it possible to obtain a regularized equation in other coordinate systems? With reference to the discretized equation for the non-regularization method, it enabled us to cope with more general coordinates and in particular to compute the stress intensity factor on a local basis.

Under present conditions, the results obtained with regularization are encouraging and should encourage investigations with an improved mesh generation technique, and in a further stage to numerical developments with the view to studying three-dimensional cracks.
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 11 Fig. 1. Planar crack. y,,: singular point; as: crack edge.
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 2 Fig. 2. Polar coordinatea (A, 0) in the nferenoc element e,. Case of a quadrilateral element.

  2): r,=&J,+acose & = C& + 1 sin 8. The modified shape function (i?(&,, R, 0)) is such that: wm -<Wd) = w%, 5 8)) W and: lim (&(&,, A, 0)) < co. (The notation A < 00 signifks that A is bounded if A is a real; that all ~rn~nen~ (resp. elements) of A are bounded if A is a vector (resp. a matrix)). The modified derivated shape functions (A@)(&,, 1, O)), a E (1, 2}, are such that: and: lim (M(*)(&,, A, 6)) < co. The modified Jacobian matrix [3(&,, A, O)] is such that: [X)1 -mill = 43tem A ell and: lim[3go, A, e)] < Q). The modified Jacobian determinant h(&,, A, 0) is such that: and: lim &too, A, e) < ~0.
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  , then there also exist the functions [j(&,, rl, e)], d(&,, rl, a), u(&,, A,@] and they ark obtained by: Va, B E {1,2), &9(&, A,@ = W%0, A, W{~P>~ #a) &%,J, 0) = U2cr> +&&(r,) -&<r> -&J&) (4b) where (y, S) is equal to (2,2) if (a, /I) = (1, l), to (1, 1) if (a, 8) = (2,2), and to (a, jl) otherwise.
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  Fig. 3. Change of variables square [-1, + I]* 3 t, = (u,, 4) -+ (A, 0) 6 subtriangle in Q,.

  Fig. 4. & located at a corner of a quadrilateral clcamt.

  Fig. 6. Positions of to io a six-node triangle. Deihition of 2 and 8.
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 78 Fig. 7. Change from (u,, u2) to (y,, yz). Case when the element is a quadrilateral and ya lies at a comer of element e.

Table 1 .

 1 Circular crack. Errors on ds and 4, with respect to the

	,	analytical solution	
	NUUlbCt of d.o.f.	Mipimal errors -4,	Maximal errors on 4,	ElT0l-S on K,
	85	0.28%	5.12%	6.06%
	161	-0.05%	3.05%	2.29%
	209	0.42%	-4.41%	0.78%
	321	-0.02%	-4.12%	0.11%

Table 2 .

 2 Elliptical crack. Errors on 4, and KI

	NUXllber	Minimal errors	Maximal errors	Rrrora on	&rot3 on
	of d.o.f.	on 93	0114,	K,(A)	RI (B)
	161 113	-0.10% 0.16%	-5.36% 8.22%	4.21% 8.71%	-2.25% 3.13%

The mesh generation technique is rudimentary: the crack is divided up with elliptical curves shaped in the crack contour, and radial straight lines issued from the crack centre. This inevitably gives rise to some distorted (elongated) elements which behave badly in numerical purposes. Moreover, this does not allow an accurate representation of the crack edge, whenever the semi-axes ratio becomes large. Figure 9 clearly shows that the mesh is particularly ill-suited to shape the vertex of the major axis. These reasons explain why computations are limited to small semi-axes ratio geometries. They also justify the use of 12 (resp. 16) Gaussian points on triangles (resp. quadrilaterals). Numerical results will be compared with the theoretical solutions [4]:

where E(k) = j&i -k2 second kind. & together with errors on the stress intensity factor K, at the vertices A, B of the semi-axes (Fig. 9).
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APPENDIX

For the six-node trian8k and the eight-node quadrilateral, we give functions (N) together with the modified ftm&ms (#>, (M@> and [I). Function [_$I can be obtained from relations (4).

Six-node triangular elemenfs

Table 1A. By noting that: 8,' -5;, = -X(cos 6 + sin 8), we obtain Table 3A. Here the Iw(@ are independent of 1.

The modi@ed Jacobian inverse /

Application of relations (4) &es, after performing all calculations:

UG, 1, @)I = 

Eight-t&e quadrilaterals

(1 -&I(1 -r:, Table 5A. Function A