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This paper studies the prediction accuracy of models for ground-borne vibrations in buildings based on a three-dimensional coupled FE–

BE formulation in the frequency range relevant for traffic induced vibrations. In structural dynamics, the prediction accuracy at relatively 
high frequencies is known to be problematic since the sensitivity of the predicted response to modelling errors and parameter uncertainties 
increases with the frequency. To estimate the prediction accuracy, this paper incorporates the parameter uncertainties and the modelling 
errors into the analysis using the non-parametric probabilistic approach, introduced by Soize. The methodology is applied to a case history. 
The results of a prediction model for the transmission of vibrations from a shallow cut-and-cover tunnel to a six storey reinforced concrete 
frame structure in Paris are considered and compared with in situ measurements. The results demonstrate that a single dispersion parameter 
allows fitting the data. The sensitivity of the response to uncertainties is shown to increase as vibrations propagate inside the building.
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1. Introduction

Ground-borne traffic induced vibrations in buildings are

a major environmental concern in urban areas. Advanced

numerical models have been developed to give a valuable

insight and quantification of the transmission of vibrations

to buildings. Models have been proposed to compute the

wave field radiated into the soil due to road [1], railway [2]

and underground railway [3] traffic. Dynamic soil–structure

interaction models are subsequently used to compute the

response of the buildings. These models can be based on a

three-dimensional coupled FE–BE formulation and on the

Craig–Bampton substructuring method [4], as well estab-

lished in the field of earthquake engineering [5,6]. Whereas

computations for earthquake engineering problems are

performed in the frequency range between 0 and 10 Hz,
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the quantification of traffic induced re-radiated noise in

buildings requires computations of the structural vibrations

up to 200 Hz. The prediction accuracy at such high

frequencies may be problematic since the sensitivity of

the predicted response to parameter uncertainties and

modelling errors increases with the frequency. As buildings

are large and complex structures, parameter uncertainties

are always present. In most cases, only simplified models

restricted to the main structural parts can be envisaged

which introduces significant modelling errors. The aim of

this paper is to account for such uncertainties and errors in

the estimation of the prediction accuracy of dynamic soil–

structure interaction models based on a coupled FE–BE

formulation and on the Craig–Bampton substructuring

method.

At low frequencies, numerical models allow efficient

predictions of ground-borne vibrations in buildings. Their

efficiency relies on the fact that the low frequency response

of a building is governed by only a few global eigenmodes.

The sensitivity of the model response to small perturbations

of the mass or stiffness of the building is usually low enough

to restrict the uncertainty on the low frequency response

to small values. When updated eventually by appropriate



methods [7], the model predictions usually compare very

well with experimental data.

In the medium frequency range, the vibration of

buildings is characterized by the superposition of some

global eigenmodes and clusters of local eigenmodes [8].

When the latter contribute to the response, parameter

uncertainties and modelling errors play a fundamental role.

Small perturbations of the mass or stiffness of the structural

elements strongly modify the individual local eigenvectors,

but leave the space spanned by these eigenvectors basically

unchanged [9–11]. Such perturbations may induce strong

local modifications of the response.

A number of studies have been reported on the efficient

analysis of vibrations in the medium frequency range. A first

class of approaches extends the usual numerical methods for

low frequency predictions such as the finite element method

to the medium frequency range. Adhikari and Manohar [12]

have adopted a frequency adaptive basis; Dey et al. [13]

have used higher order finite elements and Ben Dhia [14]

has used multiscale finite elements.

A second class of approaches are hybrid methods that

combine the methods for the high frequency predictions

(SEA) with modal analysis, as for example the hybrid

method proposed by Langley and Bremner [15].

A third class of methods uses specific reduction bases.

Soize [16] has proposed an energy operator approach. An

energy operator adapted to a fixed medium frequency band

is defined and its dominant eigensubspace is used to

construct a reduced model based on a Ritz–Galerkin

method. Sarkar and Ghanem [17] have proposed the proper

orthogonal decomposition method. The spatially dominant

coherent structures in the vibration wave field in the

medium frequency band are extracted from either numerical

or physical data.

To estimate the prediction accuracy of a model, the

uncertainties and modelling errors must be incorporated into

the computational analysis. Ibrahim [18] and Manohar and

Ibrahim [19] have given an extensive review of such

approaches.

A first class of probabilistic methods falls in the

framework of the stochastic finite element method

(SFEM). Such methods only allow incorporating the

parameter uncertainties into the analysis. The local

parameters of the model (the material and geometrical

properties) are described by random fields that are

subsequently expanded or discretized. Ghanem and Spanos

[20] have used the Karhunen–Loeve expansion. Such

methods involve the inversion of a random system matrix.

Ghanem and Spanos [20] have used an orthogonal series

expansion for the random response field to obtain a set of

algebraic equations.

A second class of probabilistic methods introduces the

uncertainty directly on the modal properties of the total

system or on the modal properties of possible subsystems.

Mace and Shorter [21] have proposed a local modal/

perturbational method. Probability distributions are
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proposed for the modal properties of the subsystems and

the resulting uncertainty on the modal properties of the total

system is obtained with a perturbation relationship. A

Monte Carlo simulation is elaborated to estimate the

statistics of the frequency response functions.

A non-probabilistic approach has also been proposed.

Chen et al. [22] have modelled the uncertain parameters

through the specification of the lower and upper bounds of

their values and have handled the subsequent problem of

response analysis within the framework of interval algebra.

Soize [23,24] has proposed the non-parametric

probabilistic approach. This approach builds a non-

parametric probabilistic model associated with a

deterministic reduced matrix model by substituting

the reduced matrices of this model by fully populated

random matrices. The probability distribution for the

random matrices is derived from the entropy optimization

principle [25,26]. The random matrices are modelled

such that their mean values are the matrices of the

deterministic prediction model, while ensuring that their

generic characteristics, such as positive-definiteness, are

preserved. A set of real valued dispersion parameters,

one for each random matrix, allows controlling the

dispersion of the probabilistic model. The first advantage

of the approach is that it does not require the

characterization of the local parameters of the model in

terms of random fields or probability distributions.

The second advantage is that it allows incorporating

both the parameter uncertainties and the modelling errors

into the analysis. Chebli [27] has combined the approach

with the Craig–Bampton substructuring method.

The present paper follows the non-parametric probabi-

listic approach to estimate the prediction accuracy of

dynamic soil–structure interaction models based on a

coupled FE–BE formulation and on the Craig–Bampton

substructuring method. It is shown how a non-parametric

probabilistic model can be built associated with such a

prediction model. The appropriate set of dispersion

parameters is identified from an experimental data set. For

this set of dispersion parameters, the dispersion of the

random response predicted by the probabilistic model

characterizes the level of uncertainty on this response and

is used as an estimate of the prediction accuracy of the

model.

The primary contribution of this paper is the application

of the methodology to a case history. A prediction model is

considered for the transmission of vibrations from the metro

tunnel of the RER B line of RATP to the Maison du

Mexique, a large six storey reinforced concrete frame

structure, at the site of Cité Universitaire in Paris.
2. Theoretical and numerical modelling

This section first recalls how a deterministic

dynamic soil–structure interaction model is built based on



a three-dimensional coupled FE–BE formulation and on the

Craig–Bampton substructuring method. Aubry and Clou-

teau [5] and Clouteau and Aubry [6] have given an extensive

overview of this approach. It is shown how a non-parametric

probabilistic model can be built associated with the

deterministic model. The random eigenvalue problem is

subsequently elaborated. Finally, a method is discussed to

identify the dispersion parameters of the probabilistic model

from experimental results.
2.1. The deterministic dynamic soil–structure

interaction model

The dynamic soil–structure interaction problem is solved

with a subdomain approach. The three-dimensional physical

domain is decomposed into two subdomains: the soil

domain, denoted by Us, and the structure domain, denoted

by Ub. These two subdomains are coupled throughout their

common interface denoted by Sbs.

Let ua(x, u) with a2{b, s} be the dynamic perturbations

of the static displacement fields in Ua due to the dynamic

loads. x is the position and u is the circular frequency. The

dynamic perturbations sa(ua) of the stress tensors are

expressed as functions of the dynamic fluctuations 3(ua) of

the strain tensors

saðuaÞ Z Ca3ðuaÞ (1)

3ðuaÞ Z
1

2

�
grad ua C ðgrad uaÞ

T
�

(2)

where Cb is the fourth-order visco-elastic tensor:

Cb Z AbKiuBb (3)

The tensors Ab and Bb with the real elastic and the real

damping coefficients verify the usual properties of

symmetry and positiveness.

In the following, the traction vectors on an interface with

an outer normal vector n are denoted by ta(ua):

taðuaÞ Z saðuaÞn (4)

The equilibrium equations for the soil domain Us and the

boundary conditions on the free soil surface Gss read as:

div ssðusÞCgs ZKrsu
2us in Us (5)

tsðusÞ Z 0 on Gss (6)

Radiation conditions are not needed since damping is

accounted for. gs(x, u) is the vector of the body forces

applied in the soil domain Us.

The balance of momentum for the structure domain Ub

and the boundary conditions on the free structure boundary

Gbs read as:

div sbðubÞ ZKrbu2ub in Ub (7)

tbðubÞ Z 0 on Gbs (8)
3

Continuity of displacements and equilibrium of stresses

hold on the soil–structure interface Sbs:

ub Z us on Sbs (9)

tsðusÞC tbðubÞ Z 0 on Sbs (10)

The displacement field us(x, u) is decomposed in the

incident field ui(x, u), the locally diffracted field ud0(x, u)

and the field usc(ub)(x, u) scattered by the structure into the

soil

us Z ui Cud0 CuscðubÞ (11)

such that these fields verify the following compatibility

equations:

ui Cud0 Z 0 on Sbs (12)

uscðubÞ Z ub on Sbs (13)

The equilibrium of the structure is written in a weak

variational formð
Ub

3ðvbÞ : sbðubÞdV Ku2

ð
Ub

rbvb$ub dV

Z

ð
Sbs

vb$tbðubÞdS (14)

with vb(x, u) any virtual field defined in the structure

domain Ub.

Accounting for the stress equilibrium along the soil–

structure interface Sbs, the weak variational formulation

yields to:ð
Ub

3ðvbÞ : sbðubÞdVKu2

ð
Ub

rbvb$ub dV

C

ð
Sbs

vb$tsðuscðubÞÞdS ZK

ð
Sbs

vb$tsðui Cud0ÞdS

(15)

The numerical solution of the dynamic soil–structure

interaction problem is obtained based on the finite element

method for the structure and the boundary element method

for the soil.

The displacements ub(x, u) of the structure are

discretized on a finite element basis:

uFE Z
uFE

0

uFE
S

" #
(16)

The vectors uFE
0 and uFE

S contain the displacement field in

the n0 internal degrees of freedom of the structure and in the

nS degrees of freedom of the soil–structure interface,

respectively. The finite element stiffness, damping and

mass matrices are denoted by K FE, CFE and MFE,

respectively, and are block decomposed similarly to



Eq. (16) as:

AFE Z
AFE

00 AFE
0S

AFE
S0 AFE

SS

" #

with AFE Z K FE; CFE or MFE

(17)

The displacements uFE are subsequently expanded using

the Craig–Bampton substructuring method

uFE Z
F0 FS

0

0 FS

" #
q0

qS

� �
Z Hq (18)

where H is the transformation matrix associated with the

reduction basis and q is the vector of the generalized

coordinates.

The displacements FS
0 are the static transmissions of the

nst interface displacements FS into the structure (constraint

modes), computed as

FS
0 ZKðK FE

00 Þ
K1K FE

0SFS Z SFS (19)

where S is the finite element discretization of the elastostatic

lifting operator.

The displacements F0 are the nce eigenmodes of the

structure with vanishing displacements on the soil–structure

interface (fixed interface eigenmodes) that verify

K FE
00 F0 Z U2

00MFE
00 F0 (20)

where U00 is the diagonal matrix containing the

eigenfrequencies.

On this basis, the following deterministic reduced matrix

model is obtained

½K bKiuCbKu2Mb CZ sðuÞ�qðuÞ Z f ðuÞ; u2B (21)

uFEðuÞ Z HqðuÞ (22)

with

K b Z HTK FEH Z
K 00 K 0S

K T
0S K SS

" #
Z

U2
00 0

0 K SS

" #
(23)

Cb Z HTCFEH Z
C00 C0S

CT
0S CSS

" #
(24)

Mb Z H TMFEH Z
M00 M0S

MT
0S MSS

" #
Z

Inst
M0S

MT
0S MSS

" #

(25)

Z sðuÞ Z
0 0

0 K sðuÞ

" #
(26)

f ðuÞ Z
0

f sðuÞ

" #
(27)
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where B is the frequency band of analysis and Inst
is the

identity matrix of dimension nst.

The matrices K b and Cb are the positive semi-definite

reduced stiffness and damping matrices of the structure and

Mb is the positive-definite reduced mass matrix of the

structure. The matrix K sðuÞ is the dynamic soil impedance

matrix and f sðuÞ is the vector of the generalized forces

applied on the soil–structure interface Sbs, computed with a

boundary element formulation for the soil domain.
2.2. The associated non-parametric probabilistic model

It is assumed that the influence of the parameter

uncertainties and modelling errors related to the soil

model and to the incident field can be neglected with

respect to the influence of those related to the structure

model. A non-parametric probabilistic model [23,24]

associated with the deterministic model (21)–(22) is built

by substituting the reduced matrices of the structure by fully

populated random matrices. This construction allows to

model the propagation of both the parameter uncertainties

and the modelling errors related to the structure model to

uncertainties on the model response since the dispersion of

the random matrices may represent both uncertainty

sources. The following non-parametric probabilistic model

is obtained:�
KbKiuCbKu2Mb CZ sðuÞ

�
QðuÞ Z f ðuÞ; u2B (28)

UFEðuÞ Z HQðuÞ (29)

Kb, Cb and Mb are the random reduced stiffness, damping

and mass matrices of the building. UFE(u) and Q(u) are

second-order stochastic processes indexed on B with values

in C
n0CnS and C

nstCnce , respectively.

These random reduced matrices are normalized as

follows:

Kb Z ST
KGKSK with K b Z ST

KSK (30)

Cb Z ST
CGCSC with Cb Z ST

CSC (31)

Mb Z LT
MGMLM with Mb Z LT

MLM (32)

GK, GC and GM are the positive-definite, normalized,

random reduced stiffness, damping and mass matrix,

respectively. SK and SC are obtained with a spectral

decomposition of the positive semi-definite matrices K b

and Cb. LM is obtained with a Cholesky factorization of the

positive-definite matrix Mb.

The entropy optimization principle has been used by

Soize [23,24] to construct the probabilistic model of the

normalized random matrices GA, where A is equal to K, C or

M, referring to the reduced stiffness, damping or mass

matrix, respectively. The probability distribution of the



normalized random matrix GA maximizes entropy while

satisfying the following constraints:

† GA is a second-order random variable with values in the

set of symmetric, positive-definite nA!nA real matrices.

† The mean value of GA is the identity matrix InA

EfGAg Z InA
(33)

where E{$} is the mathematical expectation.

† The inverse of GA has a finite moment of order gA with

gA a positive integer

EfjjGK1
A jj

gA
F g!CN (34)

with k$kF the Frobenius norm.

Soize [23,24] has obtained an analytical form for the

resulting probability distribution of the normalized random

matrix GA, depending on a single positive real valued

dispersion parameter dA, defined as:

d
2
A Z

EfjjGAKGAjj
2
Fg

jjGAjj
2
F

(35)

The dispersion parameter dA is linked to the parameter gA

in the constraint (34) and to the dimension nA. For gAZ2,

the constraint (34) is fulfilled if dA satisfies the following

inequality:

0%dA!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nA C1

nA C5

s
!1 (36)

The complete probabilistic model for the random

reduced matrices Kb, Cb and Mb is obtained from the

probabilistic models for the normalized random matrices

GK, GC and GM and is parameterized by the set of dispersion

parameters dK, dC and dM. If each dispersion parameter

satisfies inequality (36), it can be proved that the structure

response UFE(u) is a second-order stochastic process.

In [23,24], a direct Monte Carlo simulation procedure

has been elaborated such that a set of realizations of the

random matrices can be generated. Once the computation of

the associated set of realizations of the random response is

performed, statistical estimates of the response can be

computed.

2.3. The random eigenvalue problem

In this section, the random eigenvalue problem defined

by the non-parametric probabilistic model is elaborated.

The random reduced stiffness and mass matrices define

the following random eigenvalue problem

K00QF Z U2
00M00QF (37)

where K00 and M00 are random block submatrices of the

random reduced stiffness matrix Kb and mass matrix Mb,

respectively. The matrix QF contains the nce random
5

eigenvectors and U00 is the random diagonal matrix

containing the random eigenfrequencies.

The nce random eigenvectors in the matrix QF are

considered as the random coordinates of a set of nce random

eigenmodes F0 with respect to the deterministic eigen-

modes F0:

F0 Z F0QF (38)

The study of the random eigenmodes F0 and of the

random eigenfrequencies in U00 permits investigating

the sensitivity of the modal basis to small uncertainties on

the mass or stiffness of the structure. The modes F0

obtained by the resolution of the random eigenvalue

problem in the space spanned by the deterministic

eigenmodes are pertinent since it is known that small

perturbations of the mass or stiffness of a structure modify

the individual eigenvectors, but leave the space spanned by

the eigenmodes unchanged [9–11].
2.4. Confidence regions associated with given

probability levels

The dispersion of the random response predicted by the

probabilistic model is characterized by estimating appro-

priate confidence regions. The size of the confidence regions

represents the dispersion of the random response. For the kth

degree of freedom Xk(u) of the random response X(u) at the

circular frequency u, a confidence region is built on a

logarithmic scale associated with a given probability level

Pc:

pðdBK
k ðuÞ!dBkðuÞ!dBC

k ðuÞÞRPc (39)

dBkðuÞ Z 20 log10



jXkðuÞj=X

ref
�

(40)

Xref is a reference value equal to 1 m/(N Hz) if X(u) is a

compliance and equal to 1 m/N if X(u) is a mobility. The

lower and upper bounds dBK
k ðuÞ and dBC

k ðuÞ are built using

the Chebychev inequality based on statistical estimates of

the mean value and of the variance of Xk(u) [27].
2.5. Identification of the dispersion parameters from

experimental results

The dispersion of the random reduced matrices Kb, Cb

and Mb is controlled by the set of positive real valued

dispersion parameters dK, dC and dM.

The dispersion of the random reduced matrices Kb, Cb

and Mb of the probabilistic model must represent the level of

uncertainty on the reduced stiffness, damping and mass

matrix of the model, respectively, due to the parameter

uncertainties and the modelling errors present in the model.

In this case, the dispersion of the random response of the

probabilistic model represents the uncertainty on the model

response due to these parameter uncertainties and modelling



errors (it is assumed that the relation between the reduced

matrices and the model response is correct).

In the present paper, the dispersion parameters are

identified from an experimental data set. They are tuned

such that the confidence regions for the random response

predicted by the probabilistic model envelope best

estimates for the response of the structure derived from

experimental results. For this set of tuned dispersion

parameters, the dispersion of the random response,

represented by the size of the associated confidence regions,

is used as an estimate of the prediction accuracy of

the model.
Fig. 1. (a) Schematic view of the Cité Universitaire site and (b) side view of

the Maison du Mexique.
3. Outline of the case history: the Cité Universitaire site

A prediction model for the transmission of vibrations

from a metro tunnel to a nearby building is considered. It

is assumed that the interaction of the track, the tunnel and

the soil is weakly coupled to the interaction of the soil and

the building. Based on this assumption, the transmission of

the vibrations is modelled with two submodels. First, an

interaction model of the track, the tunnel and the soil is used

to compute the wave field radiated by the tunnel into the

soil. Next, an interaction model of the soil and the building

is used to compute the structural vibration induced by this

wave field. Furthermore, it is assumed that the influence of

the parameter uncertainties and modelling errors related to

the track, the tunnel and the soil can be neglected with

respect to those related to the building. The track–tunnel–

soil interaction model is kept deterministic and, in order to

estimate the prediction accuracy of the complete model, a

non-parametric probabilistic model is constructed associ-

ated with the soil–building interaction model.

Results are presented for the Cité Universitaire site in

Paris, located on the RER B line of RATP between the

metro stations Cité Universitaire and Gentilly. Fig. 1(a)

shows a schematic view of the site. The tunnel is a masonry

cut-and-cover tunnel at a shallow depth of about 9.3 m

below the free soil surface embedded in sand layers. Two

classic ballast tracks are running in the tunnel. The rails are

supported by grooved rubber pads and are resting on mono-

block concrete sleepers. For more information on the tunnel

and track characteristics, the reader is referred to Clouteau

et al. [3].

A spectral analysis of surface waves (SASW) test has

been performed in order to determine the thickness and the

dynamic characteristics of the shallow soil layers [28]. The

tests have been performed on two measurement lines, one

line perpendicular to the tunnel and one line parallel to the

tunnel, and demonstrate the presence of a thin layer with a

thickness of approximately 1.4 m and a shear wave velocity

of CsZ115 m/s, a stiffer layer with a thickness of 3.0 m and

a shear wave velocity of CsZ220 m/s on top of a half-space

with a shear wave velocity CsZ315 m/s.
6

The transmission of vibrations into the Maison du

Mexique, a six storey student dormitory, is studied.

Fig. 1(b) shows a side view of the building. The main

building is a reinforced concrete frame structure. It has two

sets of eight columns such that the floor spans are

approximately 6.2 m. The floor-to-ceiling height is approxi-

mately 2.85 m. Very few information is available on the

foundation of the building. Therefore, assumptions have

been made regarding the foundation included in the

numerical model, which consists of an independent

foundation plate under each column. The dimensions of

these plates have been determined from estimates of the

required bearing capacity. For more information on the

building characteristics, the reader is referred to Chatterjee

et al. [29], Coster [30], and Arnst [31].

For the tunnel, a right-handed Cartesian frame of

reference (x 0, y 0, z 0) is defined with the origin at the free

soil surface (Fig. 1(a)). For the building, a right-handed

Cartesian frame of reference (x, y, z) is defined with the

origin in the upper left corner on the ground floor (Fig. 1(b)).

The origin of the reference frame of the building has



5(a) x 10–3

BA01z
coordinates (x 0Z23.5 m, y 0ZK24.3 m, z 0Z0 m) in the

reference frame of the tunnel. The angle between the y- and

the y 0-axis is 258.
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4. In situ measurements at the Cité Universitaire site

Measurements have been performed for site character-

ization as well as to obtain data for the estimation of the

prediction accuracy of the model [29]. Accelerometers have

been placed at different locations in the Maison du Mexique

(Fig. 2). Vibrations have been generated by an impact of an

instrumented hammer with a mass of 5.3 kg and a soft tip on

the rail head in the point with coordinates (x 0ZK2.5 m,

y 0Z0 m, z 0ZK8.2 m).

In the present paper, only the vertical response at

measurement locations close to the excitation point is

considered: the experimental degrees of freedom BA01z in

the basement near column C1, F0PLz at mid-span of the

slab on the ground floor between columns C2 and C3 and

F201z at the edge of the slab on the second floor near

column C1 (Fig. 2). The location BA01 has coordinates

(xZK0.5 m, yZ26.5 m, zZK3.6 m), F0PL has coordi-

nates (xZK2.9 m, yZ18.2 m, zZ0 m) and F201 has

coordinates (xZK0.5 m, yZ26.5 m, zZ6.8 m).

A total of 25 events have been recorded. From this set of

events, best estimates have been extracted for the frequency

response functions (FRFs) using the Ĥ1ðf Þ estimator [32].

The FRF is defined as the ratio of the response to the force

applied on the rail head. The particular term mobility is used

in this paper when the ratio of the velocity of the response to

the applied force is considered. The coherence functions

between the applied force and the measured responses have

also been estimated, as well as confidence regions for the

measured FRFs. Figs. 3 and 4 show the time history during

the sixth event, the best estimate for the FRF, the confidence

region for the measured FRFs and the coherence function

for the experimental DOFs BA01z and F0PLz, respectively.

Due to noise, low coherence values are observed at low

frequencies below 20 Hz and at high frequencies above
z
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Fig. 2. The measurement locations in the Maison du Mexique.
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history during the sixth event, (b) amplitude of the best estimate of the FRF

(mobility) (thick solid line) and confidence region (PcZ0.95) for the

measured FRFs (grey region) and (c) coherence function between the

applied force and the measured response.
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applied force and the measured response.
100 Hz. The coherence values decrease with the distance to

the impact point. Low values of the coherence function

indicate a low quality of the data and correspond to a high

level of uncertainty on the experimental results, as can be

concluded from the size of the confidence regions.
8

5. The deterministic model for the Cité Universitaire site

In this section, the deterministic prediction model is

elaborated to compute the FRFs from a vertical fixed

point force on the rail head to the response in the

building. This force is applied at the same point where

the experimental impact took place. The model proposed

by Clouteau et al. [3] based on a periodic coupled FE–

BE formulation is used to model the dynamic track–

tunnel–soil interaction. The deterministic soil–structure

interaction model (21)–(22) is subsequently elaborated to

compute the structural response. The model is designed

for computations in the frequency range between 0 and

100 Hz. The SDT Toolbox [33] for Matlab is used for

the finite element computations, while the software

MISS3D [5] is used for the boundary element

computations.
5.1. The deterministic dynamic soil–structure

interaction model

The finite element model for the Maison du Mexique

has been restricted to the main structural parts [30,31].

Only the columns, beams and floors of the main,

reinforced concrete frame structure are included in the

model. Two node beam elements are used for the

columns and the beams. Four node quadrilateral plate

elements are used for the floor slabs.

The soil–building interface Sbs is restricted to the 16

foundation plates of the building that are assumed to be rigid

and massless. The displacements on Sbs are decomposed on

a basis of interface modes that are the 96 rigid body modes

of the 16 plates.

The basis of constraint modes is extended with fixed

interface eigenmodes of the building. Fig. 5 shows the

eigenfrequency and the eigenfrequency separation of the

first 1500 eigenmodes. Fig. 6 shows the 2nd, the 35th

and the 535th eigenmode. In the frequency range

between 0 and 12 Hz, global eigenmodes of longitudinal

bending (1–4th), of transverse bending (1–3th) and of

torsion (1–3th) are found. From 12 Hz to approximately

17 Hz, a high density of local first-order plate bending

modes is obtained, as well as some higher order global

modes. From approximately 28 Hz, a high density of

local higher order plate bending modes is found with

some high order global modes. The eigenfrequency of

the 1500th eigenmode is 179.26 Hz. The average

eigenfrequency separation is 0.118 Hz.

The damping of the structure is taken into account

by a simplified model of the reduced damping matrix

(24)

Cb Z
C00 0

0 0

" #
(41)
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Fig. 5. (a) Eigenfrequency and (b) eigenfrequency separation of the first

1500 deterministic eigenmodes of the building.

Fig. 6. Deterministic (a) first-order global torsion–transverse bending mode, (b) fi

mode.
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where C00 is a diagonal matrix with elements 2xuj

with uj the pulsation of the jth eigenmode and xZ
0.02 the modal damping ratio.

The discrete excitation frequencies are chosen based on

the modal bandwidths. The frequency ranges from 0.25 to

15 Hz, from 15.5 to 70 Hz and from 71 to 100 Hz are

distinguished, wherein the frequency steps 0.25, 0.5 and

1 Hz, respectively, are employed.

The convergence of the prediction model with respect to

the number of eigenmodes is investigated by computing the

FRFs in several degrees of freedom for different numbers of

eigenmodes, as shown in Figs. 7 and 8 for the degrees of

freedom BA01z and F0PLz. A number of 1000 eigenmodes

is sufficient to reach a reasonable convergence of the

deterministic model response. In the following, the

computations are performed with 1500 eigenmodes.
5.2. The deterministic building response

Fig. 9 shows the harmonic response of the tunnel, the soil

and the building due to a fixed harmonic load on the rail

head at the frequencies 15 and 60 Hz. The low frequency

response is mainly governed by global low order bending

and torsion of the whole building and by first-order local

plate bending of the slabs (Fig. 9(a)). At higher frequencies,

the response is mainly governed by local plate bending of

the slabs and also by higher order bending and torsion of the

whole building (Fig. 9(b)).

Figs. 10 and 11 show the FRFs from the force on the rail

head to the response in three points near column C1 in the

basement, at the ground floor and at the second floor. At low

frequencies, the amplitude of the FRFs shows clear peaks

that correspond to the resonances of low frequency global

eigenmodes. The sharpness of the peaks decreases with the
rst-order local plate bending mode and (c) higher order local plate bending
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Fig. 7. (a) Amplitude and (b) unwrapped phase of the deterministic FRF

(mobility) in the degree of freedom BA01z computed with 500 (solid line),

1000 (dashed line) and 1500 (dotted line) eigenmodes.
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Fig. 8. (a) Amplitude and (b) unwrapped phase of the deterministic FRF

(mobility) in the degree of freedom F0PLz computed with 500 (solid line),

1000 (dashed line) and 1500 (dotted line) eigenmodes.
frequency. At higher frequencies, the amplitude of the

horizontal component of the response is much smaller than

the amplitude of the vertical component. Due to wave

propagation, the phase increases with the frequency. Phase

variations are less sharp as the frequency increases. Both the

amplitude and the phase are important characteristics of the

vibration in this frequency range.
6. The non-parametric probabilistic model

for the Cité Universitaire site

6.1. The probabilistic soil–structure interaction model

The non-parametric probabilistic model associated with the

deterministic soil–building interaction model is subsequently

elaborated. For the sake of simplicity, as well as to avoid the

expensive tuning of three dispersion parameters, it is assumed

that the dispersion levels of the random reduced stiffness,

damping and mass matrix are equal (dKZdCZdMZd).

6.2. The random eigenvalue problem and convergence with

respect to the dimension of the reduction basis

The random eigenvalue problem presented in Section 2.3

has been elaborated for three different dimensions of
10
the reduction basis of the soil–structure interaction model,

namely for 1000, 1500, and 2000 eigenmodes included in

this basis.

Fig. 12 shows the first 2000 deterministic eigenfrequen-

cies and estimates of the mean values of the 1000, 1500, and

2000 random eigenfrequencies, respectively, for a dis-

persion level dZ0.4. Due to the non-linearity of the

eigenvalue problem, the mean values of the random

eigenfrequencies differ from the deterministic values. At

low eigenfrequencies, the mean values of the random

eigenvalues are generally smaller than the deterministic

values. At the highest eigenfrequencies of a fixed reduction

basis, the mean values of the random eigenfrequencies are

significantly larger than the deterministic values. In the

relevant eigenfrequency range (up to approximately 1.5

times the highest excitation frequency), a reasonable

convergence of the mean values of the random eigenfre-

quencies with respect to the dimension of the reduction

basis is obtained for 1500 eigenmodes.

Fig. 13 shows estimates of the standard deviations of the

1000, 1500, and 2000 random eigenfrequencies, respec-

tively, for the same dispersion level dZ0.4. The standard

deviation generally increases with the eigenfrequency,

illustrating that the sensitivity of eigenfrequencies to

uncertainties on the mass and stiffness increases with the

frequency. At the highest eigenfrequencies of a fixed



Fig. 9. Deterministic harmonic response of the tunnel, the free soil surface

and the building at (a) 15 Hz and (b) 60 Hz.
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Fig. 10. (a) Amplitude and (b) unwrapped phase of the horizontal

component of the deterministic FRFs (mobility) in the point BA01 (solid

line), in the corresponding point at the ground floor (xZK0.5 m, yZ
26.5 m, zZ0 m) (dashed line) and at the second floor (F201) (dotted line).
reduction basis, the standard deviation increases strongly.

Reasonable convergence in the relevant eigenfrequency

range is obtained for 1500 eigenmodes.

The previous results are important for the convergence of

the random response with respect to the dimension of the

reduction basis, as this convergence is linked to the

convergence of the random eigenfrequencies in the relevant

eigenfrequency range. It has been demonstrated that the

convergence of the latter is only obtained when a reduction

basis is used with eigenmodes with eigenfrequencies larger

than the highest frequency of this eigenfrequency range.

Generally, in order to attain convergence of the random

response predicted by the non-parametric probabilistic

model, a reduction basis must be used that is larger than

the reduction basis required to attain convergence of the

deterministic model.
11
In the following, all computations with the probabilistic

model are performed with 1500 eigenmodes.

Figs. 14 and 15 show the first 50 coordinates of two

realizations of the third (global first-order torsion) and

28th (local first-order plate bending) random eigenmodes

when projected on the basis of deterministic eigenmodes

for a dispersion level dZ0.4. At low eigenfrequencies,

where global bending and torsion modes of the building

are found and the eigenfrequency separation is relatively

large, the individual global eigenmodes are not modified

by small perturbations of the mass and stiffness. At

higher eigenfrequencies, where densely packed clusters

of local eigenmodes are found, small perturbations of the

mass and stiffness significantly modify the local

eigenmodes.
6.3. Convergence with respect to the number of Monte

Carlo simulations

The convergence of the estimates of the confidence

regions for the random FRFs predicted by the probabilistic

model with respect to the number of Monte Carlo

simulations is analyzed through the convergence analysis

of the statistics of the realizations of these random FRFs.
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(dashed line) and at the second floor (F201) (dotted line).

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Index [–]

F
re

qu
en

cy
 [H

z]

Fig. 13. Estimated standard deviations of the random eigenfrequencies for

dZ0.4 computed with 1000 (solid line), 1500 (dash-dotted line) and 2000

(dotted line) eigenmodes.

1(a)
Figs. 16 and 17 show the estimated mean value and standard

deviation of the random FRF in the degree of freedom

F0PLz as a function of the number of Monte Carlo

simulations for different values of the dispersion level d at

the frequencies 50 and 100 Hz, respectively. The larger the

dispersion level d and the higher the frequency, the larger

the required number of simulations becomes. In the
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Fig. 12. The deterministic eigenfrequencies (solid line) and the estimated

mean values of the random eigenfrequencies for dZ0.4 computed with

1000 (dashed line), 1500 (dash-dotted line) and 2000 (dotted line)

eigenmodes.
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considered frequency range and for d%0.4, 160 Monte

Carlo simulations seem to be sufficient to reach conver-

gence. In the following, all computations are performed

with 200 simulations.

6.4. The random building response

In this section, the sensitivity of the model response to

arbitrary random uncertainties is studied. The dispersion of

the random response is studied as a function of the

dispersion of the random matrices.

Fig. 18 shows the estimated bounds of the confidence

regions for the random FRFs in the degrees of freedom

BA01z, F0PLz and F201z for different values of the

dispersion level d. The size of the confidence regions, or

the dispersion of the random response, increases with the

dispersion level d.

The dispersion of the random response increases with

the frequency. At very low frequencies, where global
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Fig. 14. The first 50 coordinates of two realizations of the third random

eigenmode when projected on the basis of deterministic eigenmodes.
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Fig. 15. The first 50 coordinates of two realizations of the 28th random

eigenmode when projected on the basis of deterministic eigenmodes.
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Fig. 16. Estimated (a) mean value and (b) standard deviation of the

amplitude of the random FRF (mobility) in the degree of freedom F0PLz as

a function of the number of Monte Carlo simulations ns at 50 Hz for dZ0.1

(solid line), dZ0.2 (dashed line), dZ0.3 (dash-dotted line) and dZ0.4

(dotted line).
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Fig. 17. Estimated (a) mean value and (b) standard deviation of the

amplitude of the random FRF (mobility) in the degree of freedom F0PLz as

a function of the number of Monte Carlo simulations ns at 100 Hz for dZ
0.1 (solid line), dZ0.2 (dashed line), dZ0.3 (dash-dotted line) and dZ0.4

(dotted line).
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bending and torsion of the whole building govern the

response, the confidence regions for the random FRFs are

small. The sensitivity of the low frequency response to

uncertainties on the mass and stiffness is small. At higher

frequencies, where the response is governed by local plate

bending of the floor slabs of the building, the confidence

regions are large, even for small values of the dispersion

level d. The sensitivity of the local eigenmodes to small

uncertainties on the mass and stiffness involves a large

sensitivity of the mid-frequency response to such

uncertainties.

Generally, the dispersion of the random response

increases as vibrations propagate inside the building. In

the degree of freedom BA01z in the basement of the

building, the dispersion of the random response is

smaller than in the degrees of freedom F0PLz and

F201z, higher in the building and further away from the

applied loads.
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Fig. 18. Estimated bounds of the confidence regions (PcZ0.95) for the

random FRFs (mobility) in the degrees of freedom (a) BA01z, (b) F0PLz

and (c) F201z for dZ0 (thick solid line), dZ0.1 (solid lines), dZ0.2

(dashed lines), dZ0.3 (dash-dotted lines) and dZ0.4 (dotted lines).
7. Identification of the dispersion level d

In this section, the prediction accuracy of the considered

model is quantified. The appropriate dispersion level d is

identified from the experimental data set. The dispersion

level d is tuned such that the estimated confidence regions

for the random FRFs predicted by the probabilistic model

envelope the best estimates for the FRFs, at least where the

coherence of the experimental results is good. Due to the

low coherence values in the frequency range below 20 Hz

and above 100 Hz, the frequency range for the comparison

of the experimental and the modelling results is restricted
14
between 20 and 100 Hz. Based on many simulations,

an optimal value dZ0.4 has been identified to best fit the

data set.

Figs. 19–21 show the best estimates for the FRFs, the

estimated confidence regions for the random FRFs for dZ
0.4 and the coherence functions between the applied force

and the measured response in the degrees of freedom

BA01z, F0PLz and F201z. In the basement of the building,

the quality of the experimental result BA01z is good. The

relatively small confidence region for the random FRF

envelopes the best estimate for the FRF. Higher in the

building, in the degrees of freedom F0PLz and F201z, the

quality of the experimental results is lower. The large

confidence regions for the random FRFs envelope the best

estimates for the FRFs.

For the response in the degrees of freedom F0PLz and

F201z, the obtained confidence regions broadly envelope

the best estimates for the FRFs. If only these degrees of

freedom had been considered, a smaller dispersion level

would have been more appropriate. However, for the degree

of freedom BA01z, the identified dispersion level is required

for the confidence region to reasonably envelope the best

estimate for the FRF. As only a single dispersion parameter

is available, the identified value 0.4 must be chosen to fit the

whole data set, even if this value is too large for the degrees

of freedom higher in the building.

The dispersion of the random FRFs predicted by the

probabilistic model for dZ0.4, or the size of the confidence

regions for the random FRFs, is used to characterize the

prediction accuracy of the model. In the basement, close to

the applied loads, the influence of the modelling errors and

uncertainties related to the building is relatively small. The

size of the confidence region for the random FRF is

approximately 10 dB. Higher in the building and further

away from the applied loads, this influence is more

important. The size of the confidence regions for the

random FRFs in the degrees of freedom at the ground and

second floor is approximately 20–30 dB.
8. Conclusions and directions for future work

In this paper, the prediction accuracy of models for

ground-borne vibration in buildings based on a three-

dimensional coupled FE–BE formulation has been studied.

It has been shown that the non-parametric probabilistic

approach allows to estimate the prediction accuracy of such

models when both parameter uncertainties and modelling

errors are present in the building model.

The advantages over so called parametric probabilistic

approaches are that the description of the parameter

uncertainties in terms of random fields is not required and

that both the parameter uncertainties and the modelling

errors are incorporated into the analysis. Nevertheless, the

non-parametric probabilistic approach is a global approach.

It only gives information about the global influence of all
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Fig. 20. (a) The best estimate for the FRF (mobility) (thick solid line) and the estimated confidence region for the random FRF for dZ0.4 (grey zone) and (b)

coherence function between the applied force and the measured response in the degree of freedom F0PLz.
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Fig. 19. (a) The best estimate for the FRF (mobility) (thick solid line) and the estimated confidence region for the random FRF for dZ0.4 (grey zone) and (b)

coherence function between the applied force and the measured response in the degree of freedom BA01z.
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Fig. 21. (a) The best estimate for the FRF (mobility) (thick solid line) and the estimated confidence region for the random FRF for dZ0.4 (grey zone) and (b)

coherence function between the applied force and the measured response in the degree of freedom F201z.
the parameter uncertainties and the modelling errors on the

model predictions. It does not allow identifying the different

sources of the modelling errors and does not provide

quantitative information on the parameter uncertainties.

The case history has shown that the approach provides

valuable insight as well as quantitative estimations of

the prediction accuracy of the considered model. First, the

effectiveness of the approach as a tool to investigate the

sensitivity of model predictions to arbitrary random

uncertainties has been shown. It has been demonstrated

that the prediction accuracy decreases with increasing

frequency and with increasing distance to the applied

loads. Especially on the slabs of the frame structure, a low
15
prediction accuracy has been found. This has been

explained by the presence of densely packed clusters of

local plate bending eigenmodes in the relevant eigenfre-

quency range. In this case, small perturbations of the mass

or stiffness significantly alter the local eigenmodes, which

involves modifications of the response. Because of this

physical reason, accurate predictions of the response are

very difficult unless parameter uncertainties and modelling

errors are sufficiently reduced. Next, the approach has been

followed to quantify the prediction accuracy of the

considered model. The main difficulty is the identification

of the model. In this paper, the non-parametric probabilistic

model has been parameterized by a single dispersion



parameter that has been identified based on graphical

comparisons of confidence regions for the random response

with experimental results.

The parameterization of the probabilistic model by a

single dispersion parameter may lead to confidence regions

that are too large in certain degrees of freedom. A first

direction for future work may consist of the parameteriza-

tion of the probabilistic model by a set of parameters rather

than by a single dispersion parameter, allowing finer tuning

of the model. However, when the probabilistic model is

parameterized by more parameters, its identification based

on graphical comparisons with experimental results rapidly

becomes infeasible.

The development of theoretical estimators for the

identification of the probabilistic model from experimental

results therefore naturally suggests itself. The main

advantage of theoretical estimators is that they allow

efficient parameter identification by numerical optimization

algorithms, rendering the identification of a probabilistic

model parameterized by a set of parameters feasible. The

second advantage is that they allow to rigorously account

for experimental uncertainties, for example by weighting a

distance measure between the experimental and the model

results by the coherence function.

A third direction for future work may be to extend the

existing non-parametric theory such that a random matrix

can substitute the soil impedance matrix as well. This allows

studying the influence of parameter uncertainties and

modelling errors related to the soil domain. The probability

distribution for this random matrix might also be derived

from the entropy optimization principle, but in this case, a

supplementary constraint must be introduced, namely the

causality principle.
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