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A new model of damage: a moving thick layer approach

Claude Stolz, Nicolas Moës

Abstract A new formulation of a damage law is pro-

posed based on a continuous transition between a sound

material and a totally or partially broken material. The

evolution of damage is then associated with a mov-

ing layer. This point of view permits the description

of initiation and propagation of defects in an unified

framework. The motion of the thick layer is defined

in the frame of the moving surface Γo separating the

sound material and the damaged material. When the

damage parameters are continuous functions of the

distance to Γo, they satisfy the conditions of transport.

For particular geometries and loadings the evolution of

the system is discussed. Comparison with description

of damage with discontinuities and sharp interface is

also presented.
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1 Introduction

Fracture mechanics is not sufficient generally to model

the full scenario of the degradation of solids under

mechanical loading. Crack initiation for instance

requires damage description for modelling the gradual

loss of stiffness.

When the damage evolves some regularization pro-

cess are needed to avoid spurious localization. Some

constitutive laws based on second gradient descrip-

tion of damage (Bourdin et al. 2000) or phase field

approach (Karma et al. 2001; Miehe et al. 2010)

have been recently proposed for this purpose. Many

other approaches have been proposed to regularize the

damage evolution (Pijaudier Cabot and Bazant 1987;

Peerlings et al. 1996).

In this paper we propose to model the damage like

the propagation of level set surface (Moës et al. 2011).

For elastic quasi-brittle material, the evolution of the

interface separating the undamaged material d =0 from

the damaged material d =1 have been studied using an

energetical description of the propagation (Pradeilles-

Duval and Stolz 1991, 1995). In this description the

parameter d jumps instantaneously from 0 to 1. The

interface has no thickness and some mechanical quan-

tities present discontinuities. Criteria of uniqueness

and of stability of the propagation have been also
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established. In this approach, nucleation of defects can

be considered as a bifurcation of equilibrium solution

(Stolz 2007).

Descriptions of moving interfaces and of moving

layers are also useful for studying loss of matter. Such

a thermodynamical description of thin or thick layers

permits to describe complex process of wear between

two bodies in relative motion (Stolz 2010).

The initial material and the damaged material are

separated by a surface Γo. This boundary is a moving

interface. A surface is considered as an isopotential or

a level-set. This surface is an interface where the mate-

rial begins to change its properties. Two cases may be

considered: the propagation of a sharp interface and the

propagation of a moving layer.

Sharp interface. If the transition zone is very thin,

the transition from sound material to damaged mate-

rial can be discontinuous and the interface is called

sharp interface. The propagation of such an interface

has been studied (Pradeilles-Duval and Stolz 1991,

1995).

The thermodynamical force associated to the propa-

gation of the interface is the local energy release rate

G(s). Moreover stability and non-bifurcation condi-

tions for the problem of evolution are given when a

normality rule is associated with a generalized Grif-

fith’s criterion like G(s) ≤ Gc.

Moving layer. If the interface is thick, the transition

should be more regular. The evolution of damage

is then associated to a moving layer. The thickness

of the transition zone provides a length scale in the

modelization.

The purpose of this article is to define the motion

of a layer according to specific damage behaviour. The

analysis of dissipation provides the definition of the

energy release rate G(s) associated to the motion of

the layer. Other expressions of the dissipation are also

given in terms of Eshelby’s momentum tensor. A nor-

mality rule based on a criterion function of G(s) is then

proposed. The evolution of damage inside a bar is then

studied in this framework after comparison with sharp

interface modelization.

2 A level set based damage model

We consider classical constitutive equations for describ-

ing the stress–strain relations and we propose a new

formulation for the damage evolution.

The main idea of the modelization is to consider that

damage occurs in a layer of finite thickness l evolving

from 0 to lc. Damage is described by a parameter d

which varies from 0 to 1. The boundary between the

sound material and the damaged material is denoted by

Γo which is moving accordingly to the damage evo-

lution. The surface Γo is the level-set φ(M, t) = 0,

where φ(M, t) is a signed distance function of point M

to Γo. The damage d is considered as a function of the

level-set φ.

2.1 A simple local damage model

The free energy w per unit of volume depends on the

strain ǫ and on a scalar variable d for the damage: w =

w(ǫ, d). The state law is given by

σ =
∂w

∂ǫ

; Y = −
∂w

∂d
, (1)

where σ is the stress and Y the local energy release

rate, they are functions of the state variables (ǫ, d). For

instance, we may use a potential of the form

w(ǫ, d) =
1

2
ǫ : C(d) : ǫ, (2)

then the equations of state are given as

σ = C(d) : ǫ; Y = −
1

2
ǫ :

∂C

∂d
: ǫ. (3)

The thermodynamical force Y (ǫ, d) must be finite for

any d ∈ [0, 1], this condition of regularity ensures that

the dissipation is defined.

The simple form of C(d) is given by choosing C =

d C1+(1−d) Co or C−1 = d C
−1
1 +(1−d) C−1

o . When d

increases monotonically from 0 to 1, this describes the

transition between a material of elastic properties Co to

a partially damaged material of elastic properties C1.

For total damage description C1 = 0. Such behaviours

are generalizations of behaviour considered in Moës et

al. (2011).

The evolution of damage is determined by a dissi-

pation potential D(ḋ) convex function of ḋ such that

D(0) = 0. The thermodynamical force Y satisfies the

normality rule

D(ḋ) + Y (d∗ − ḋ) ≤ D(d∗), ∀d∗, (4)

which is equivalent to the relation Y =
∂D

∂ ḋ
in the

case of a regular potential D. These properties ensure

positive dissipation. A dual formulation is given in
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terms of dual potential D∗(Y )=supḋ(Y ḋ −D(ḋ)) then

ḋ =
∂D∗

∂Y
.

For a domain of reversibility defined by Y −Yc ≤ 0,

and a time independent constitutive relation, the nor-

mality rule is expressed as

ḋ ≥ 0, Y − Yc ≤ 0, (Y − Yc)ḋ = 0. (5)

2.2 A new modelization

A function level set φ is introduced. The level set φ = 0

separates the domain Ω into a undamaged and a dam-

aged zone, this surface is denoted Γo.

The whole body Ω is then decomposed into three

parts, the undamaged body Ω1, the zone Ωc of tran-

sition, the damaged body Ω2 when damage is estab-

lished. In this case, the boundary ∂Ωc is decomposed

into Γo where d = 0, φ(Mt
o, t) = 0, and Γ1 where

d = 1, φ(Mt , t) = lc.

In the damaged zone Ωc the variable d is an explicit

function of the level set. The damage increases as the

level set value rises:
⎧

⎪

⎨

⎪

⎩

d(φ) = 0, φ ≤ 0, X ∈ Ω1,

d ′(φ) ≥ 0, 0 ≤ φ ≤ lc, X ∈ Ωc,

d(φ) = 1, φ ≥ lc, X ∈ Ω2,

(6)

d ′(φ) is the derivative of d relatively to φ. The function

d is assumed to be continuous for clarity. Discontinu-

ous function can be chosen in the proposed approach

but the obtained expressions must be modified with

additional contributions.

As the damage is a given continuous function of the

signed distane φ to Γo, the evolution of the layer is then

associated to the motion of the surface Γo.

2.3 The problem of equilibrium

Consider a body Ω . The external boundary ∂Ω is

decomposed into two parts: ∂Ωu where the displace-

ment u is prescribed ud(t) and ∂ΩT where the loading

Td(t) is applied; ∂Ω = ∂Ωu ∪∂ΩT ,∅ = ∂Ωu ∩∂ΩT .

The total potential energy E is a function of (u, φ)

E(u, φ) =

∫

Ω

w(ǫ(u), d(φ)) dΩ −

∫

∂ΩT

Td .u ds, (7)

ǫ(u) is the strain, symmetric part of ∇u. The dis-

placement u satisfies the boundary conditions on ∂Ωu :

u = ud .

Continuity conditions (CC). The displacement u, the

stress vectors σ .n, the modulus C(d) are continuous

functions accross the surface Γo. Then the gradient of

the displacement and the free energy are continuous

functions along each iso-φ surface and inside the layer.

These properties imply that the velocity u̇ is also contin-

uous. Therefore virtual variations of the displacement

and of the moving surface φ = 0 are uncoupled.

2.4 General motion of a layer

A point Mt
o on the surface Γo has curvilinear coordi-

nates sα, α = 1, 2. The local basis is defined by the

tangent vectors Tα =
dMt

o

dsα
and the normal vector N =

∇φ to the surface φ(Mt
o, t)=0 (Fig. 1). A point M at

the distance φ of the curve Γo has coordinates such that

M = Mt
o(s

α) + φ N(sα). (8)

In Ωc an element of volume satisfies

dΩ = j dφ ds, (9)

where ds is the element area at point Mo. Due to the

curvature of the surface the jacobian j is det(I −φ κ̄ ),

where κ̄ is the curvature tensor of the surface Γ at point

Mo.

In 2D, Γo is a curve described by the curvilinear

coordinate s with tangent vector T and curvature κ

given by

dT

ds
= κ N. (10)

The local derivatives of the elementary vector are

dM = dMo + Ndφ − φκT ds

= (1 − κφ) T ds + Ndφ. (11)

Fig. 1 Local geometry of the layer
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these expressions define the local metric and the ele-

mentary area is given by d A = (1−φκ(s))dφ ds where

κ(s) is the curvature at point s of the surface φ = 0.

The motion of the local geometry. When the curve Γo

is moving, the local basis is changing accordingly. At

time t+ = t +∆t , the point Mt
o comes in Mo(t

+) such

thatφ(Mo(t
+), t + ∆t)= 0 then Mo(t

+)= Mt
o − ∆t a

(sα)N where the normal speed a satisfies the relation

∂φ

∂t
− a∇φ.N = 0. (12)

Any quantity f defined at a point Mt
o is varying during

this motion. Introducing the derivative of f following

the motion of Γo by

Da f = lim
∆t→0

f (Mo(t
+)) − f (Mt

o)

∆t
. (13)

We obtain for the evolution of the geometry

DaT = −
da

ds
N, DaN =

da

ds
T,

Daκ = −
d2a

ds2
− κ2a (14)

In an analogous way, any function F(M, t) defined at

a point of M of Ωc is variyng during this motion. Intro-

ducing the derivative of F following the motion of Γo

by

Da F = lim
η→0

F(M + ηDaM, t + η) − F(M, t)

η

=
∂ F

∂t
+

∂ F

∂M
.DaM

where DaM = DaMo + φDaN = −a N + φ
da

ds
T.

The position of the point Mt
o of Γo satisfies the

equation φ(Mt
o, t) = 0, then Daφ(Mt

o, t) = 0 that

is exactly (12). The point Mt = Mt
o + z N is on the

iso-level set φ(M, t) = z, the evolution of this surface

is given by Daφ(Mt , t) = 0 and obviously the normal

velocity of this surface is also a(s). As φ is a distance

function, ||N|| = 1, then the variations δφ of φ are

functions only of s and are denoted δa.

Variations of the potential energy. At time t , the value

of the field φ is known. The function d is known, and

ḋ =
∂d

∂φ

∂φ

∂t
= −d ′(φ)a(s). The variations of d are

then δd = −d ′(φ)δa(s).

The total variations of E with respect to the displace-

ment and to the function φ taking account of the state

laws are

∂E

∂u
.δu +

∂E

∂φ
.δa =

∫

Ω

σ : ǫ(δu)dΩ

−

∫

∂ΩT

T.δu ds −

∫

Ωc

Y d ′(φ)δa dΩ.

Due to the continuity conditions (CC) the variations

of displacement and the variations of the surface φ = 0

are uncoupled.

Equilibrium of the system. For given φ, the system

is that of a non-homogeneous elastic medium under

boundary conditions (Td along ∂ΩT and ud over ∂Ωu).

The solution of the problem of equilibrium is deter-

mined by the solution of minimization of the potential

energy. Then, for a state of equilibrium, the variations

of the total potential with respect to u are zero

∂E

∂u
.δu =

∫

Ω

σ : ǫ(δu) dΩ −

∫

∂ΩT

Td .δu ds = 0, (15)

where the variations δu satisfy the boundary conditions

δu = 0 over ∂Ωu . By integration by parts equations of

equilibrium are recovered

div σ = 0, n.σ = Td , over ∂ΩT . (16)

Evolution of the layer. The variations of E are then

reduced to those with respect to φ

∂E

∂φ
.δa = −

∫

Ωc

Y d ′(φ) δa dΩ = −

∫

Γo

G(s)δa(s) ds,

(17)

where the release rate of energy appears associated to

the motion of the layer

G(s) =

l
∫

o

Y d ′(φ) j dφ. (18)

In 2D situation, this expression becomes

G(s) =

l
∫

o

Y d ′(φ) (1 − φκ(s)) dφ. (19)

This defines the variation of the energy when the layer

is moving. The thickness at time t is l(t) less than lc.

The description is valid from the initiation of the layer

from zero-thickness to a finite thickness lc.

When l tends to 0, the thermodynamical force G(s)

tends to 0, and the dissipation vanishes. Definition of

the evolution law must be compatible with this fact.
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2.5 Dissipation of the system and evolution law

The dissipation has the classical expression

Dm =

∫

∂Ω

n.σ .u̇ ds −
d

dt

∫

Ω

w dΩ, (20)

where the free energy w is a function of the strain ǫ and

of the scalar parameter d as defined (1). The internal

parameters evolve only on Ωc. Using the condition of

equilibrium and the motion of the layer the total dissi-

pation is reduced to:

Dm =

∫

Ωc

Y ḋ dΩ +

∫

∂Ωc

([w] − σ : [ǫ])DaM.N ds.

(21)

Due to the CC, the free energy is continuous along ∂Ωc,

then the last term vanishes.

The motion of the surface φ(Mt , t) = z is given

by the normal velocity a, and satisfies the condition

Daφ = 0. The damage parameter d is a function of φ,

then Dad = 0, and the dissipation is reduced to

Dm =

∫

Ωc

Y∇d.N a dΩ =

∫

Ŵo

l
∫

o

Y d ′(φ) a(s) j dφ ds

=

∫

Γo

G(s)a(s) ds. (22)

This ensures that

Dm =

∫

Γ

G(s)a(s) ds = −
∂E

∂φ
.a(s). (23)

The derivative of the potential energy relative to φ

is the thermodynamical force associated to the motion

of the layer. This is the generalization of the expression

of the thermodynamical forces defined previously for

moving interface to moving layer.

On the Eshelby momentum tensor. Introducing the

Eshelby momentum tensor P :

P = w I − σ .∇u, (24)

this tensor satisfies the relations

divP
T = −Y∇d, over Ωc, N.[P] = 0, along ∂Ωc.

(25)

Using the fact that ∇d = d ′(φ)∇φ = d ′(φ)N the dis-

sipation takes the form

Dm = −

∫

Ωc

P : ∇DaM dΩ +

∫

∂Ωc

N.P .DaM ds. (26)

These expressions can be used in numerical simula-

tions.

Another expression of the dissipation. It can be

noticed that from the expression of the local free

energy:

dm =
1

2
(ǫ̇ : σ − ǫ : σ̇ ) = Y ḋ. (27)

The integration of dm over the layer is then the global

dissipation

Dm =

∫

Ωc

dm dΩ =

∫

Ωc

1

2
(ǫ̇ : σ − ǫ : σ̇ ) dΩ. (28)

Under the hypothesis that the local damage satisfies the

condition Dad = 0, the dissipation takes the form

Dm =

∫

∂Ωc

1

2
(N.σ .∇u − N.∇σ .u).DaM ds

−

∫

Ωc

1

2
(σ .∇u − ∇σ .u) : ∇DaM dΩ

When the thickness lc vanishes, the volume term van-

ishes and Dm is reduced to

Dm = lim
lc→0+

∫

∂Ωc

1

2
(N.σ .∇u − N.∇σ .u) : DaM ds.

Using the relation
∫

V

σ : ǫ ni ds =

∫

V

n.∇iσ .u + n.σ .∇i u ds, (29)

at the limit DaM → −aN the dissipation becomes

Dm =
1

2

∫

Γo

[σ ]
Γ

: ǫ − σ : [ǫ]
Γ

ds a, (30)

that is the dissipation along a moving interface between

two materials with distinct elastic properties. The

model of quasi-brittle elastic material (Pradeilles-

Duval and Stolz 1995) is recovered.

To define the evolution of the system, we need a

link between the thermodynamical force G(s) and the

velocity a(s).

On the evolution law. We propose now an evolution

law to determine the value of velocity a. Consider the

normality rule (5). From integration of (Y − Yc)ḋ = 0

over the thickness l 
= 0 we get

(

l
∫

o

Y d ′(φ) jdφ − Yc

l
∫

o

d ′(φ) jdφ

)

a = 0. (31)
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Fig. 2 A sharp interface

This provides a normality law on G(s)

(G(s) − gc(s))a = 0, a ≥ 0, G(s) − gc(s) ≤ 0.

(32)

For l > 0,
∫ l

o
d ′(φ) j dφ is positive, we can introduce

the notation 〈F〉:

〈F〉 =

∫ l

o
Fd ′(φ) j dφ

∫ l

o
d ′(φ) j dφ

, (33)

with this driving force the normality rule is rewritten

as

(〈Y 〉 − Yc)a = 0, a ≥ 0, 〈Y 〉 − Yc ≤ 0. (34)

Regularity Conditions on Y (RC) . For a regular func-

tion Y (ǫ, d), it can be noticed that when the thickness

l vanishes, the value of 〈Y 〉 remains finite and satisfies:

lim
l→0+

〈Y 〉 = Y (ǫ, 0+), lim
l→0+

〈Yc〉 = Yc (35)

Then the critical values for initiation and for evolution

of damage are the same.

The thickness l evolves from 0 to lc. The surface

l = lc is the surface defined by d(x, t) = 1. The transi-

tion from d = 0 to d = 1 along the normal vector ∇φ

is smooth. This approach in essentially non-local, but

here the non-locality is restricted to the layer. Any clas-

sical constitutive law described by w(ǫ, d) can be used.

To study the evolution of a system under a load-

ing history, we need two functions C(d) and d(φ) or

C(φ) and d(φ), because d(φ) is a continuous increas-

ing function of φ.

3 Comparison of sharp and layer model

3.1 A model with sharp interface

A bar of length L is now considered. As depicted on

Fig. 2, the bar is made of two linear elastic materials

and is submitted to pure tension. The Young modulus of

the sound material is E1 and for the damaged material

the Young modulus is E2.

At point X = L , the applied tension is �. At point

X = 0, displacement is u(0)= 0. The position of the

interface is denoted Γ . We consider that a fraction x =

Γ/L of the bar is transformed.

The equilibrium and constitutive laws give:

σ = E1ǫ1 = E2ǫ2 = �. (36)

And the total potential energy is

W (�, x) = −
1

2
L�2

(

x

E2
+

1 − x

E1

)

. (37)

Differentiation of the energy at equilibrium with

respect to the motion of interface is

GΓ (�) = −
∂W

∂Γ
=

1

2
�2

(

1

E2
−

1

E1

)

; (38)

consequently the dissipation is

Dm = GΓ (�)Γ̇ . (39)

The speed Γ̇ = a is determined by the normality law

a ≥ 0, GΓ − Gc ≤ 0, (GΓ − Gc)a = 0. (40)

The velocity a will be positive if the consistency con-

dition GΓ − Gc = 0 is satisfied. This condition deter-

mines the critical value of � from (49):

�c =

√

2Gc E1 E2

E1 − E2
. (41)

Initially the bar is composed of material 1 only.

Assuming that initial conditions are x(0+) = 0 and

u(L , 0+) = 0. Prescribing the displacement at point

X = L , the total strain of the bar is ∆(t) and satisfies

the global constitutive law

∆(t) =
u(L , t) − u(0, t)

L
= �

(

x

E2
+

1 − x

E1

)

. (42)

The response of the bar is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∆ ≤ ∆c =
�c

E1
, � = E1∆, x = 0,

�c

E2
≥ ∆ ≥ ∆c, � = �c, ẋ = ∆̇

E1 E2

�c(E1 − E2)
,

∆ ≥
�c

E2
, � = E2∆, x = 1.
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Fig. 3 The propagation of a layer

3.2 A model with a moving layer

The free energy w for unixial response is

w(ǫ, d) =
1

2
E(d)ǫ2, (43)

where d varies from 0 to 1, the Young modulus E(d)

is a continuous function of d , then there is no discon-

tinuity at d = 0. On Fig. 3, φ(X, t) = Γ (t) − X and

the value of the damage parameter is given by
⎧

⎪

⎨

⎪

⎩

φ(X, t) ≤ 0, d(φ) = 0,

0 ≤ φ(X, t) ≤ lc, d(φ) = φ/ lc,

φ(X, t) ≥ lc, d(φ) = 1.

(44)

The damage parameter d is an increasing function of

the distance φ to the boundary Γ separating the sound

material to the damaged one. Generally, the function

d(φ) is a given continuous function of φ. As the Young

modulus E is a continuous function of d and for com-

parison with the sharp interface, it is natural to consider

the matching conditions E(0) = E1 and E(1) = E2.

Initially Γ (t) = 0 and the propagation of the layer

begins at the origin of the bar, so the thickness Γ (t) =

l(t) is smaller than lc. The thickness increases to lc
and after this step of initialization, the thickness is kept

constant.

For the given constitutive laws, the dissipation is

local and only due to damage dm = Y ḋ . Integrating

over the layer we get the total dissipation due to dam-

age inside the bar:

Dm =

l
∫

o

Y ḋ dφ. (45)

Assuming that d is a continuous function of φ.

Using the constitutive law, the local driving force Y

is

Y = −
1

2

d E

dd
ǫ2 = −

�2

2E2(d)

d E

dd
. (46)

The function E(d) must ensure that Y is finite. Then
d E

dd
is finite. We adopt the notations

Yo(�) = −
�2

2E2
1

d E

dd
(0+), Y1(�) = −

�2

2E2
2

d E

dd
(1−)

(47)

The motion of the level-set φ(X, t) = 0 is given by

the velocity φ̇ = a(s), the total dissipation is finally

expressed as

Dm =
a

2

l
∫

o

(

−
�2

2E2(d)

)d E

dd
d ′(φ)dφ = G(l, �)a,

(48)

where the release rate of energy G(l, �) is

G(l, �) =
1

2
�2

(

1

E(d(l))
−

1

E(0)

)

. (49)

When l = lc, we recover the expression of the sharp

interface.

Using the local normality rule, the value of Y must

be smaller than Yc. This defines the critical value for

initiation of damage in a point of the bar. From (35)

and (46), the corresponding critical value of � is �o

such that

Yo(�o) = −
1

2

�2
o

E2
1

d E

dd
(0+) = Yc. (50)

It can be noticed that the critical value �o depends

of the damage law and is generally different from �c.

To compare the two models, we assume that the dissi-

pation of the system is the same when the layer moves

with the limit thickness lc.

3.3 The response of the bar

As d is a given function of φ(X, t), the Young modulus

E (function of d) depends on position and time and is

perfectly determined as a function of φ(X, t) denoted

now E(φ).
⎧

⎪

⎨

⎪

⎩

φ(X, t) ≤ 0, d(φ) = 0, E(φ) = E1,

0 ≤ φ(X, t) ≤ lc, 0 ≤ d(φ) ≤ 1, E(φ),

lc ≤ φ(X, t), d(φ) = 1, E(φ) = E2.

(51)

On the driving force Y . Inside the layer 0 ≤ φ(X, t)≤

lc,
d E

dd
= E ′(φ)/d ′(φ) then we have for the local force

Y defined by (46)
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

φ(X, t) ≤ 0, Y (φ,�) = Yo(�),

0 ≤ φ(X, t) ≤ lc, Y (φ,�) = −
�2

E2(φ)

E ′(φ)

d ′(φ)
,

lc ≤ φ(X, t), Y (φ,�) = Y1(�).

(52)

The function Y is a continuous function of X .

Global answer for a given φ(X, t). Due to equilib-

rium σ = �, and the constitutive behaviour defines the

strain

ǫ(X, t) =
du

dX
(X, t) =

�(t)

E(φ)
,

and by integration over the length of bar, the global

answer of the bar is obtained as

∆ =
u(L , t) − u(0, t)

L
=

1

L

L
∫

o

ǫ(X, t)dX.

As previously we use the notation x = Γ/L and xc =

lc/L .

State 1. Initially, the bar is elastic with modulus E1:

∆ = �/E1, Y (X) ≤ Yc.

State 2. A damaged zone exists with a thickness l

smaller than lc, then Γ = l < lc or x ≤

xc, φ(X, t) = Γ − X :

∆ = �

Γ
∫

o

dX

E(φ)L
+

�

E1
(1 − x), 〈Y 〉 ≤ Yc.

State 3. The layer is established, lc ≤ Γ ≤ L , xc =

lc/L , φ(X, t) = Γ − X :

∆ =
�

E2
(x − xc) +

Γ
∫

Γ −lc

�

E(φ)

dX

L

+
�

E1
(1 − x), 〈Y 〉 ≤ Yc.

State 4. The layer arrives at point Γ = L , x = 1.

d = 1 for X = L − l, l ≤ lc, φ(X, t) =

L + lc − l − X :

∆ =
�

E2
(1 − l/L) + �

L
∫

L−l

dX

E(φ)L
.

State 5. All the bar is damaged:

∆ =
�

E2
.

The constitutive law (state 1–5) can be written as

∆ = S(x) �, (53)

where 0 ≤ x ≤ 1. The modulus S(x) evolves with the

motion of the layer, then Ṡ =
dS

dx
ẋ = S′(x)ẋ .

3.4 The problem of evolution

During state 1–3, the mechanical state (l, Γ,∆,�)

must be compatible with the domain of reversibility

G(l, �) ≤ Ycd(l). For each value of l ≤ lc the critical

value �l is defined by

G(l, �l) = Ycd(l), or 〈Y 〉 = Yc. (54)

For state 4, these conditions must be reconsidered, Γ =

L and d = 1 for X = L − l; the modulus of elasticity

at X = L is E(lc − l), using (49) Eq. (54) becomes:

G(l, �)=
1

2
�2

(

1

E2
−

1

E(lc−l)

)

= Yc(1−d(lc−l)).

Now, we consider only the evolution during state 1–

3. It can be noticed that for � ≤ �l the layer cannot

evolve, because G(l, �) is an increasing function of

�. The condition F(l, �) = G(l, �) − Ycd(l) ≤ 0

implies that for F = 0 the evolution of F satisfies

Ḟ =

(

∂G

∂l
l̇ +

∂G

∂�l

�̇ − Yc

dd

dl
l̇

)

≤ 0. (55)

At any state for which F = G(l, �l)−Ycd(l) = 0, the

evolution of the bar is determined by

∆̇ = S′(x)ẋ�l + S(x)�̇, (56)

∂G

∂l
l̇ +

∂G

∂�l

�̇ − Yc

dd

dl
l̇ ≤ 0, (57)

l̇ = L ẋ ≥ 0. (58)

For increasing x , the global Young modulus (S−1) is

decreasing, then S′(x) ≥ 0.

Discussion for each possible state. The evolution

depends on the state.

State 1: The solution is purely elastic.

State 2: The thickness of the layer is l = x L and the

consistency condition gives the value of ẋ by

solving the inequalities
(

∂G

∂l
− Yc

dd

dl

)

Lẋ +
∂G

∂�

∆̇ − S′(x)�l ẋ

S

≤ 0, ẋ ≥ 0.
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A unique solution ẋ > 0 exists for ∆̇ > 0 and
∂G

∂�
≥ 0 if

(

∂G

∂l
− Gc

dd

dl

)

L −
S′(x)

S

∂G

∂�
≤ 0. (59)

State 3: The energy release rate G does not depend on

x and d(lc) = 1 then the unique solution is

given by �̇ = 0 and

∆̇ = S′(x) �o
c ẋ .

When we apply an increasing global strain ∆(t) the bar

follows successively the different states.

3.5 Matching conditions between the two models

for a damaged bar

After the step of initialization, l = lc. The thermody-

namical forces for the two descriptions, using the sharp

interface or the moving layer, are identical, because

E(0) = E1, E(lc) = E2

G(lc, �) = GΓ (�). (60)

The motion of the layer is given by the normality rule

G(l, �) − Ycd(l) ≤ 0, a ≥ 0, (61)

(G(l, �) − Ycd(l))a = 0. (62)

When the interface is established (l = lc), the equality

of the two dissipations, obtained for a sharp interface

(Gca) and for a moving layer (Ycd(l)a), provides the

value of Yc:

Dm = Gca = Ycd(lc)a ⇒ Yc = Gc . (63)

Using the normality rule (62), the velocity a is positive

if and only if G(l, �) = Ycd(l). This defines the crit-

ical value �l of � for which the layers evolves. For

l = 0 the critical value of � is �o and for lc the critical

value is �c.

As G is an increasing function of � at fixed l, a

unique solution with a layer is obtained if �l ≤ �o,

otherwise all points of the elastic domain (where d = 0)

are critical with respect to initiation.

At point φ(X, t)= lc, we obtain Y (lc, �)= Y1(�),

this ensures the continuity of Y along the bar (Figs. 4, 5).

4 Particular choice of constitutive laws

We study the reponse of the bar for two particular con-

stitutive laws defined by specific function d and E

(Figs. 4, 5).

Fig. 4 Damage d(φ), d1 = 0, solid line, d1 
= 0: dashed line

Fig. 5 Young modulus evolution E(φ), C1: solid line, C2:

dashed line

– Case 1 (C1). The functions E(φ),d(φ) are given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ(X, t) ≤ 0, E(φ) = E1, d(φ) = 0,

lc ≥ φ(X, t) ≥ 0,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

E(φ)
=

1 − φ/ lc

E1
+

φ/ lc

E2

d(φ) =
φ

lc

(

1 + d1 − d1

(

φ

lc

)β )

φ(X, t) ≥ lc, E(φ) = E2, d(φ) = 1.

The definition of finite Y and 〈Y 〉 implies restrictions

on parameters d1 and β: d1 ≥ 0 and β ≥ 0, the expo-

nent β is chosen such d ′ is finite ∀φ ∈ [0, lc].
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d ′(φ) =
1

lc

(

1 + d1 − d1(β + 1)

(

φ

lc

)β
)

< ∞. (64)

then d1 and β satisfy: d1 ≥ 0 and 0 < β <
1

d1
or

d1 = 0. The value Y is obtained in the layer as

Y (φ,�) = −
1

2

�2

E2(φ)

E ′(φ)

d ′(φ)
, (65)

then Yo(�) and Y1(�) are

Yo(�) =
�2

2(1 + d1)

E1 − E2

E1 E2
,

Y1(�) =
�2

2(1 − βd1)

E1 − E2

E1 E2
.

A positive velocity a is obtained if the consistency

condition is satisfied

G(l, �l) = Ycd(l). (66)

In this case, we get the relation

〈Y 〉 =
1

2
�2

(

1

E2
−

1

E1

)

= Yc

(

1 + d1

(

1 −

(

l

lc

)β
))

.

This implies that for d1 = 0, the layer initiates and

after moves at � = �c

�c =

√

2Yc E1 E2

E1 − E2
. (67)

For d1 > 0

�l = �c

√

√

√

√

(

1 + d1

(

1 −

(

l

lc

)β
))

. (68)

Initiation. The thermodynamical force Y for d = 0

is

Y (0, �) = Yo(�). (69)

At initiation the critical value �o satisfies Yo(�o) = Yc.

As E ′(0) =
1

lc

(

1

E2
−

1

E1

)

and d ′(0) = (1 + d1)/ lc,

we get

�o = �c

√

1 + d1 ≥ �c. (70)

State 2. The local value of Y in the layer is

Y (φ,�l) =
1

2

�2
l

E2(φ)

E ′(φ)

d ′(φ)
, (71)

that is

Fig. 6 Case C1, Global response, E2/E1 = .2, d1 = .45, β =

2, lc = 5, L = 10, solid line, L = 50, dashed line, L = 250,

dotted line

Y (φ,�l) =
1

2

(

1

E2
−

1

E1

)

�2
l

1

d ′(φ)
, (72)

after reduction, for 0 < X < l, φ(X, t) = l − X :

Y (φ,�l) = Yc

1 + d1 − d1

(

l

lc

)β

1 + d1 − d1(β + 1)

(

φ

lc

)β
, (73)

then along the bar Y is a decreasing function of X . It

can be noticed that Y is continuous in X = l. Then

in Ω1 the initiation of new defect is not possible. The

local value Y (φ,�)/Yc is plotted in Fig. 7 for differ-

ent value of l/ lc. This shows the evolution of the local

force Y during the state 2.

On Fig. 6, the global response of the bar is plotted

for β = 2, d1 = .45, lc = 5 and different value of ratio

lc/L , in space (∆/∆c, �/�c), where ∆c = E1�c. The

strain - stress curve is determined for given l:

�l = �c

√

1 + d1 − d1

(

l

lc

)β

, (74)

∆ = �l

(

1

E1
+

3

2

(

1

E2
−

1

E1

) (

l

lc

)

lc

L

)

. (75)

For this case, it is easy to show that when lc/L is small,

snap-back occurs and the condition of uniqueness (59)

is not satisfied. The evolution of the local force Y during

stet 2 is plotted in Fig. 7.
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Fig. 7 Evolution of Y (X, �l )/Yc in the layer in case C1 for

l/ lc = .3, solid line; .6, dashed line; .9, dotted line

State 3. � = �c, the local force Y (φ,�c) is given

by
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ(X, t) ≤ 0, Y (φ,�c) = Yo(�c) ≤ Yo(�o),

0 ≤ φ(X, t) ≤ lc, Y (φ,�c)

=
Yc

1 + d1 − d1(β + 1)

(

φ

lc

)β
,

lc ≤ φ(X, t), Y (φ,�c) = Y1(�c).

– Case 2 (C2). For 0 ≤ φ(X, t) ≤ lc, consider now

the expressions:

E(φ) = (1 − φ/ lc)E1 + φ/ lc E2, (76)

d(φ) = φ/ lc. (77)

As previously, Y (φ,�) is non uniform and is a decreas-

ing function of X , for φ(X, t) = l(t)− X , with X ≤ l:

Y (φ,�) =
�2

2

E1 − E2
((

1 −
φ

lc

)

E1 +
φ

lc
E2

)2
, (78)

and for d = 0 and d = 1 we have:

Yo(�) =
1

2

�2

E2
1

(E1 − E2),

Y1(�) =
1

2

�2

E2
2

(E1 − E2).

The consistency condition gives the critical loading

�l

�2
l =

2Yc E1

E1 − E2

( l

lc
E2 +

(

1 −
l

lc

)

E1

)

, (79)

Fig. 8 Evolution of Y (X, �l )/Yc in the layer Case C2, E2/E1 =

.2, l/ lc = .3, solid line; .6, dashed line; .9, dotted line

then

�2
0 =

2Yc E2
1

E1 − E2
> �2

lc
=

2Yc E1 E2

E1 − E2
= �2

c . (80)

The value �o of initiation of the layer is greater than

the value �c. When � = �l

Y (φ,�l) = Yc E1

(

1 −
l

lc

)

E1 +
l

lc
E2

((

1 −
φ

lc

)

E1 +
φ

lc
E2

)2
, (81)

then

Y (l, �l) ≥ Yc, Y (0, �l) = Yc. (82)

Figure 8 shows the local force Y (X, �l) during the

state 2 for different value of l/ lc along the layer. The

strain–stress curve is easy to obtained:

�l = �c

√

l

lc
+

(

1 −
l

lc

)

E1

E2
,

∆ = −
lc�l

L(E1 − E2)

(

ln
l

lc
+

(

1 −
l

lc

)

E1

E2

)

+
�l

E1

(

1 −
l

L

)

.

In this case, there is a snap-back during the growth of

the layer. Typical global responses of the bar are plotted

on Fig. 9 for different values of the ratio lc/L .
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Fig. 9 Case C2. Global response. E2/E1 = .2, lc = 5, L = 10,

solid line, 50, dashed line, 250, dotted line

State 3. Now � = �c and Y is defined along the bar

as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φ(X, t) ≤ 0, Y (φ,�c) = Yo(�c) ≤ Yo(�o),

0 ≤ φ(X, t) ≤ lc, Y (φ,�c)

=
Yc E1 E2

((

1 −
φ

lc

)

E1 +
φ

lc
E2

)2
,

lc ≤ φ(X, t), Y (φ,�c) = Y1(�c),

where Yo(�c) = Yc E2/E1 and Y1(�c) = Yc E1/E2.

These two examples show the role of the constitu-

tive law on the phase of initiation of defect. The strain–

stress curve for the bar depends on the ratio E2/E1

and lc/L . The solution is not necessary unique, taking

account of the remark on the consistency solution.

5 Conclusion

We have studied a new approach on damage evolution

based on the notion of level set and moving layer. The

initiation of damage and its evolution are presented in

the same framework.

Comparisons with the evolution of a sharp inter-

face are made. The critical loading value at initiation is

greater than the critical value of loading for the prop-

agation of the moving layer. When the limit thickness

lc is reached, the critical value of the loading to obtain

propagation is the same for the sharp interface and the

moving layer.

Generally the dissipation and the thermodynamical

forces for motion of the layer depend on the local shape

of the layer, in particular on the curvature of the mov-

ing surface d = 0. It is kwown that the presence of

curvature is a factor of stabilization of the propagation

of an interface (Son et al. 1989). This will be studied

in a forthcoming paper.

References

Bourdin B, Francfort G, Marigo J (2000) Numerical experiments

in revisited brittle fracture. J Mech Phys Solids 48(4):797–

826

Karma A, Kessler D, Levine H (2001) Phase field model of mode

III dynamic fracture. Phys Rev Lett 87(4):045501

Miehe C, Welschinger F, Hofhacker (2010) Thermodynami-

cally consistent phase field models of fracture: variational

principles and multifields FE implementations. Int J Numer

Methods Eng 83(10):1273–1311

Moës N, Stolz C, Bernard P, Chevaugeon N (2011) A level

set based model for damage growth: the thick level set

approach. Int J Numer Methods Eng 86(3):358–380

Peerlings R, de Borst R, Brekelmans W, De Vree J (1996)

Gradient enhanced damage for quasi-brittle materials. Int J

Numer Methods Eng 39:3391–3403

Pijaudier Cabot G, Bazant Z (1987) Non local damage theory.

J Eng Mech 113:1512–1533

Pradeilles-Duval RM, Stolz C (1991) On the evolution of sol-

ids in the presence of irreversible phase transformation.

Comptes Rendus Académie des Sciences de Paris, Série

II 313:297–302

Pradeilles-Duval RM, Stolz C (1995) Mechanical transforma-

tion and discontinuities along a moving surface. J Mech

Phys Solids 43:91–121

Son Q, Pradeilles R, Stolz C (1989) On a regularized propaga-

tion law in fracture and brittle damage. Comptes Rendus

Académie des Sciences de Paris, Série II 309:1515–1520

Stolz C (2007) Bifurcation of equilibrium solutions and defects

nucleation. Int J Frac 147:103–107

Stolz C (2010) Thermodynamical description of running discon-

tinuities: application to friction and wear. Entropy 12:1418–

1439

12


	A new model of damage: a moving thick layer approach
	Abstract
	1 Introduction
	2 A level set based damage model
	2.1 A simple local damage model
	2.2 A new modelization
	2.3 The problem of equilibrium
	2.4 General motion of a layer 
	2.5 Dissipation of the system and evolution law

	3 Comparison of sharp and layer model
	3.1 A model with sharp interface
	3.2 A model with a moving layer
	3.3 The response of the bar
	3.4 The problem of evolution
	3.5 Matching conditions between the two models  for a damaged bar

	4 Particular choice of constitutive laws
	5 Conclusion
	References


