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A new fully coupled two-scales modelling for mechanical
problems involving microstructure: The 95/5 technique

D. Missoum-Benziane, D. Ryckelynck, F. Chinesta

LMSP, UMR 8106, CNRS-ENSAM-ESEM, 151 boulevard de l’Hôpital, F-75013 Paris
In this work, we propose a new fully coupled two-scales modelling for mechanical problems involving microstructure which makes use
of a meshless constrained natural element approximation for accounting the large and very localized variations in the nodal density. This
approach is an appealing choice for treating problems involving a microstructure (requiring fine local descriptions) whose evolution can
be accurately described in the macroscopic scale using coarse approximations. This approach leads to a model where more than 95% of
the nodes are in less than 5% of the considered domain volume.

The technique proposed in this paper allows considering simultaneously both scales, the one related to the microstructure description
and the one related to its evolution (the macroscopic one). Moreover, in contrast to the vast majority of homogenization techniques, the
presented approach allows an accurate description of the boundary conditions, because the microscopic domains can be located on the
domain boundary.

Keywords: Multi-scale problems; Computational homogenization; Model reduction; Constrained natural element method; Numerical modelling
1. Introduction

Nowadays, experimental methods allow to describe
many thermo-mechanical transformations at the micro-
scopic scale. The main challenge is how to transfer these
microscopic descriptions to the macroscopic scales related
to structures or processes. Thus, for example, in the frame-
work of the cutting process simulation, we are specially
interested on the tool wear prediction. To perform this
kind of prediction we need macroscopic models involving
microscopic description of the thermo-mechanical trans-
formation near the contact area between the tool and the
work piece. Thus, micro–macro models allowing an accu-
rate description of microscopic boundary conditions for
both the tool and the work-piece are required.
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Classical computational homogenization techniques fail
in the description of the microscopic boundary conditions.
To circumvent this difficulty, a full microscopic modelling
of the whole mechanical system can eventually be consid-
ered, making use of parallel computing as well as domain
decomposition [9,11,7]. One possibility for avoiding a full
microscopic modelling lies in the use of the Arlequin
approach [2]. This method consists of superposing micro-
scopic and macroscopic descriptions in different regions
of the mechanical system, that can include the domain
boundary. The compatibility between the microscopic
and the macroscopic displacement fields is imposed in a
weak form. Other possibility lies in the use of the finite ele-
ment superposition method (S-FEM) [17] which consider a
displacement superposition inside each representative vol-
ume element and enforces the displacement continuity on
the microscopic domain boundary.

In this work, we propose to restrict the fine microscopic
descriptions to some regions in the system, whose size is
very reduced in comparison to the whole domain, but it



Fig. 1. Nodal distribution in the microscopic patterns as well as in the complementary domain.
is large enough to represent the local microstructure. In
contrast to the vast majority of multilevel approaches,
the one proposed in this work uses a single description of
the displacement field. The cloud of nodes has higher den-
sity on the microscopic patterns Xi, which are surrounded
by a complementary domain N with a low density of nodes
ðð[XiÞ [ N ¼ XÞ. This situation is depicted in Fig. 1.

In these kind of models about 95% of the nodes are
located in about the 5% of the domain volume, which jus-
tifies the 95/5 appellation. The very high and localized gra-
dient of the nodal density in the microscopic domain
boundaries neighborhood is accurately accounted thanks
to the meshless character of the natural element approxi-
mation considered for the interpolation of the different
fields [16]. Microscopic domains are coupled to the comple-
mentary region through their boundaries. In order to
insure the appropriate transmission between both kind of
domains we need to define an interpolation inside each
microscopic domain that is coupled to the complementary
region through the nodes located on its boundary. In the
same way the interpolation in the complementary domain
is coupled with the microscopic patterns only through the
nodes located on their boundaries. Thus, one needs define
the interpolation in the non-convex domain resulting of
removing the microscopic zones to the whole domain
which must be compatible with the approximation defined
inside each microscopic domain, as required in our
approach. In the context of the natural element method
two possibilities exist for accounting non-convex domains,
the first one the so-called alpha-NEM proposed by Cueto
et al. in [5] and the second one, the C-NEM proposed
and used in [20–22]. In this work the last approach is con-
sidered because its boundary description simplicity. As
described later, the natural element interpolation is based
on the use of Voronoi cells instead of Delaunay triangles
(used in the finite element framework) for defining the
2

fields approximation. It has been proved in some of our
former works [12] that the quality of the Delaunay triangu-
lation (dual of the Voronoi diagram) does not affect the
quality of the computed solution in the NEM framework,
even when one proceeds in very distorted meshes.

The main contribution of the present work is the exten-
sion of the elastic constitutive law computed in the micro-
scopic regions to the complementary domain. For this
purpose the homogenized behavior computed at each
microscopic region spreads to its immediate neighborhood,
and it is extended to the complementary domain by using a
natural element interpolation. The complementary medium
has a particular role in the multi-scale model, because it
insures the connection between all the microscopic pat-
terns. Moreover, as proved later, we can proceed by intro-
ducing a domain decomposition approach, where only a
reduced number of modes defined in each microscopic
region is considered.

In the next sections, we first provide the details about
the interpolation of the behavior law computed in the
microscopic patterns towards the macroscopic scale. Then,
we validate the use of C-NEM (constrained natural ele-
ment method) for highly heterogeneous nodal densities.
The main ideas concerning the model reduction and the
domain decomposition will be then addressed. Finally,
some numerical examples will be considered for validating
the proposed approach.

2. Extending microscopic information towards the

macroscopic scale

The technique proposed in this work been very recent,
only problems involving linear elasticity are here consid-
ered. Let’s X be the domain of interest. A microscopic
model is built on different zones ðXiÞi¼1...m. Each Xi is a
microscopic pattern. These patterns are either surrounded



Fig. 2. Microscopic pattern and complementary domain.
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Fig. 3. Homogenous deformation condition: (left) h�xxi ¼ 1; (center)
h�yyi ¼ 1; (right) h�xyi ¼ 1.
by a complementary medium N (see Fig. 2) or located on
the domain boundary.

The constitutive law is assumed to be perfectly defined
at the microscopic scale inside each one of the microscopic
patterns. In the complementary domain we assume that the
spatial variations of the averaged (or macroscopic) stress
and the strain fields are smooth enough, as well as the evo-
lution of the homogenized tensor (i.e. the microstructure is
uniformly distributed in the domain or it evolves continu-
ous and smoothly, and the number and location of the
microscopic patterns is able to represent accurately the
evolution of the homogenized behavior). In the case of
arbitrary microstructure heterogeneities randomly distrib-
uted this technique cannot be applied, or it could be
applied in each region where the homogenized behavior
evolves smoothly. Since the technique that we propose is
not in fact a multi-level method we cannot differentiate
the displacement, stress and strain fields on the microscopic
pattern and on the complementary domain. Thus, we only
differentiate the constitutive law in the microscopic scale
(where it is perfectly defined) and the macroscopic one
(obtained by interpolating the ones homogenized in the
microscopic domains).

Let’s r and � be the vector representation of the stress
and strain, respectively, that is:

� ¼
�11

�22

�12

0@ 1A ¼
ou1

ox
ou2

oy
1

2

ou1

oy
þ ou2

ox

� �

0BBBBBB@

1CCCCCCA ð1Þ

and

r ¼
r11

r22

r12

0B@
1CA ð2Þ

At each point P 2 Xi the elastic behavior is written as

rjP ¼ CðP Þ�jP 8P 2 Xi ð3Þ

where C is the local microscopic elasticity tensor (a 3 · 3
matrix in the 2D case). This tensor is perfectly defined in
X, despite the fact that we only consider its expression in-
side each microscopic domain.

Now, we consider the microscopic domain Xi, whose
boundary is denoted by oXi, that is subjected to the three
boundary displacements depicted in Fig. 3. It is easy to
prove that when we apply the displacement field
UT

I ðx 2 oXiÞ ¼ ðx; 0Þ on its boundary, the strain average
3

in that microscopic domain results h�IiT ¼ ð1; 0; 0Þ. In the
case of prescribing UT

IIðx 2 oXiÞ ¼ ð0; yÞ it results
h�IIiT ¼ ð0; 1; 0Þ, and finally with UT

IIIðx 2 oXiÞ ¼ ðy; xÞ
the strain average is given by h�IIIiT ¼ ð0; 0; 1Þ. The classi-
cal homogenization techniques assume that hri ¼ bCih�i. It
can be noticed that the average stresses hrIi, hrIIi and hrIIIi
related to the solution of the elastic problems defined by
the three boundary conditions UT

I , UT
II and UT

III, respec-
tively, define the columns of matrix bCi.

Let’s hrii and h�ii be the mean values of the stress and
the strain, respectively, computed in Xi related to a real
mechanical problem:

hrii ¼
1

jXij

Z
Xi

rjP dP ð4Þ

h�ii ¼
1

jXij

Z
Xi

�jP dP ð5Þ

where jXij is the area (volume in 3D) of Xi.
Obviously, in general heterogeneous media, where

sometimes is not possible to define a representative volume
element, and for general mechanical loads leading to aver-
aged stresses and strains different to the ones that served to
define bCi, the following inequality holds:

hrii � bC ih�ii 6¼ 0 ð6Þ

The microscopic constitutive law inside the complementary
domain is not considered because the nodal distribution in
this region is too coarse for representing accurately the
existing microstructure. In the complementary domain a
homogenized constitutive law is derived, as we describe
in the next paragraphs, in order to assure a mechanical
well-posed problem in the whole domain. For any point
M inside N, but close enough to Xi (Fig. 4), the estimated
macroscopic law at that point involves the macroscopic
stress and strain tensors rjM and �jM , respectively. In this
case, the previous inequality also holds:



Fig. 4. Domain definition.
rjM � bC i�jM 6¼ 0 ð7Þ

At convergence the following equalities are expected:
rjM � hrii and �jM � h�ii, and Eqs. (6) and (7) being
approximately equivalent, we can write:

rjM � hrii þ bCið�jM � h�iiÞ
8 M 2 N in the neighborhood of Xi ð8Þ

This constitutive law is only valid in the immediate vicinity
of the microscopic patterns. Anywhere in the complemen-
tary domain a homogenized behavior is defined as we de-
scribe later.

This constitutive law takes into account the fact that in
general cases the computed bCi does not correspond to the
exact homogenized tensor for the real loading conditions,
mainly when the microscopic domain approaches the
domain boundary. On the contrary, if bCi represents accu-
rately the homogenized behavior, then the non-local con-
tributions vanish, and then the usual homogenized law is
derived:

hrii ¼ bCih�ii ) rjM ¼ bCi�jM ð9Þ

This result deserves some additional comments. Stress at
point M, located in the immediate vicinity of Xi, could be
computed using the homogenized elastic tensor bC i, i.e.
rjM � bCi�jM . However, as bC i is only exact for the 3 loadings
that served to compute it (as previously described) we
could improve the stress prediction by adding the quantity
hrii � bC ih�ii that constitutes the error that we are introduc-

ing when bC i is considered in the actual loading conditions
that generate the averages hrii and h�ii. Thus, Eq. (8) is
naturally derived, that represents a correction incorporated
to the local use of the homogenized elastic tensor.

The simplest manner for defining the behavior at any
point in the complementary domain N consists of using
C-NEM interpolation constructed on the basis of the
Voronoi diagram related to the cloud of points consisting
of the center of gravity of the microscopic domains (the
details concerning that interpolation will be addressed in
the next section). Let’s e/i be the shape function related
to the center of gravity of Xi, which is perfectly defined
in the whole domain X. Thus, the macroscopic law results:

rjM ¼ erjM þ eCjMð�jM � e�jMÞ 8M 2 N ð10Þ

with:
4

er jM ¼Xi¼V

i¼1

~/iðMÞhrii ð11Þ

e� jM ¼Xi¼V

i¼1

~/iðMÞh�ii ð12Þ

eC jM ¼Xi¼V

i¼1

~/iðMÞbC i ð13Þ

where V denotes the number of natural neighbor micro-
scopic domains visible from point M (more details about
the C-NEM approximation will be given in the next section).

Due to the interpolation property of the natural element
approximation, when point M approaches the microscopic
domain Xi, erjM , e�jM and eCjM approach hrii, h�ii and bCi,
respectively, and consequently Eq. (10) reduces to Eq. (8).

The mechanical problem can be then written as: Find a
regular enough displacement field in X verifying the essen-
tial boundary conditions

U ¼ Uc on oUX with oX ¼ oUX [ oF X ð14Þ
as well as the equilibrium equationXi¼m

i¼1

Z
Xi

Tr½�jP ðU�ÞCðP Þ�jP ðUÞ�dP

þ
Z

N
Tr½�jMðU�ÞeC jM�jMðUÞ�dM

þ
Xi¼m

i¼1

1

jXij

Z
N

Z
Xi

e/ iðMÞTr½�jMðU�ÞðCðP Þ � eC jMÞ
� �jP ðUÞ�dP dM

¼
Z

X
U�f dM þ

Z
oF X

U�Fc dC

8U� such that U� ¼ 0 on oUX

ð15Þ

where the second and third term of the left hand member
result from the virtual power principle in the complemen-
tary domain N making use of the behavior law expressed
by Eq. (10).
3. Dealing with highly heterogenous nodal distributions

As previously argued, the nodal density evolves sud-
denly when ones moves from a microscopic domain to
the complementary one. The nodal density inside the
microscopic domain must be enough to represent accu-
rately the microstructure, whereas in the complementary
domain it must be enough to represent the structure
response. Thus, usually, the nodal distribution becomes
highly heterogenous leading to very distorted meshes if
one proceeds in the finite element framework. For this rea-
son, the use of a meshless discretization technique seems
appropriate, because it is much less sensible to the afore-
mentioned mesh distortions.

In the next paragraphs, we briefly touch upon the basis
of the natural element method that will be used for discreti-
zing the variational formulation given by Eq. (15).



The natural element method is an appealing choice
among the different meshless methods, because essential
boundary conditions can be imposed directly, without det-
riment to the other properties (linear consistency, smooth-
ness,. . .). It was originally proposed by Traversoni [18],
Sambridge et al. [14] and was widely investigated in elasto-
static problems by Sukumar [16]. Moreover, it was success-
fully applied in fluid dynamic simulations involving
polymer injection and metal forming simulations using
updated Lagrangian formulations [12,13,1], in problems
involving cracks [21] and in phase change problems involv-
ing moving discontinuities [22].

3.1. Constrained natural element interpolation

We briefly touch upon the foundation of Sibson’s natu-
ral neighbor coordinates (shape functions) that are used
in the natural element method. For a more in-depth dis-
cussion on the Sibson interpolant and its application for
solving second-order partial differential equations, the
interested reader can refer to Braun and Sambridge [14]
and Sukumar et al. [16]. The NEM interpolant is con-
structed on the underlying Voronoi diagram, the Delaunay
tessellation being the topological dual of the Voronoi
diagram.

For the sake of simplicity we only consider the 2D case,
the 3D case being a direct extension.

Let S ¼ fn1; n2; . . . ; nNg be a set of nodes in R2. The
Voronoi diagram is the subdivision of R2 into regions Ti

(Voronoi cells) defined by:

T i ¼ fx 2 R2 : dðx; xiÞ < dðx; xjÞ; 8j 6¼ ig; 8i ð16Þ

where xi are the coordinates of node ni and d(., .) denotes
the Euclidean distance.

The Sibson coordinates of x with respect to a natural
neighbor ni (see Fig. 5) is defined as the ratio of the overlap
area (volume in 3D) of their Voronoi cells to the total area
(volume in 3D) of the Voronoi cell associated with the
point x:

/iðxÞ ¼
AreaðafgheÞ
AreaðabcdeÞ ð17Þ

If the point x coincides with the node ni, i.e. x ¼ xi then
/iðxiÞ ¼ 1, and all the other shape functions vanish, i.e.
/iðxjÞ ¼ dij (dij being the Kronecker’s delta). The proper-
x
e

a

fg
h

b

c

d

ni

xn1 n2

n3

Γ

Fig. 5. Construction of the Sibson shape functions.
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ties of positivity, interpolation and partition of unity are
then verified [16]:

0 6 /iðxÞ 6 1

/iðxjÞ ¼ dijXn

i¼1

/iðxÞ ¼ 1

8>>><>>>: ð18Þ

where n is the number of neighbor nodes of point x.
The natural neighbor interpolation satisfies the local

coordinate property [15], namely:

x ¼
Xn

i¼1

/iðxÞxi ð19Þ

which combined with Eqs. (18), implies that the natural
neighbor interpolant spans the space of linear polynomials
(linear completeness).

Natural neighbor shape functions are C1 at any point
except at the nodes, where they are only C0, and on the
boundaries of the Delaunay circles (spheres in 3D) where
they are C1, because of the discontinuity in the neighbor
nodes across these boundaries.

Another important property of this interpolation is its
ability to reproduce linear functions on the boundary of
convex domains. The proof can be found in Sukumar
et al. [16], that we illustrate in Fig. 5b: due to the fact that
the Voronoi cells areas associated to points on the bound-
ary become infinite, the contribution of internal points van-
ishes in the limit when the point approaches the convex
boundary, and the shape functions associated with nodes
n1 and n2 become linear on the segment (n1 � n2). This is
not the case when non convex boundaries are considered.
This drawback will be considered later.

Consider an interpolation scheme for a vector-valued
function UðxÞ : X � R2 ! R2, in the form:

UhðxÞ ¼
Xn

i¼1

/iðxÞU i ð20Þ

where Ui are the vectors defining the nodal degrees of free-
dom at the n natural neighbors of point x, and /iðxÞ are the
Sibson coordinates defined in Eq. (17) associated with each
node ni. It can be noticed that Eq. (20) defines a local inter-
polation scheme which will be used to define both the trial
and the test functions considered in the discretization of
different variational formulations.

A recent development in the NEM, the constrained nat-
ural element method (C-NEM), was proposed in [21,22] in
order to circumvent the problems induced by non convex
domains. In this approach, a visibility criterion is intro-
duced to restrict the natural neighbors (influent nodes).
For this purpose the constrained Voronoi diagram is con-
structed, from which the shape functions can be easily com-
puted. In this manner, linear interpolation is recovered
along the boundary of non-convex domains, making possi-
ble the introduction of essential boundary conditions as
well as the treatment of fixed or moving discontinuities.



In the C-NEM framework, the interpolation can be
expressed by:

UhðxÞ ¼
XV

i¼1

/C
i ðxÞU i ð21Þ

where V is the number of natural neighbors visible from
point x and /C

i is the constrained natural neighbor shape
function, which is actually the Sibson interpolant com-
puted using the constrained Voronoi diagram [21].
3.2. Elastostatic formulation

In this section, we summarizes the 2D small displace-
ment elastostatic problem which will be considered later
in the numerical examples. The equilibrium equation
results in:

r � rþ b ¼ 0 in X ð22Þ

where X 2 R2 is the material domain, $ is the divergence
operator, r is the Cauchy stress tensor and b is a body force
term.

The constitutive relation (using a vector representation
of both the stress and the strain fields) is given by:

r ¼ C� ð23Þ

where r and � are the vector form of the stress and linear-
ized strain tensor (symmetric part of the gradient of dis-
placements tensor), respectively, and C is the elastic
tensor matrix form.

The essential and natural boundary conditions are given
by:

U ¼ Uc on oUX

rn ¼ Fc on oF X
ð24Þ

where oX ¼ oUX [ oF X is the boundary of X, n is the unit
outward vector defined on oX, and Uc and Fc are the pre-
scribed displacements and tractions, respectively.

The variational formulation associated with the elasto-
static problem results:

Find U 2 H 1ðXÞ kinematically admissible ðU ¼ Uc on
oUXÞ such thatZ

X
r � �� dX ¼

Z
X

f �U� dXþ
Z

oF X
Fc �U� dC; 8U� 2 H 1

0ðXÞ

ð25Þ

where H 1ðXÞ and H 1
0ðXÞ are the usual Sobolev functional

spaces.
On substituting the trial and test functions (both

approximated in the C-NEM framework) in the above
equation and using the arbitrariness of the field U*, the fol-
lowing linear system of equations is obtained after numer-
ical integration (whose details will be presented in Section
3.3):

Kd ¼ fext ð26Þ
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where d is the vector containing the nodal displacements,
the matrix K and the vector fext being given by:

K ¼
Z

X
BtCBdX ð27Þ

fext ¼
Z

oF X
Fc dCþ

Z
X

N tf dX ð28Þ

where N and B are the matrix containing the shape func-
tions and their derivatives, respectively.

3.3. Stabilized conforming nodal integration

Recently, new numerical integration procedures have
been proposed in the framework of meshless simulations.
Domain integration using Gauss quadrature introduces
significant numerical errors due to the following state-
ments: (i) the integration cells do not match shape function
supports; (ii) the non-polynomial character of the meshless
shape functions [6]. On the other hand, direct nodal inte-
gration, using the nodes as integration points, leads to
numerical instabilities [4].

In this work, we use the integration procedure proposed
by Chen et al. [3]: the stabilized conforming nodal integra-
tion (SCNI), which was applied to the NEM by Gonzalez
et al. [8] and Yoo et al. [19]. In this approach, a strain
smoothing is performed to stabilize the nodal integration.
The SCNI is based on the assumed strain method, in which
a modified gradient is introduced at the integration point
(node) [3]:

~rUhðxiÞ ¼
1

jxij

Z
xi

rUhðxÞdx ð29Þ

where xi are the coordinates of node ni.
Thus, the modified strain vector is given by:

~�hðxiÞ ¼
1

jxij

Z
xi

�hðxÞdx¼ 1

jxij

Z
xi

ouh
1ðxÞ
ox

ouh
2ðxÞ
oy

ouh
1ðxÞ
oy

þ ouh
2ðxÞ
ox

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
dX

ð30Þ
where u1 and u2 are the components of vector U.

Now, by applying the divergence theorem, it results:

~�hðxiÞ ¼
1

jxij

Z
oxi

uh
1ðxÞm1

uh
2ðxÞm2

uh
1ðxÞm2 þ uh

2ðxÞm1

8><>:
9>=>;dC ð31Þ

where xi is the Voronoi cell related to the node ni, being
oxi its boundary and jxij its area. m1 and m2 are the compo-
nents of the unit outward vector defined on the cell bound-
ary at point x.

Introducing now the natural element approximation of
the displacement Eq. (21) we obtain:

~�hðxiÞ ¼ ~Bid ð32Þ
which can be expressed explicitly by:



~�hðxiÞ ¼

o~/1ðxiÞ
ox

0
o~/2ðxiÞ

ox
0 � � � o~/N ðxiÞ

ox
0

0
o~/1ðxiÞ

oy
0

o~/2ðxiÞ
oy

� � � 0
o~/N ðxiÞ

oy

o~/1ðxiÞ
oy

o~/1ðxiÞ
ox

o~/2ðxiÞ
oy

o~/2ðxiÞ
ox

� � � o~/N ðxiÞ
oy

o~/N ðxiÞ
ox

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

u11

u12

u21

u22

..

.

uN1

uN2

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
¼ ~Bid

ð33Þ

where the components of ~Bi are defined by:

o~/jðxiÞ
ox

¼ 1

jxij

Z
oxi

/jðxÞm1ðxÞdC ð34Þ

o~/jðxiÞ
oy

¼ 1

jxij

Z
oxi

/jðxÞm2ðxÞdC ð35Þ

Obviously, most of the components in the matrix ~Bi are
zero due to the compact support of the shape functions.
Introducing the C-NEM approximation, the smoothed
strain and the nodal integration, the global stiffness matrix
is obtained by assembling the contribution of each node
ni:

K ¼
X

i

~Ki ¼
X

i

jxij~Bt
iC

~Bi ð36Þ

and then, the stress in each cell can be deduced from:

~rh
i ¼ C~Bid ð37Þ

which results also constant inside each Voronoi cell.
The use of the divergence theorem avoids the computa-

tion of the shape functions derivatives, requiring only the
evaluation of the shape functions on the boundary of the
Voronoi cells.
3.4. Evaluating the C-NEM ability to operate in highly

heterogeneous nodal distributions

To check the C-NEM ability to operate in highly heter-
ogeneous nodal distributions we start considering the
mechanical problem reported in [10] and illustrated in
Fig. 6(right) which consists of a homogeneous material
subjected to the loading conditions defined in Eq. (38):
Fig. 6. Different discretizations of the test problem (each microscopic domain
nodes).
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F xðx ¼ 0Þ ¼ 2y
L� 1

F yðx ¼ 0Þ ¼ y
Lð1� y=LÞ

F yðx ¼ LÞ ¼ y
Lð1� y=LÞ

8>>>>><>>>>>:
ð38Þ

For discretizing this problem three different nodal distri-
butions have been considered as depicted in Fig. 6 where
each microscopic domain is represented with a single point.

The exact solution of this problems consists of:

rex
11 ¼

2y
L
� 1

� �
x

L� 1

� �
rex

22 ¼ 0

rex
12 ¼

y
L

1� y
L

� �
8>>>><>>>>: ð39Þ

that allows the evaluation of the relative error in X:

g2 ¼

Z
X
ðr� rexÞC�1ðr� rexÞdMZ

X
rexC�1rex dM

ð40Þ

For this purpose, the three clouds of nodes are considered.
The second and the third one are deduced from the coarsest
one by adding new microscopic patterns on the middle of
the edge of each Delaunay triangle.

According to the numerical results reported in Fig. 7 the
rate of convergence for both discretization techniques
(C-NEM and FEM) is, as expected, of first order, being bet-
ter the accuracy of the C-NEM solution. The finite element
simulations have been performed using the Delaunay trian-
gulation that serves to compute the C-NEM approximation
(thus both techniques operate with the same cloud of nodes)
where the usual piecewise linear finite element interpolation
is defined.

It must be noticed that the exact solution cannot be
exactly reproduced using linear finite element interpolations,
or the C-NEM interpolation that only has linear consistency.
This fact justifies the inevitable amount of error associated to
the computed solution (which decreases with the mesh size)
despite the homogeneous behavior here considered.

To obtain more information about the error distribu-
tion, we can also plot a local error related to each element
(in the FEM context) or to each Voronoi cell (in the
C-NEM framework) according to:

ErrFEM
e ¼ rFEM

e � rex
e

� �
C�1

e rFEM
e � rex

e

� �
ð41Þ
is represented by a single point that in fact contains a certain number of



Fig. 7. CNEM and FEM discretization errors.
where rFEM
e is the computed solution using the finite ele-

ment method in the element e (as a linear interpolation
of the displacement field is considered, the resulting stress
and strain fields are constant inside the elements).

In the C-NEM context we have:

ErrC-NEM
c ¼ rC-NEM

c � rex
c

� �
C�1

c rC-NEM
c � rex

c

� �
ð42Þ

where rC-NEM
c is the computed solution using the con-

strained natural element method in the Voronoi cell c (as
we are using the stabilized conforming nodal integration
the resulting stress and strain fields are constant inside
the Voronoi cells).

The just defined local error is not affected by the vol-
ume of the element or the cell in order to be used at both
scales simultaneously. We can notice in Fig. 8 an uniform
Fig. 8. Error distribution related to
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C-NEM error distribution, in contrast to the error distribu-
tion associated with the finite element resolution.

4. Model reduction and domain decomposition

In order to consider high performance computing mak-
ing use of parallel platforms, we propose in this section an
efficient domain decomposition algorithm. For this pur-
pose we differentiate the degrees of freedom (displace-
ments) related to nodes inside the microscopic domains
and the ones related to the complementary domain (which
include the nodes located on the microscopic domains
boundaries).

As the resolution takes place simultaneously at both
scales we will propose in the next paragraphs a model
reduction operating in the microscopic domains that allows
a significant reduction in the number of degrees of freedom
involved in the global discretization. Moreover, we propose
a strategy that extract the significant functions that must be
introduced to update the microscopic approximation bases.

Let’s qM be the vector containing the degrees of freedom
related to the complementary domain (including those
related to the microscopic domains boundaries). Let’s qli

be the degrees of freedom related to the microscopic
domain Xi (excluding its boundary). The discrete linear
system can be expressed in the matrix form:

KMM KMl1 � � � KMli � � �
KT

Ml1 Kl1l1 � � � 0 � � �
..
. ..

. . .
. ..

. ..
.

KT
Mli 0 � � � Klili � � �
..
. ..

. ..
. ..

. . .
.

266666664

377777775

qM

ql1

..

.

qli

..

.

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼

F M

F l1

..

.

F li

..

.

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
ð43Þ
the C-NEM and FEM solutions.



We assume that this linear system is solved by using a par-
ticular iteration algorithm, and that at iteration n the
microscopic field in Xi is approximated using the approxi-
mation functions whose nodal expression constitute the
columns of matrix /ðnÞli , i.e. at iteration n one can express:

qðnÞli ¼ /ðnÞli aðnÞli ð44Þ

being aðnÞli the coefficients of the reduced basis approxima-
tion at that iteration.

Introducing the reduced form of the microscopic fields
into the linear system (43) it results:

K

qðnÞM

aðnÞl1

..

.

aðnÞli

..

.

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
¼

F M

/ðnÞTl1 F l1

..

.

/ðnÞTli F li

..

.

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð45Þ

where

K ¼

KMM KMl1/
ðnÞ
l1 � � � KMli/

ðnÞ
li � � �

/ðnÞTl1 KT
Ml1 /ðnÞTl1 Kl1l1/

ðnÞ
l1 � � � 0 � � �

..

. ..
. . .

. ..
. ..

.

/ðnÞTli KT
Mli 0 � � � /ðnÞTli Klili/

ðnÞ
li � � �

..

. ..
. ..

. ..
. . .

.

266666666664

377777777775
ð46Þ

that can be rewritten in the following compact form:

KMM KðnÞMR

KðnÞTMR KðnÞRR

" #
qðnÞM

aðnÞ

( )
¼

F M

F ðnÞR

� 	
ð47Þ

We note that KMM representing the macroscopic contribu-
tion to the stiffness matrix remains unchanged during the
iterative resolution. So, it seems pertinent to proceed com-
bining a block Gaussian elimination with a Cholesky fac-
torization of KMM (instead of computing directly K�1

MM ).
If we choose as principal unknowns the reduced state

variables aðnÞ the previous linear system reduces to:

KðnÞRR � KðnÞTMR K�1
MM KðnÞMR

� �
aðnÞ ¼ F ðnÞR � KðnÞTMR K�1

MM F M ð48Þ

Then, using aðnÞ we can compute the nodal displacements
qM from:

qM ¼ K�1
MM F M � KðnÞMRaðnÞ
� �

ð49Þ

To update the reduced approximation bases that are used
to approximate the solution in the microscopic domains

we compute dq
nþ1

2ð Þ
li that represents a correction in the no-

dal degrees of freedom related to the nodes in the micro-
scopic domains:
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Klili dq
nþ1

2ð Þ
li ¼ RðnÞli ð50Þ

with

RðnÞli ¼ F li � Klili /ðnÞli aðnÞli � KT
MliqM ð51Þ

The local correction dq
nþ1

2ð Þ
li and the first three Krylov’s

subspaces generated by RðnÞli : RðnÞli , KliliR
ðnÞ
li , K2

liliR
ðnÞ
li are used

for defining the updated reduced basis /ðnþ1Þ
li . The iteration

procedure continues until reaching convergence, i.e. a
residual norm kRðnÞli k; 8i small enough. This approach can
be easily parallelized.

The use of dq
nþ1

2ð Þ
li , RðnÞli , KliliR

ðnÞ
li , K2

liliR
ðnÞ
li as approxima-

tion functions is quite natural, but we have proved that the
introduction of the three microscopic displacement fields
computed in the homogenization procedure can accelerate
significantly the convergence. For proving it, we consider
the same problem, using seven functions (the correction
field, the three first Krylov’s subspace and the three dis-
placement fields coming from the homogenization proce-
dure) or only the four first functions. As noticed in Fig. 9
the rate of convergence related to the first strategy is two
times higher than the second one.

5. Numerical examples and discussion

First we validate the use of very heterogeneous nodal
distributions and densities. For this purpose we consider
again the problem with a known solution related to a
homogeneous material, described in Section 3 (Fig. 6).
The domain X is partitioned in some microscopic patterns
ðXiÞi¼1...m and the complementary domain N. Because we
are considering a homogeneous material we have for each
microscopic pattern Xi: bC ¼ C. So, the weak formulation
associated with Eq. (15) reduces naturally to:

U ¼ Uc on oUX with oX ¼ oUX [ oF X

andZ
X

Tr½�jMðU�ÞC�jMðUÞ�dM ¼
Z

X
U�fc dM þ

Z
oF X

U�Fc dC

8U� such that U� ¼ 0 on oUX

ð52Þ

The different cloud of nodes considered in the discretiza-
tion of the previous variational formulation are shown in
Fig. 10, where only the center of gravity of the microscopic
patterns are represented. Each microscopic pattern is de-
scribed by using 600 nodes. The finest model contains more
than 200,000 nodes.

Fig. 11 depicts the relative error on the whole domain X
which is compared with the one associated to the micro-
scopic domains Xi. The rate of convergence in the micro-
scopic domains is higher than the global one, and similar
accuracy is obtained around 4% of error.

This error is due to the field interpolation – that only has
linear consistency –, as in the example considered in



Fig. 10. Different microscopic domains distributions.

Fig. 9. Analysis of the reduced approximation basis.
Section 3.4, because in the homogeneous case Eq. (8)
reduces to Eq. (9) and in consequence the computed behav-
ior everywhere in the complementary domain according to
Fig. 11. Convergence analysis: relative error in the whole domain and in
the microscopic zones.
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Eq. (12) results the one given by Eq. (9) (the C-NEM inter-
polation having linear consistency it can reproduce exactly
the constant elasticity tensor everywhere in the complemen-
tary domain).

The second simulation concerns a heterogeneous med-
ium, depicted in Fig. 12, composed of a series of cylindrical
layers (with constant thickness) with different elastic prop-
erties. This example is chosen for validating the behavior
extension defined by Eqs. (8) and (10). The layers are num-
bered sequentially increasing with the layer radius and
denoted by Li. The odd layers have an isotropic elastic
behavior with a Young modulus E1 and a Poisson’s coeffi-
cient m1, being E2 and m2 the corresponding values in the
even layers. The exact solution can be easily obtained by
axial symmetry considerations:

Uex ¼ U rðrÞ er

with:

U rðrÞ ¼ Ai r þ Bi

r
r 2 Li

where er is the unit vector defining the radial direction, and
the constant Ai and Bi are computed for accounting the
transmission conditions on the layers interfaces.

The domain of interest (illustrated in Fig. 12) is simply
extracted from the just described problem by imposing
appropriate displacements on the domain boundary
(according to the exact solution).

Fig. 13 depicts the computed C11 component of the elas-
tic tensor. The computed equivalent Von-Mises stress is
illustrated in Fig. 14 where we can observe both the fine
and the coarse scale variation of the Von-Mises stress,



Fig. 12. Heterogenous problem involving two materials with different elastic properties.

Fig. 13. Component C11 of the elastic tensor distribution.

Fig. 14. Von-Mises equivalent stress.
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Fig. 15. Error distribution.
the relative error, computed from Eq. (40), being 5%. The
local error is depicted in Fig. 15 which proves an uniform
distribution. It must be highlighted that the computed
error in the microscopic domains located on the domain
boundary is similar to the one computed in the domains
located inside. We notice that the maximum error is con-
centrated in the microscopic domains boundary neighbor-
hood possibly due to the linearity of CNEM shape
functions on the interfaces, which are not rich enough to
describe the stress field.
6. Conclusion

In this paper, we have proposed a new fully coupled
two-scales modelling for mechanical problems involving
microstructure. We use a meshless constrained natural ele-
ment interpolation for taking into account the large and
very localized variations in the nodal density. This tech-
nique allows considering simultaneously both scales, the
one related to the microstructure description and the one
related to its evolution (the macroscopic one). For this pur-
pose the domain of interest is divided in some microscopic
zones representing the microstructure evolution in the
whole macroscopic domain, which do not cover the entire
domain, and a complementary domain. The constitutive
laws are defined only in the microscopic zones at the micro-
scopic scale. The homogenized laws accurately defined at
the microscopic level are then extended, using an appropri-
ate technique, to that complementary domain.

In contrast to the vast majority of homogenization tech-
niques, our approach allows an accurate description of the
boundary conditions, because the microscopic domains can
be located on the domain boundary. Moreover, to make
possible the use of parallel computing, an appropriate res-
olution scheme was developed. This scheme is based on a
domain decomposition algorithm coupled with a model
reduction that allows a significant reduction in the number
of degrees of freedom involved in the global discretization
and which proceeds by extracting the significant functions
12
that must be introduced to update the approximation bases
used in the microscopic domains.

Some numerical examples have been considered, allow-
ing the comparison between the computed and the exact
solutions. According to those results we can conclude:

• The ability of C-NEM to deal with highly heterogeneous
nodal distributions.

• The convergence of the proposed approach.
• The efficiency of the proposed technique for extending

the behavior computed in some microscopic regions to
the whole domain.

• The good quality of the results, in both scales.
• The good quality of the results in the neighborhood of

the domain boundaries, that allows taking into account
accurately the edge effects.

The technique proposed in this work been very recent,
only problems involving linear elasticity have been consid-
ered. The extension of that strategy to non-linear problems
requires its formulation in the context of standard lineari-
zation procedures. This extension constitutes a work in
progress.
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