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A new computational method for transient dynamics
including the low- and the medium-frequency ranges

Pierre Ladevezeand Mathilde Chevreulil

LMT Cachan (ENS Cachan, CNRS, University Paris 6),
61 avenue du President Wilson, 94235 Cachan CEDEX, France

This paper dealswith a new computationaimethodfor transientdynamic analysiswhich enablesone to cover

both the low- and medium-frequencyanges.This is a frequencyapproachin which the low-frequencypartis

obtainedthrougha classicakechniquewhile the medium-frequencyartis handlecthroughthe Variational Theory
of ComplexRays(VTCR)initially introducedor vibrations.Preliminary examplesareshown.
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1. INTRODUCTION

The design of industrial structures requires engineers to know their dynamic behavior. The response,
especially during the transient stage, cannot be completely described using the current tools based
on finite element techniques and explicit numerisethemes; indeed, the niem-frequency range is

often ignored unless the calculation is carried out with a vefined spatial mesh and, consequently,

a rdined time discretization [1, 2]. This would mean a prohibitive computation time. Accounting
for the medium-frequency content can be necgsbacause although the displacements over this
frequency range are small, the velocity (and, therefore, the kinetic energy) can lheargniTransient
dynamic analysis in this frequency range presantgmportant challenge. This work, which uses new
computational strategies in dynamics, provides an answer to this challenge for the transient part of the
solution. The problem is solved in the frequency domain. One needs to solve a forced vibration problem
over a frequency range which includes the low- and medium-frequency ranges. The low-frequency
range is solved conventionally wé the medium-frequency range is handled using the Variational
Theory of Complex Rays (VTCR). THenal solution in the space-time domain is given by the inverse

of the Fourier transform.
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The main problem resides in the resolution of the forced vibration problem over a wide frequency
range. Today, the low-frequency range no longer poses any mdjouttif, at least regarding modeling
and calculation, even for complex structures. As for high frequencies, computational tools quite
different from those used for low frequencies are available, in particular the SEA method in which
the spatial aspects disappear almost entirely [3].

By contrast, the modeling and calculation of med-frequency vibrations, on which this paper
focuses, continue to cause some problems. THecdify lies in the fact that the wavelengths of the
phenomena being studied are very small compared to the characteristic dimensions of the structure.
Consequently, if one were to extend the low-freguemethods disregamty the serious numerical
difficulties Which would occur, the correspondifigite element calculation would still require an
unreasonable number of degrees of freedom. This situation would be made even worse by the pollution
error due to the extended range of calculatedudencies which would affect the accuracy of timste
element solution [4, 5]. Different remedies for that problem have been tried, such as enhaiteed
elements [6, 7, 8], spdot reduced bases [9, 10, 11] or a combination of a wave-based method with

a Trefftz approach [12], but most of these techniques require fieeymeshes. Diifculties are also
experienced when one attempts, asin [13, 14, 15, 16], to extend the SEA method (which is appropriate
for high frequencies) because most of these methafisneeadditional information (e.g. coupling loss
factors) and spefic geometries.

The alternative approach we use here, called the “Variational Theory of Complex Raysfirstas
introduced in [17] for the calculatioof medium-frequency vibrations. It shares similar features with
[12]. This approach, whose main limitation is that the structure must lend itself to partgiamio
homogeneous substructures, isided as follows.

The first characteristic of this approach is the use of a new variational formulation of the problem
being considered (i.e. forced vibrations at a given frequency) which enables one topugei
independent approximains within each substructure. In other words, the transmission conditions on
the displacements as well as the stresses at teefages between substructures do not need to be
verifieda priori, but are built in the variational formulation.

The second characteristic of the VTCR is the adfuction within each substructure of two-scale
approximations with a strong mechanical meaning: the solution is assumed to be well-described as
the superposition of an fimite number of local vibration modes. These basic modes (which can be
interior modes, boundary modes or corner modesjy#re law of dynamics. All wave directions are

taken into account and the unknowns are discretizgalitudes with relatively large wavelengths.

Thus, the present approach to the calculation of the transient dynamic response consists in dividing
the frequency range being studied into two parts: the low-frequency range, over which the frequency
response function is obtained with a standénite element technique, and the medium-frequency
range, in which the suitable method to calculate the frequency response function is the VTCR [18]. To
improve the diciency of the calculation, it is advantageoto use the VTCR over a relatively wide
frequency range in order to decrease the cpu time: we will describe a corresponding enhancement of
the method. This paper recalls only the basic aspefcthe Variational Theory of Complex Rays.

The central objective of the paper is to present our new frequency-domain analysis procedure for
transient dynamics and to show its effectiveness: indeed, the proposed method enables one to take into
account the medium-frequency content of the transient response of a structure subjected to a shock.
These medium frequencies make up a digant portion of the kinetic energy of the system. The paper
also aims to show that the large-frequency-rangetsmi provided by the VTCR is necessary in order
to carry out discrete Fourier transforms easily and with reasonable numerical effort. An example is



detailed at the end of the paper.

2. THE DYNAMIC REFERENCE PROBLEM

Let us consider, under the assumptions of smaliyskations, the dynamic equilibrium of a structure
defined in the space domain, and letoQ be the boundary of2. At each timer of the interval[0, T
being studied, this structure is subjected to the following actions:

- adisplacemerfield U, on a portiond12 of boundary,
- aforce density,; on the portior,Q of 0Q which is the complementary part 8fQ,
- aforce density’, on the whole domaig.

For everyM belonging taQ2, the displacements are subjected to initial conditiornis-a0:

Uy—o="Uyg (1)
dU :

= —U 2
d¢ =0 =0 @)

whereU, andU,, are given.
Let us also dfetne for the structur€ the constitutive relation:

o = Ke(U) +nKE(U)

whereK is the Hooke’s operator. In the present work, damping is introduced classically in terms of
the frequency witlm > 0, so the reference problem has a unique solution. More complex constitutive
relations could also be taken into account.

The reference frame is assumed to be Galiledre fleference problem of the evolution of the
structure durind0, 7] can be formulated as follows: Fid(M,¢) € %! ando (M, ¢) € S°7], with
M € Q andr € [0, T], which verify:

- the compatibility equations and the initial conditions:

Upa=Uy
dU :
U, o=U — =U 3
Y=o =Yo dr o Yo 3)
- the dynamic equilibrium equation:
vt €]0,T[, VU™ € Ug
dZQ ;o ok "k ; k
/p—z.g dQ:—/Tr[ae(Q )]dgz+/]_fd.g de+ [ FE,U'ds )
Q dt Q Q 9,0
- the constitutive relation:
o =Ke(U)+nKe(U) (5)

Uo is the subspace af1%7] associated with a zero value @f; on boundary1Q.



3. FREQUENCY ANALYSIS - THE REFERENCE PROBLEM

3.1. Frequency formulation of the problem

Let us rewrite the transient dynamic problem as a global variational problem over the frequency-space
domain. Thus, the Fourier transform is applied to all time-dependent quantities, yiélelqugency-
dependent functions:

fo)= [ ) a ©

—o0

Thus, the reference problem can be reformulated as follows: @iitdl/, ), 5 (M, ®)), with M € Q
andow € R, which verify:

- the compatibility equations:

Qalﬁ = Qd
U=ioU 7
- the dynamic equilibrium equation:
Vo e RVU" € Uy (8)
| -p0P00 d = [ Trige(@)a+ [ 7,07 de+ [ E,.0"ds
Q Q Q™ 02Q
- the constitutive relation:
& = (1+in)Ke(D) ()

Putting the accent on the displacement, the reference problem can be rewritten a;sc@ra@, with
M e Q andow € R, such that:

Usa=U,

Vo e R,YU" € Uy (10)

| {-peP2 0" + 1+ TiKe(@e(@ )} do =
/fd-Q*dQ-i- Ed-Q*dS
- 072Q
For a givenw, the previous problem is a forced vibration problem whose solution can easily be
shown to be unique. Using the frequency approach, one needs to solve the forced vibration problem
over a wide frequency rang®, '] which contains the low- anchedium-frequency rangegipally,
one must calculate the frequency response funéifar of the system fow € [0, ®'.].

3.2. Principle of the new computational approach

The present approach considers a partition of the frequency f@nge| being studied into two parts:

- alow-frequency par0, o],



- a medium-frequency palb,, ®’].

Outside of this frequency range, the kinetic andhistrenergies in the structure are assumed to be
negligible.

For the low-frequency rang®, ®.|, the frequency response function is obtained usirfgnie
element technique: it is advantageous to use a reduced basis constructed frivrat thidration
modes and completed with the static modes. With this very standard approach (s€e ¥9, the
displacement can be written as:

O(M,0) = 21 ai(@)9 (M) + ilbxco)g'j (M) (11)
i= j=

whereg (M) are the eigenmodes of the structure g‘ljo{M) are the static modes. The basis contains
at least all the eigenvectogs()/) such thatw; < 2. Theo (M),i € {1,2,...,n} andg’j(]\_l),j €

{1,2,...,m} are constructed in such a way that they are orthogonal with respect to the kinetic energy.
The Variational Theory of Complex Rays (VTCR), which will be presented in Section 4, is aleuita
computational method fohe medium-frequency range,, . |.
Forow~ <0, the frequency response is the conjugate of the response with respect to the excitation’s
frequencyn™ = —m.

3.3. Back to the time response

After the frequency response functions of the points of interest in the structure have been calculated
over[0,®’.], the time response is restored using the inverse Fourier transform:

1 /™. Lior
o= 5 [ F@)¥do 12)

4. OUTLINE OF THE VTCR FOR THE RESLUTION OF THE FORCED VIBRATION
PROBLEM FOR THE MEDIUM-FREQUENCY PART

Only the basic aspects are given here. More details can be found in [20, 21, 22].

4.1. The reference problem

In order to simplify the presentation, we present the problem for an assembly of two substructures, but
this formulation can be easily generalized to an assembiysabstructures. Given two substructuses
ands’, letdS andosS’ be the boundaries ¢fandS’ respectively. We are studying the harmonic vibration
of these two structures affixed frequency. All quantities can be dened in the complex domain: an
amplitudeQ(M) is associated witkD (M) €.

The excitations applied t§ and shown in Figure 1 are:

- adisplacemerfteld U, on a portiondy.S of the boundarys,
- aforce density,; on a portiorzS of dS,
- aforce density_’d on the whole domais,

whereU,, Fy, f, are the amplitudes of the quantitiedided in the complex domain.
Similar quantities are dimed forS'.



aS'

Figure 1. The reference problem

Let us ddine for structure the displacement-stress pair (U, o) and the corresponding spagg
such that:

Ucu (finite-energy displacement séf1(5)]3)

o€eS (finite-energy stress setq(5)]3)

I=divo+f, onsS (13)
o= (1+m)Ke(U) onS

I = —(ong onsS

whereK is the Hooke’s operatop, the mass density angithe damping codicient (which depends on
the frequency). The subspaceff associated with a zero value g} is denoteds,, 0. Similarly, we

introduce spaces’,; and.s’ 44 0.

The reference problem can be rifiaulated as follows: Find(U(M),o(M),M € S) and
(U (M),0'(M),M € §') such that:

s=(U,0) € Su s =U"0")eS w
U=U,ondyS U =U,onays
on=F,0Nn0rS o'n’ =F,ondpS (14)
U=UonT
on+o'n’ =0onT

4.2. The variational formulation associated with the VTCR

The VTCR is a global formulation of the boundary cdrahs (14) in terms of both displacements and
forces. Itis based ompriori independent approximationsthin the substructures: Find= (U, o) €



Saq @nds’ = (U’',0”) € S), such that:
Re{—iml 8JQ(Q*—Q§)dZ+/ (on—F,)8U"dl +
aUS aFS

[ B (U U di+ [ (o~ FsU” di+ (15)
U F

% / (8on—8c'n')(U*—U")+ (on—o'n')(8U* —8U") ‘“} } =0
r
V(8U,80) € Suapo V(8U',80") € S'ua0

where R@4| designates the real part of a quantitand4* the conjugate ofl. It is easy to prove that
the variational form is equivalent to the reference problem, provided that:

- the reference problem has a solution,
- the Hooke’s operatd is positive déinite,
- the damping codifcients are such that,n’ > 0.

4.3. Approximate formulations

4.3.1. Principle All that is needed in order to derive an approximate formulation from the VTCR is
the ddinition of subspaces/’, andSc’jd@ (resp.s’, andS’de) from S,q andS,q 0 (resp.S’ue ands’ 44.0)

for each substructure. The approximfemulation can be expressed as: Fifid= (U",0") € 5;‘0[ and

s" = U™ ™) e ", such that:

5 Ep(UM+EpU™) +<[§Z]5Eﬂ>: LD,aLf,ZD (16)

h h
vos" € 5501’0 vos" € 5 hao0

whereE) is the dissipated powef,, a linear form and.,.) a bilinear form, déned on the boundary
between the substructures, such that) = —(v,u)".

The VTCR uses two scales of approximatid@t’, "), each with a strong mechanical meaning,
ddfined by identifying three zones: the interior zptiee edge zone and the corner zone. For example,
in the neighborhood of a poitt of the interior zone, the solution is assumed to be properly described
locally as the superposition of arfinite number of local vibration modes which can be written in the
following manner:

jwP.Y
UMNX,Y,P) =" x,P)e"

wP.Y
o"(X,Y,P)=C"(X,P)"&" (17)

where bothX andY represent the position vectdf,being associated with slow variations anavith
rapid variations. More precisely, the terms related to the position v&ctary slowly whenX moves
along the structure, whereas the terms related to the position atary rapidly whenY moves
along the structure? is a vector characterizing the local vilticm mode. In order for these local modes
(U", o) to be admissible, they must bejj, and verify (13). Thus, we get some propertiegof

For instance, let us consider the out-of-plane bending motions of tiait), homogeneous and
isotropic plates. According to Kirchhoff’s thiplate theory, the steady-state displacemenf the



plate’s mid-surface in the direction perpendicular to the plate is governed by the dynamic equation:
Eh® (

12(1—v2)
whereA is the Laplacian operatak, the Young’s modulug; the plate’s thickness, the Poisson’s ratio,

p the mass density the frequency, anél andn the damping factors. A complex ray for the interior
modes is:

1+ in)AAu = phow?u onS (18)

NTVoP.X)i/oP.
BEY.P) =, p) e (19)

This complex ray corresponds to a plane bending wave which propagates through the platg in the
direction. This ray is admissible only if:

Eh®
Therefore, the properties &fare:
V2
(P2 = r*wiith 4 = PPV (21)

Equation (21) shows that lies on a circleC defined by the material properties (see Figure 2). All
directions of the plate can be taken into account by following this circular path. A similar approach can
be used for the edge and corner zones. Examples of such modes are shown in Figure 3.

Cinterior modes

Figure 2. AdmissibleP for interior modes of an isotropic plate

4.3.2. The discretized problem The displacement of any point of the substructure is generated by a
basis of admissible complex raysh@ unknown is the generalized amplitud& X, P) of the basis (an
n-order polynomial inX and a large-wavelength quantityyccounting for all the directiong in C
leads to an integral ovér. For the interior rays, this integral takes the form:

(2VOP(9)-X) i\/oP(¢).Y
e e

XY= [ W)

0€[0;2r]

dr (22)
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Figure 3. Interior, edge and corner modes for a homogeneous plate

In order to obtain dinite-dimension problem, this integral (22) can be discretized and one can consider
the amplitudes (X, P()) to be constant in each angular sectdt(X, P(Ep)) (Figure 4). The angular
distributions of the plane waves for all points in the substructure are assumed tolokesezibed by

this discontinuous angular distribution.

Figure 4. The discretized amplitudes

Once the discretization has been chosen for each plate, the VTCR leads to a system of linear
equations in the complex domain:

K'U = F" (23)

whereK” = K + 7" andF" = L%. K is the symmetric, positive di@ite damping matrix associated

with Ep; Z" is the matrix associated with the bilinear forfy.) defined such thag’" = —z";

L% is the vector associated with the linear fofg; U is the vector corresponding to the unknown
amplitudes associated with the complex polynomié(X,Ep). As a consequence of the above
properties, Equation (23) has a unique solution. However, although the invertibility of rdaferd,
therefore, the uniqueness of the solution) has been proven, care is needed in its numerical calculation
because this theory could letma poorly conditioned matrik .

4.4. Effectiveness of the VTCR

The capabilities of the method have been demonstrated on complex assemblies of plates 0, 21, 2
Comparisons with industridinite element codes showed that the VTCR is capable of predicting



the effective quantities at a very low cost. The method was also extended to shell3] ian[2
heterogeneities were included in [24].

4.5. The wide-frequency-range analysis

In our proposed approach to the transient dynamic response analysis, the Frequency Response Function
(FRF) over a very wide frequency range needs to be calculated. Therefore, the ability to use the VTCR
over a relatively wide frequency range could be advantageous.

4.5.1. Calculation of the VICR in a frequency range Thus, the objective is to be able to calculate the
solution in a frequency rangewith central frequencywp and bandwidth 2w: Find U which verfies:

K'w)U(w) = F" (o) Vo € B = [mg — Aw; g + Aw)] (24)

The idea is to introduce a two-scale approximation in term&.oAny quantity o, including the
operatoiK”(®) and the load”" (), can be written ovem € B as:

/
o) = Y, Or(w)4,(e0) (25)
r=1

where4, is assumed to be constant over B. If necessary, one could build a better approximation for
function4,, e.g. a linear approximatiof, is a rapidly varying function ofo equal to:
2niog,

Or(w)= e
whereg, is one of the discrete value§:|r = —N,—N+1,...,0,1,2,... N}.
In practice, 2.N¢ is equal to the maximum number of space waves per substruétae) is a
parameter which characterizes the quality of the two-scale approximation25)1(00 to 1000).
Several techniques have been developed for determining an approximatibmahe form of (25)
[25]. Here, we will introduce a new and quitdiefent version.

Let us study the behavior of the exponentiguwment. This quantity can be expanded into a Taylor
series up to ordek. The matrixk” and load vectoF” can then be approximated as:

k
K"(®) =Y Ki(wo)(®— o) (26)
k=0

k
F'(0) = Y Fy(wo)(®— o)
k=0

Let us also diéne the mean value over the frequency raBge

1
() = 5 [ -do

The matrixK” and load vectoF” can be expressed as:

K"(w) = (K" 4+ AK (w) (27)
F'(0) = (F") + AF (o)



According to the Taylor expansion (26), one has:

AK" (o) = zk: AK 1 (m0) (o — wp)* (28)
k=0

k
AF! (@) = Y AF(00) (0 — wo)*
k=0

U can also be dened using the same approach:
U'(@) = (U") +AU(o) (29)
Over the frequency rang® Equations (24), (27) and (29) can be rewritten as:
(K" + 8K [(U) +AU] = (") + AF (30)

Equation (30) involves terms of very different magnitudes: some are large while others dré&Jsing
the techniques of perturbation methods, different order terms can befiéémtnd Equation (30) can
be rewritten for order O and order 1:

(KM W) = (F") order 0 (31)
(KMAU = —AK (U) + AF order 1
with AU equal to:
AU = Ek', AU, (00) (® — 0p)" (32)
k=0

Finally, the displacement r@hed over the frequency rangas:
U =MU) + uAU (33)

wherel andu minimize the error diéned through the approximations in (31):

1 T ~1
2 1 wh h h wh
ot [ ] e o =
[K"], is the diagonal of the symmetric partkf, which is a slowly-varying function.

Remarks:

- l;corresponds to the degree of the Taylor expansion and is the only parameter that must be chosen
to ensure good accuracy.
- The mean dissipated energy is:

A? Tyh qu T h
= — K —— | AU K{A
e=—(U) S<Q>+4Am/3 U'K{AU do (35)
- A, u can bew-functions.

This method over a frequency range was tested on beams and on assemblies of plates in [26]. For
ﬁ)—‘g ~ 10%,k =5 seems to yield a very good approximation.



4.5.2. Use of the wide-frequency-range analysis In the frequency-domain analysis procedure, the
use of discrete Fourier transforms requires that the forcing funcfioa$ and#,(¢) in the dynamic
reference problem of Equation (4) be converted periodic forms. Thus, unless the forcing functions
/,(t) andF,(¢) and the unit impulse function of the systeitt) are time-limited and the time period

T, is selected carefully, the initial conditions ofethiransient response of the structure may not be
satigied. This situation would arise because of an agwith previous periods of the time function,

as explained in [27].

Therefore, the observation tin#le must be chosen such that the transient response of the damped
system dies out by the end @f. The choice off, is directly rdlected in the frequency sampling of

the frequency response functi@fw) and can lead to a large number of VTCR calculations. It is,
therefore, crucial to be able to know the frequency response function for any frequency in a relatively
wide frequency range, as we did in Section 4.5.1: then, the frequency step can be chosen anyhow with
no increase in computation effort.

Then, since the FRF is known explicitly over a wide frequency range, the frequencgitlanalysis
using discrete Fourier transforms can be carried out easily.

5. EFFECTIVENESS OF THE METHOD

5.1. Example of a beam subjected to a shock at one end

Figure 5 shows an example consisting of two beams connected together, subjected to an impact bending
load at the right end arfiked at the left end.

Fy(t)
2 . |
| ! = ,
T = 2us
L=1m L'=1m
S =0.01m? S = 0.0049m?
1=83106m* I'=2105m?
E =200GPa
p = 7800kg.m 3
n=0.01

Figure 5. A transient dynamic problem: beam subjected to impact bending

The loading which characterizes the impact and its spectrum obtained through the Fourier transform
are described in Figure 6.
We chose the observation tindg such that the transient response of the damped system dies out by the
end of this lapse of time: this enabled us to use discrete Fourier transforms.

The purpose of this example is to show the intpoce of the medium frequencies which, although
the displacements are small, can play a digant role in the the kinetic energy. We will also use this
example to compare our approach with a clasdicdéte element method in the time domain.
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Figure 6. The loading and its spectrum

5.2. The discretized problem of the frequency-domain approach

The frequency rangf®, ] being studied was divided into two parts: the low frequenes.] and
the medium frequencide,, ®..].

As suggested in Section 3.2, a standfanite element technique was used to obtain the frequency
response functions over the low-freaueg range. In order to derive a proper FRF, the reduced basis was
constructed from th&rstm modes to arrive at a highest eigenfrequengy= 2®., and was completed
with the static bending mode. The mesh was discretized according to the classic law “at least 7 elements
per wavelength” for the highest eigenmode of the reduced basis.

The VTCR turned out to be a suitable computationathod for the medium-figuency range and used
only eight complex rays: two interior ones and two evanescent ones for each beam.

The problem to be solved was a discrete frequency problem, since the spectrum of the loading was
obtained via the éfcient Fast Fourier Transform [27]. ThubetFRF was calculated for every sampling
frequency. The sampling was a function of the observation fisra the responsef, = 1
The number of VTCR calculations for the meditfirequency range was reduced by usmg the wide-
frequency-range analysis of the VTCR presented in Section 4.5, which was essential in that case.
Degreet = 5 of the Taylor expansion was chosen.

Having calculated the FRF, we performed an inverse Fast Fourier Transform in order to restore the
time-dependent response, which led to ndiclilty thanks to the wide-range analysis of the VTCR
(see Section 4.5.2).

5.3. Choice of the frequency ranges

The frequency rangf®, o] being studied was divided into two parts: the low frequenffes.] and
the medium frequencide,, ®.]. We will now study the ifluence of these ranges.

5.3.1. Influence of ®. Let us varyw, first. Figure 7 shows the velocities at the junction of the
two beams obtained with three different valuesawf and afixed value ofw, = 10°Hz. On the
left-hand side, the velocity is represented over a rather large time span; the right-hand side of
Figure 7 is a zoom on the beginning of that signal. The different values. @re chosen such that

0. = [16 1G°Hz,65 10 Hz, 145 1GHz] generate maxima of 5, 10 and 20 oscillations respectively on
one of the two beams.
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Figure 7. Déection at the junction for different values @f.

As expected, the choice o, does not affect the accuracy of the response. Indeed, the frequency
contents of the three responses are the same; only the ways the frequency response function over part
of the frequency range are obtained are different, but in each case the FRF is calculated over the same
global frequency range.

Nevertheless, the choice @f affects the cost of the calculation: a lakgewould require an expensive
reduced basis in order to calculate the FRF d@ew.] (see Section 3.2). This could also lead to
numerical dificulties.

In practice w. is chosen such that this frequency does not generate more than 10 oscillations per beam.
Beyond 10 oscillations, the frequency is considdoeblelong to the medium-frequency domain. In the
example presented, we had = 65000z.

5.3.2. Influence of ®. Figure 8 shows the ftuence ofw,, i.e. the effect of the frequency content
on the response. On the left-hand side, the velocity is represented over a rather largeatinmihes
right-hand side of Figure 7 is a zoom on the beginning of that signal. The velocities ainction of
the two beams obtained with three different value®/oénd &fixed value ofn, = 65000z are shown.
The values ofy, were chosen as followsy, = [, 2, 2] = [0.25160Hz,0.516°Hz, 10°Hz|, T being
the length of the impact (Figure 6).

One can observe that the frequency content of the response affects the velocity and, therefore, the
kinetic energy to a great extent. In order to evaluate the frequency range necessary to derive the correct
response, the maximum of the kinetic energy at the junction of the two beams during the observatio
time is plotted on Figure 9 as a function of the frequency range taken into account in the response.

In this case, the frequency range which is necessary affid¢isut to produce the correct energy
level seems to b, 10°Hz]; this range is designated on Figure 9 by the vertical solid {iie= 10°Hz
is twice the characteristic frequen%yof the input signal. From here o, will be chosen such that:

o, = % = 10°Hz. Looking at the spectrum of the impact loading in Figure 6, this criteepr- %
enables one to embrace most of the frequency content of the input signal.
In the above exampley, = 10°PHz corresponds to an excitation generating 40 oscillations per beam.
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Figure 9. Maximum of the kinetic energy at the junction of the two beams during
the observation time as a function of the frequency range taken into account

5.3.3. Summary of the frequency ranges chosen The different frequency ranges are described in
Figures 9 and 10: the vertical dashed lines represent the limit of the low-frequency range and the
vertical solid lines show the upper bound of the medium-frequency range, i.e. the frequency content of
the response. These frequency ranges will be used from here on for the remaining examples.

Table | summarizes the content of each frequency range.

The number of VTCR calculations for timeedium-frequency range was reduced frof@0D, 000 to
1,000 only by using the wide-frequency-range analysis of the VTCR presented in Section 4.5, which
was essential in this case.
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Table I. Content of each frequency range

Frequency range Low Medium
Method Reduced basis: 53 modes VTCR: 8 rays
Frequency range [0,65,000Hz] (65,000Hz, 10°Hz]
Nb. of sampling frequencies 30&00 4800 000

= 1,000 calculations

5.4. Importance of the medium frequencies

The importance of the medium frequencies has already been pointed out in Section 5.3.2. Figure 9
shows that taking into account the low frequencies alone (vertical dashed line) alters thedneegi

level.

Further comparisons emphasizing the imporéapicthe medium frequencies can be made on the same
example. Let us consider two responses obtained with the frequency-domain approach, one taking the
medium-frequency range into ammt and the other ignoring it.

The ddlections at the junction of the two beams with and without the medium-frequency content are
plotted in Figure 11.

On the left-hand side of Figure 11, the responses seem to be similar, but when zooming in on the
very beginning of the signal (on the right-hand side), one notices differences: in the absence of the
medium frequencies, the small oscillations due to these frequencies are killed.

Although the displacements due to the medium freqiesnare small, the velocity and, therefore, the
kinetic energy due to these oscillations are very gigant (Figure 12).

This velocity and this kinetic energy are everglarif one uses a damping law which decreases with
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the frequency, as shown in Figure 13. Damping was taken as follows:

o € [0, mo] n=0.01

W > Mo n=0.01 %

with mg = 1,000/Hz. The maximum of the kinetic energy at the junction of the two beams during the

observation time is plotted in Figure 13 as a functiomof

The more rapidly the damping decreases with the frequencies, the higher the kinetic energy level
when the medium frequencies are taken into account (black line). If one leaves out these frequencies
in the response, most of the kinetic energy is ignored (grey line), especially for high values of
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This example emphasizes the importance ofrtredium-frequency rang& herefore, one cannot
leave out the medium frequencies, as these appear to a great extent in the velocity and, consequently,
in the kinetic energy. Ignoring these medium frequencies could lead to poor design of structures.

5.5. Comparison with a standard approach

Let us now compare the response obtained with our frequency-domain approach with that obtained
with a standard time-domain approach. The purpose of this comparison is to assess the effectiveness
of the new method.

The calculation of the response with the time-domain approach was carried out in such a way that
it produced the same high-frequency content asfi@agquency approach, i.e. 40 oscillations per beam
for the highest frequency taken into account. To achieve that resufintteeelement model required a
fine mesh with 28@inite elements per beam, i.e 7 elements per oscillation. Classically, an explicit time
scheme with a time step based on the Courant-Friedrichs-Levy condition for the highest frequency
was used. Since the spatial discretization was very dense in order to take into aceonnadiom
frequencies, this means that the time-domain method required a very large number of time steps.
Indeed 320000 time steps per time period of tiiest eigenmode of the structure were necessary.
The integration of the time scheme could be achieved using the reduced basis with 146 modes.

Table Il summarizes the sizes of the computational problems for the two methods: the frequency-
domain approach proposed in this paper and the classical time-domain approach. The period of time
of interestT; is the time period of théirst eigenmode of the structure.

The two responses are plotted in Figures 14 and 15. These show respectivelffebeotteand the
velocity at the junction of the two beams obtained with the time-domain approach (dashed lines) and
the new frequency-domain approach (solid lines).

On the left-hand side of Figures 14 and 15, the responses obtained with both approaches are very
similar, even when one zooms in on the very beginning of the signal (on the right-hand side).

If one takes the response obtained with the classical time-domain approach as the reference, the
conclusion from this comparison is that our methyselds good results containing a wide frequency
content.



Table Il. Sizes of the computational problems for the time-
domain (TD) and the frequency-domain (FD) approaches
(period of time of interestr; = 38ms)

Approach TD FD
Reduced basis  Reduced basis VTCR
Finite elements (beams) 276 98
Eigenmodes 146 53
Complex rays 8
Number of calculations 32000 308600 1,000
Size of the computational problem  3200x 146 308600x 53+ 1,000x 8
- - | Deflgction | o 107" | ‘Deflection
T —_— solution —— FD solution
| Geperstetmeot [T Rz || TR

o
&)
T

o
Deflection (m)

Deflection (m)

-0.5F

2 3 4 5

0.05 0.1 0.15 02 O 1 !
Time (s) x 107

Time (s)

Figure 14. Délections at the junction

Furthermore, the results of the new method were obtained with a reduced numerical effort. Indeed,
the calculations for our approach were carried out in the low-frequency range using a small reduced
basis compared to that of the time-domain approach (see Table II). For more complex structures, in the
time-domain approach, the construction of a reduced badisisutly rich in modes to deal with fast
dynamics, such as shocks, is often unfeasible; therefore, in these cases, the time integration is carried
out on thefinite element matrices directly: this leads to even greater computation times. In our method,
thanks to the use of the wide-frequency-range amabfshe VTCR, the frequency content is extended
using only 1,000 VTCR calculations. The frequency domain analysis procedure also requires discrete
Fourier transforms, which are performed using the Fast Fourier Transform (FFT) algorithms. The use
of the FFT makes the frequency approachésieht for the analysis of the dynamic response of linear
systems [28].

The weakness of the frequency-domain approach lies in the fact that regardless of the period of time
of interest7:, the response must be calculated for an observationBjrfeng enough for the response
of the damped system to die out. This constraint, mentioned in Section 4.5, is due to the diearedr
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Figure 15. Velocities at the junction

transform and its periodic properties.

Nevertheless, the extension of the observation time requires dimgrasampling of the frequencies,
which creates no particular @i¢ulties since the wide-frequency-range analysis of the VTCR is used in
our approach; but it still takes memory to store the data.

The following section deals with the means of reducing the number of frequency samples by taking
advantage the quick fading-out of the medium frequencies.

5.6. Improvement of the proposed frequency-domain approach

Here, we focus on the properties of the mediungérencies in order to reduce the number of frequency
samples for the calculation of the frequen@gponse function over the medium-frequency range.
Indeed, since the bending beam being studied is a scattering medium, the propagation velocity of
the medium frequencies is greater than that of the low frequencies; therefore, the time taken by the
medium frequencies to become negligible (Figure 16) is rather short compared to the observation time
To = 4.5s necessary in order to use the Fourier transform techniques.

Therefore, in Equation (36), the time response can be viewed as the superposition of two
componentsyj,,,(¢) and f,,(t), corresponding to the low-frequency contributigp, () and the
medium-frequency contributiofy,.;(®) respectively.

I it 1 . i
f(t)tZO _E . flow(w) edo+ 2_1_[: L fmid((’)) edw
=/flow(t) + fmia(t) (36)

These two components can be calculated separgiglyt) is obtained easily with any suitable and
efficient approach; the madn-frequency contribution,,;;(¢) is obtained with the frequency-domain
approach presented in this paper and added afterwards. Calculating the two components separately
is convenient because the calculation off,,;;(¢) the low frequencies are put aside and the medium
frequencies alone are taken into account. Thus, one can take advantage of the rapid fading-out of
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these medium frequencies in the time response to shorten the observation time for the discrete F
transform to a considerable extent, which reduces the frequency sampling of thﬁ?nﬁRﬁer the
medium-frequency range.

The velocities and the maxima of the kinetic energy as functionsafe compared in Figures 17
and 18: one response was obtained with the FD approach presented in the previous sections and the
other with the technique of superposition of the l@md mid-frequency components we just described.
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Figure 17. Velocity at the junction

The superposition of the two components yields very good results and requires far fewer frequency
samples for the calculation of the frequen@gponse function over the medium-frequency range.
The fraction% of the frequency samples for which the Fl?iﬁid had to be calculated over the
medium-frequency range is shown in Figure M:and N are the numbers of frequency samples
over the medium-frequency range needed for the frequency-domain approach, with and without the
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superposition technique respectively.
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Figure 19. Comparison of the numbers of frequency samples

The number of frequency samples overithedium-frequency range for which the FRE, needs to
be calculated for the frequency-domain approach is considerably smaller when the components arising
from the medium-frequency and froine low-frequency contributioree calculated separately.

6. CONCLUSION
A new theory for the calculation of transient dynamic responses with a high frequency content, has
been introduced and its effectivess has been shown. The point of this technique is to cover both the

low and the medium frequencies, idhdecreasing the cpu-time. In this paper, only non-linearities in
the frequency domain have been considered. The extension to non-linearities expressed in the time
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domain and to 3D-problems is the subject of further developements.
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