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A new computational method for transient dynamics
including the low- and the medium-frequency ranges

Pierre Ladevèze∗ and Mathilde Chevreuil

LMT Cachan (ENS Cachan, CNRS, University Paris 6),

61 avenue du Président Wilson, 94235 Cachan CEDEX, France

This paper deals with a new computational method for transient dynamic analysis which enables one to cover 
both the low- and medium-frequency ranges. This is a frequency approach in which the low-frequency part is 
obtained through a classical technique while the medium-frequency part is handled through the Variational Theory 
of Complex Rays (VTCR) initially introduced for vibrations. Preliminary examples are shown. 
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1. INTRODUCTION

The design of industrial structures requires engineers to know their dynamic behavior. The response,
especially during the transient stage, cannot be completely described using the current tools based
on finite element techniques and explicit numericalschemes; indeed, the medium-frequency range is
often ignored unless the calculation is carried out with a very refined spatial mesh and, consequently,
a refined time discretization [1, 2]. This would mean a prohibitive computation time. Accounting
for the medium-frequency content can be necessary because although the displacements over this
frequency range are small, the velocity (and, therefore, the kinetic energy) can be significant. Transient
dynamic analysis in this frequency range presentsan important challenge. This work, which uses new
computational strategies in dynamics, provides an answer to this challenge for the transient part of the
solution. The problem is solved in the frequency domain. One needs to solve a forced vibration problem
over a frequency range which includes the low- and medium-frequency ranges. The low-frequency
range is solved conventionally while the medium-frequency range is handled using the Variational
Theory of Complex Rays (VTCR). Thefinal solution in the space-time domain is given by the inverse
of the Fourier transform.
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The main problem resides in the resolution of the forced vibration problem over a wide frequency
range. Today, the low-frequency range no longer poses any major difficulty, at least regarding modeling
and calculation, even for complex structures. As for high frequencies, computational tools quite
different from those used for low frequencies are available, in particular the SEA method in which
the spatial aspects disappear almost entirely [3].
By contrast, the modeling and calculation of medium-frequency vibrations, on which this paper
focuses, continue to cause some problems. The difficulty lies in the fact that the wavelengths of the
phenomena being studied are very small compared to the characteristic dimensions of the structure.
Consequently, if one were to extend the low-frequency methods disregarding the serious numerical
difficulties Which would occur, the correspondingfinite element calculation would still require an
unreasonable number of degrees of freedom. This situation would be made even worse by the pollution
error due to the extended range of calculated frequencies which would affect the accuracy of thefinite
element solution [4, 5]. Different remedies for that problem have been tried, such as enhancedfinite
elements [6, 7, 8], specific reduced bases [9, 10, 11] or a combination of a wave-based method with
a Trefftz approach [12], but most of these techniques require veryfine meshes. Difficulties are also
experienced when one attempts, as in [13, 14, 15, 16], to extend the SEA method (which is appropriate
for high frequencies) because most of these methods require additional information (e.g. coupling loss
factors) and specific geometries.
The alternative approach we use here, called the “Variational Theory of Complex Rays”, wasfirst
introduced in [17] for the calculation of medium-frequency vibrations. It shares similar features with
[12]. This approach, whose main limitation is that the structure must lend itself to partitioning into
homogeneous substructures, is defined as follows.
The first characteristic of this approach is the use of a new variational formulation of the problem
being considered (i.e. forced vibrations at a given frequency) which enables one to usea priori

independent approximations within each substructure. In other words, the transmission conditions on
the displacements as well as the stresses at the interfaces between substructures do not need to be
verifieda priori, but are built in the variational formulation.
The second characteristic of the VTCR is the introduction within each substructure of two-scale
approximations with a strong mechanical meaning: the solution is assumed to be well-described as
the superposition of an infinite number of local vibration modes. These basic modes (which can be
interior modes, boundary modes or corner modes) verify the law of dynamics. All wave directions are
taken into account and the unknowns are discretized amplitudes with relatively large wavelengths.

Thus, the present approach to the calculation of the transient dynamic response consists in dividing
the frequency range being studied into two parts: the low-frequency range, over which the frequency
response function is obtained with a standardfinite element technique, and the medium-frequency
range, in which the suitable method to calculate the frequency response function is the VTCR [18]. To
improve the efficiency of the calculation, it is advantageous to use the VTCR over a relatively wide
frequency range in order to decrease the cpu time: we will describe a corresponding enhancement of
the method. This paper recalls only the basic aspects of the Variational Theory of Complex Rays.

The central objective of the paper is to present our new frequency-domain analysis procedure for
transient dynamics and to show its effectiveness: indeed, the proposed method enables one to take into
account the medium-frequency content of the transient response of a structure subjected to a shock.
These medium frequencies make up a significant portion of the kinetic energy of the system. The paper
also aims to show that the large-frequency-range solution provided by the VTCR is necessary in order
to carry out discrete Fourier transforms easily and with reasonable numerical effort. An example is
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detailed at the end of the paper.

2. THE DYNAMIC REFERENCE PROBLEM

Let us consider, under the assumptions of small perturbations, the dynamic equilibrium of a structure
defined in the space domainΩ, and let∂Ω be the boundary ofΩ. At each timet of the interval[0,T ]
being studied, this structure is subjected to the following actions:

- a displacementfieldUd on a portion∂1Ω of boundary∂Ω,
- a force densityFd on the portion∂2Ω of ∂Ω which is the complementary part of∂1Ω,
- a force densityf

d
on the whole domainΩ.

For everyM belonging toΩ, the displacements are subjected to initial conditions att = 0:

U |t=0 =U0 (1)

dU

dt |t=0
= U̇0 (2)

whereU0 andU̇0 are given.
Let us also define for the structureΩ the constitutive relation:

σ = Kε(U)+ ηKε̇(U)

whereK is the Hooke’s operator. In the present work, damping is introduced classically in terms of
the frequency withη > 0, so the reference problem has a unique solution. More complex constitutive
relations could also be taken into account.

The reference frame is assumed to be Galilean. The reference problem of the evolution of the
structure during[0,T ] can be formulated as follows: FindU(M,t) ∈ U[0,T ] andσ(M,t) ∈ S [0,T ], with
M ∈ Ω andt ∈ [0,T ], which verify:

- the compatibility equations and the initial conditions:

U∂1Ω =Ud

U |t=0 =U0
dU

dt |t=0
= U̇0 (3)

- the dynamic equilibrium equation:

∀t ∈]O,T [, ∀U̇∗ ∈ U0
Z

Ω
ρ

d2U

dt2
.U̇

∗
dΩ = −

Z

Ω
Tr[σε(U̇

∗
)]dΩ +

Z

Ω
f
d
.U̇

∗
dΩ +

Z

∂2Ω
Fd .U̇

∗
dS (4)

- the constitutive relation:

σ = Kε(U)+ ηKε̇(U) (5)

U0 is the subspace ofU[0,T ] associated with a zero value ofUd on boundary∂1Ω.

3



3. FREQUENCY ANALYSIS OF THE REFERENCE PROBLEM

3.1. Frequency formulation of the problem

Let us rewrite the transient dynamic problem as a global variational problem over the frequency-space
domain. Thus, the Fourier transform is applied to all time-dependent quantities, yieldingfrequency-
dependent functions:

f̂ (ω) =

Z +∞

−∞
f (t)

−iωt
e dt (6)

Thus, the reference problem can be reformulated as follows: Find(Û(M,ω), σ̂(M,ω)), with M ∈ Ω
andω ∈ R, which verify:

- the compatibility equations:

Û∂1Ω = Ûd
ˆ̇U = iωÛ (7)

- the dynamic equilibrium equation:

∀ω ∈ R,∀Û∗ ∈ U0 (8)
Z

Ω
−ρω2Û .Û

∗
dΩ = −

Z

Ω
Tr[σ̂ε(Û

∗
)]dΩ +

Z

Ω
f̂
d
.Û

∗
dΩ +

Z

∂2Ω
F̂d .Û

∗
dS

- the constitutive relation:

σ̂ = (1+ iη)Kε(Û) (9)

Putting the accent on the displacement, the reference problem can be rewritten as: FindÛ(M,ω), with
M ∈ Ω andω ∈ R, such that:

Û∂1Ω = Ûd

∀ω ∈ R,∀Û∗ ∈ U0 (10)
Z

Ω

{

−ρω2Û .Û
∗
+(1+ iη)Tr[Kε(Û)ε(Û

∗
)]
}

dΩ =
Z

Ω
f̂
d
.Û

∗
dΩ +

Z

∂2Ω
F̂d .Û

∗
dS

For a givenω, the previous problem is a forced vibration problem whose solution can easily be
shown to be unique. Using the frequency approach, one needs to solve the forced vibration problem
over a wide frequency range[0,ω′

c] which contains the low- andmedium-frequency ranges;finally,
one must calculate the frequency response functionĥ(ω) of the system forω ∈ [0,ω′

c].

3.2. Principle of the new computational approach

The present approach considers a partition of the frequency range[0,ω′
c] being studied into two parts:

- a low-frequency part[0,ωc],
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- a medium-frequency part[ωc,ω′
c].

Outside of this frequency range, the kinetic and strain energies in the structure are assumed to be
negligible.

For the low-frequency range[0,ωc], the frequency response function is obtained using afinite
element technique: it is advantageous to use a reduced basis constructed from thefirst vibration
modes and completed with the static modes. With this very standard approach (see e.g. [?, 19]), the
displacement can be written as:

Û(M,ω) =
n

∑
i=1

ai(ω)ϕ
i
(M)+

m

∑
j=1

b j(ω)ϕ′
j
(M) (11)

whereϕ
i
(M) are the eigenmodes of the structure andϕ′

j
(M) are the static modes. The basis contains

at least all the eigenvectorsϕ
i
(M) such thatωi ≤ 2ωc. The ϕ

i
(M), i ∈ {1,2, ...,n} andϕ′

j
(M), j ∈

{1,2, ...,m} are constructed in such a way that they are orthogonal with respect to the kinetic energy.
The Variational Theory of Complex Rays (VTCR), which will be presented in Section 4, is a suitable

computational method for the medium-frequency range[ωc,ω′
c].

For ω− ≤ 0, the frequency response is the conjugate of the response with respect to the excitation’s
frequencyω+ = −ω−.

3.3. Back to the time response

After the frequency response functions of the points of interest in the structure have been calculated
over[0,ω′

c], the time response is restored using the inverse Fourier transform:

f (t)t≥0 =
1
2π

Z +∞

−∞
f̂ (ω)

iωt
e dω (12)

4. OUTLINE OF THE VTCR FOR THE RESOLUTION OF THE FORCED VIBRATION
PROBLEM FOR THE MEDIUM-FREQUENCY PART

Only the basic aspects are given here. More details can be found in [20, 21, 22].

4.1. The reference problem

In order to simplify the presentation, we present the problem for an assembly of two substructures, but
this formulation can be easily generalized to an assembly ofn substructures. Given two substructuresS
andS′, let∂S and∂S′ be the boundaries ofS andS′ respectively. We are studying the harmonic vibration
of these two structures at afixed frequencyω. All quantities can be defined in the complex domain: an
amplitudeQ(M) is associated withQ(M)eiωt .

The excitations applied toS and shown in Figure 1 are:

- a displacementfieldUd on a portion∂US of the boundary∂S,
- a force densityFd on a portion∂FS of ∂S,
- a force densityf

d
on the whole domainS,

whereUd , Fd , f d are the amplitudes of the quantities defined in the complex domain.
Similar quantities are defined forS′.
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Γ

S
S'

∂  S

∂  S'

∂  S'

∂  S

Fd F'd

fd

f'd

F

F

U

U

Figure 1. The reference problem

Let us define for structureS the displacement-stress pairs= (U ,σ) and the corresponding spaceSad

such that:

U ∈ U (finite-energy displacement set [H1(S)]3)

σ ∈ S (finite-energy stress set [L2(S)]3)

Γ = divσ + f
d

onS (13)

σ = (1+ iη)Kε(U) onS

Γ = −ω2ρU onS

whereK is the Hooke’s operator,ρ the mass density andη the damping coefficient (which depends on
the frequency). The subspace ofSad associated with a zero value off

d
is denotedSad,0. Similarly, we

introduce spacesS ′
ad andS ′

ad,0.

The reference problem can be formulated as follows: Find(U(M),σ(M),M ∈ S) and
(U ′(M),σ′(M),M ∈ S′) such that:

s= (U ,σ) ∈ Sad s′ = (U ′
,σ

′) ∈ S
′
ad

U =Ud on ∂US U ′ =U ′
d on∂US

′

σn= Fd on ∂FS σ
′n′ = F ′

d on ∂FS
′ (14)

U =U ′ on Γ

σn+σ
′n′ = 0 on Γ

4.2. The variational formulation associated with the VTCR

The VTCR is a global formulation of the boundary conditions (14) in terms of both displacements and
forces. It is based ona priori independent approximations within the substructures: Finds= (U ,σ) ∈
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Sad ands′ = (U ′,σ′) ∈ S ′
ad such that:

Re

{

−iω
[

Z

∂US
δσn(U∗−U∗

d)dl+
Z

∂FS
(σn−Fd)δU∗dl +

Z

∂US′
δσ

′n′(U ′∗−U ′∗
d)dl+

Z

∂FS′
(σ′n′−F ′

d)δU
′∗dl+

1
2

Z

Γ
(δσn− δσ

′n′)(U∗−U ′∗)+ (σn−σ
′n′)(δU∗− δU ′∗)dl

]}

= 0

(15)

∀(δU ,δσ) ∈ Sad,0 ∀(δU ′
,δσ

′) ∈ S
′
ad,0

where Re[A] designates the real part of a quantityA andA∗ the conjugate ofA. It is easy to prove that
the variational form is equivalent to the reference problem, provided that:

- the reference problem has a solution,
- the Hooke’s operatorK is positive definite,
- the damping coefficients are such thatη,η′ > 0.

4.3. Approximate formulations

4.3.1. Principle All that is needed in order to derive an approximate formulation from the VTCR is
the definition of subspacesShad andS

h
ad,0 (resp.S ′h

ad andS
′h
ad,0) fromSad andSad,0 (resp.S ′

ad andS
′
ad,0)

for each substructure. The approximateformulation can be expressed as: Findsh = (Uh,σh) ∈ Shad and

s′h = (U ′h,σ′h) ∈ S ′h
ad such that:

δ ED(Uh)+E ′
D(U ′h) +

〈[

sh

s′h

]

,δ

[

sh

s′h

]〉

= LD,δ

[

sh

s′h

])

(16)

∀δsh ∈ S
h
ad,0 ∀δs′h ∈ S

′h
ad,0

whereED is the dissipated power,LD a linear form and〈., .〉 a bilinear form, defined on the boundary
between the substructures, such that〈u,v〉 = −〈v,u〉∗.

The VTCR uses two scales of approximation(Uh,σh), each with a strong mechanical meaning,
defined by identifying three zones: the interior zone, the edge zone and the corner zone. For example,
in the neighborhood of a pointX of the interior zone, the solution is assumed to be properly described
locally as the superposition of an infinite number of local vibration modes which can be written in the
following manner:

Uh(X ,Y ,P) =W h(X ,P)
iωP.Y

e

σ
h(X ,Y ,P) =Ch(X ,P)

iωP.Y
e (17)

where bothX andY represent the position vector,X being associated with slow variations andY with
rapid variations. More precisely, the terms related to the position vectorX vary slowly whenX moves
along the structure, whereas the terms related to the position vectorY vary rapidly whenY moves
along the structure.P is a vector characterizing the local vibration mode. In order for these local modes
(Uh,σh) to be admissible, they must be inS

h
ad and verify (13). Thus, we get some properties ofP.

For instance, let us consider the out-of-plane bending motions of thin,flat, homogeneous and
isotropic plates. According to Kirchhoff’s thin plate theory, the steady-state displacementu of the
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plate’s mid-surface in the direction perpendicular to the plate is governed by the dynamic equation:

Eh3

12(1−ν2)
(1+ iη)ΔΔu= ρhω2u onS (18)

whereΔ is the Laplacian operator,E the Young’s modulus,h the plate’s thickness,ν the Poisson’s ratio,
ρ the mass density,ω the frequency, andθ andη the damping factors. A complex ray for the interior
modes is:

uhi (X ,Y ,P) = whi (X ,P)
( η

4
√

ωP.X)
e

i
√

ωP.Y
e (19)

This complex ray corresponds to a plane bending wave which propagates through the plate in theP

direction. This ray is admissible only if:

Eh3

12(1−ν2)
(1+ iη)ΔΔwhi = ρhω2whi onS (20)

Therefore, the properties ofP are:

(P.P)2 = r4 with r4 =
12ρ(1−ν2)

Eh2 (21)

Equation (21) shows thatP lies on a circleC defined by the material properties (see Figure 2). All
directions of the plate can be taken into account by following this circular path. A similar approach can
be used for the edge and corner zones. Examples of such modes are shown in Figure 3.

ϕ

P

x

y

O

Cinterior modes

Figure 2. AdmissibleP for interior modes of an isotropic plate

4.3.2. The discretized problem The displacement of any point of the substructure is generated by a
basis of admissible complex rays. The unknown is the generalized amplitudewh(X ,P) of the basis (an
nth-order polynomial inX and a large-wavelength quantity).Accounting for all the directionsϕ in C
leads to an integral overC. For the interior rays, this integral takes the form:

uh(X ,Y ) =

Z

ϕ∈[0;2π]
wh(X ,P(ϕ))

( η
4
√

ωP(ϕ).X)
e

i
√

ωP(ϕ).Y
e dΓ (22)

8



P

Figure 3. Interior, edge and corner modes for a homogeneous plate

In order to obtain afinite-dimension problem, this integral (22) can be discretized and one can consider
the amplitudewh(X ,P(ϕ)) to be constant in each angular sector:wh(X ,P(EP)) (Figure 4). The angular
distributions of the plane waves for all points in the substructure are assumed to be well-described by
this discontinuous angular distribution.

ϕ

x

y

O x

y

O

Figure 4. The discretized amplitudes

Once the discretization has been chosen for each plate, the VTCR leads to a system of linear
equations in the complex domain:

KhU = Fh (23)

whereKh = Kh
s + Zh andFh = LhD. Kh

s is the symmetric, positive definite damping matrix associated
with ED; Zh is the matrix associated with the bilinear form〈., .〉 defined such thatZh,T

∗
= −Zh;

LhD is the vector associated with the linear formLD; U is the vector corresponding to the unknown
amplitudes associated with the complex polynomialwh(X ,EP). As a consequence of the above
properties, Equation (23) has a unique solution. However, although the invertibility of matrixK (and,
therefore, the uniqueness of the solution) has been proven, care is needed in its numerical calculation
because this theory could leadto a poorly conditioned matrixK.

4.4. Effectiveness of the VTCR

The capabilities of the method have been demonstrated on complex assemblies of plates [20, 21, 22].
Comparisons with industrialfinite element codes showed that the VTCR is capable of predicting
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the effective quantities at a very low cost. The method was also extended to shells in [23] and
heterogeneities were included in [24].

4.5. The wide-frequency-range analysis

In our proposed approach to the transient dynamic response analysis, the Frequency Response Function
(FRF) over a very wide frequency range needs to be calculated. Therefore, the ability to use the VTCR
over a relatively wide frequency range could be advantageous.

4.5.1. Calculation of the VTCR in a frequency range Thus, the objective is to be able to calculate the
solution in a frequency rangeB with central frequencyω0 and bandwidth 2Δω: FindU which verifies:

Kh(ω)U(ω) = Fh(ω) ∀ω ∈ B= [ω0−Δω;ω0+ Δω] (24)

The idea is to introduce a two-scale approximation in terms ofω. Any quantityα, including the
operatorKh(ω) and the loadFh(ω), can be written overω ∈ B as:

α(ω) =
l

∑
r=1

Qr(ω)Ar(ω0) (25)

whereAr is assumed to be constant over B. If necessary, one could build a better approximation for
functionAr, e.g. a linear approximation.Qr is a rapidly varying function ofω equal to:

Qr(ω) =
2πiωqr

e

whereqr is one of the discrete values:{rξ|r = −N,−N+1, . . . ,0,1,2, . . . ,N}.
In practice, 2ωcNξ is equal to the maximum number of space waves per substructure.ξ or N is a
parameter which characterizes the quality of the two-scale approximation (25) (N ∼ 100 to 1000).
Several techniques have been developed for determining an approximation ofU in the form of (25)
[25]. Here, we will introduce a new and quite efficient version.

Let us study the behavior of the exponential argument. This quantity can be expanded into a Taylor
series up to order̄k. The matrixKh and load vectorFh can then be approximated as:

Kh(ω) =
k̄

∑
k=0

Kk(ω0)(ω−ω0)
k (26)

Fh(ω) =
k̄

∑
k=0

Fk(ω0)(ω−ω0)
k

Let us also define the mean value over the frequency rangeB:

〈·〉 =
1

2Δω

Z

B
·dω

The matrixKh and load vectorFh can be expressed as:

Kh(ω) = 〈Kh〉+ ΔK(ω) (27)

Fh(ω) = 〈Fh〉+ ΔF(ω)
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According to the Taylor expansion (26), one has:

ΔKh(ω) =
k̄

∑
k=0

ΔKk(ω0)(ω−ω0)
k (28)

ΔFh(ω) =
k̄

∑
k=0

ΔFk(ω0)(ω−ω0)
k

U can also be defined using the same approach:

Uh(ω) = 〈Uh〉+ ΔU(ω) (29)

Over the frequency rangeB, Equations (24), (27) and (29) can be rewritten as:
[

〈Kh〉+ ΔK
]

[〈U〉+ ΔU] = 〈Fh〉+ ΔF (30)

Equation (30) involves terms of very different magnitudes: some are large while others are small. Using
the techniques of perturbation methods, different order terms can be identified and Equation (30) can
be rewritten for order 0 and order 1:

〈Kh〉〈U〉 = 〈Fh〉 order 0 (31)

〈Kh〉ΔU = −ΔK〈U〉+ ΔF order 1

with ΔU equal to:

ΔU =
k̄

∑
k=0

ΔUk(ω0)(ω−ω0)
k (32)

Finally, the displacement retained over the frequency rangeB is:

U = λ〈U〉+μΔU (33)

whereλ andμminimize the error defined through the approximations in (31):

E2 =
1

2Δω

Z

B

[

Fh−KhU
]T [

Kh
s

]−1

D

[

Fh−KhU
]

dω (34)

[

Kh
s

]

D
is the diagonal of the symmetric part ofKh, which is a slowly-varying function.

Remarks:

- k̄ corresponds to the degree of the Taylor expansion and is the only parameter that must be chosen
to ensure good accuracy.

- The mean dissipated energy is:

e=
λ2

2
〈U〉TKh

s 〈U〉+
μ2

4Δω

Z

B
ΔUTKh

sΔU dω (35)

- λ, μ can beω-functions.

This method over a frequency range was tested on beams and on assemblies of plates in [26]. For
Δω
ω0

≈ 10%,k̄= 5 seems to yield a very good approximation.
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4.5.2. Use of the wide-frequency-range analysis In the frequency-domain analysis procedure, the
use of discrete Fourier transforms requires that the forcing functionsf

d
(t) andFd(t) in the dynamic

reference problem of Equation (4) be converted into periodic forms. Thus, unless the forcing functions
f
d
(t) andFd(t) and the unit impulse function of the systemh(t) are time-limited and the time period

To is selected carefully, the initial conditions of the transient response of the structure may not be
satisfied. This situation would arise because of an overlap with previous periods of the time function,
as explained in [27].
Therefore, the observation timeTo must be chosen such that the transient response of the damped
system dies out by the end ofTo. The choice ofTo is directly reflected in the frequency sampling of
the frequency response functionĥ(ω) and can lead to a large number of VTCR calculations. It is,
therefore, crucial to be able to know the frequency response function for any frequency in a relatively
wide frequency range, as we did in Section 4.5.1: then, the frequency step can be chosen anyhow with
no increase in computation effort.

Then, since the FRF is known explicitly over a wide frequency range, the frequency-domain analysis
using discrete Fourier transforms can be carried out easily.

5. EFFECTIVENESS OF THE METHOD

5.1. Example of a beam subjected to a shock at one end

Figure 5 shows an example consisting of two beams connected together, subjected to an impact bending
load at the right end andfixed at the left end.

Fd(t)

t
T = 2μs

E = 200GPa
ρ = 7800kg.m−3

η = 0.01

L= 1m
S = 0.01m2

I = 8.3 10−6m4

L′ = 1m
S′ = 0.0049m2

I′ = 2 10−6m2

Figure 5. A transient dynamic problem: beam subjected to impact bending

The loading which characterizes the impact and its spectrum obtained through the Fourier transform
are described in Figure 6.
We chose the observation timeTo such that the transient response of the damped system dies out by the
end of this lapse of time: this enabled us to use discrete Fourier transforms.

The purpose of this example is to show the importance of the medium frequencies which, although
the displacements are small, can play a significant role in the the kinetic energy. We will also use this
example to compare our approach with a classicalfinite element method in the time domain.
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5.2. The discretized problem of the frequency-domain approach

The frequency range[0,ω′
c] being studied was divided into two parts: the low frequencies[0,ωc] and

the medium frequencies[ωc,ω′
c].

As suggested in Section 3.2, a standardfinite element technique was used to obtain the frequency
response functions over the low-frequency range. In order to derive a proper FRF, the reduced basis was
constructed from thefirstmmodes to arrive at a highest eigenfrequencyωm = 2ωc, and was completed
with the static bending mode. The mesh was discretized according to the classic law “at least 7 elements
per wavelength” for the highest eigenmode of the reduced basis.
The VTCR turned out to be a suitable computational method for the medium-frequency range and used
only eight complex rays: two interior ones and two evanescent ones for each beam.

The problem to be solved was a discrete frequency problem, since the spectrum of the loading was
obtained via the efficient Fast Fourier Transform [27]. Thus, the FRF was calculated for every sampling
frequency. The sampling was a function of the observation timeTo of the response :fo = 1

To
.

The number of VTCR calculations for the medium-frequency range was reduced by using the wide-
frequency-range analysis of the VTCR presented in Section 4.5, which was essential in that case.
Degreēk = 5 of the Taylor expansion was chosen.

Having calculated the FRF, we performed an inverse Fast Fourier Transform in order to restore the
time-dependent response, which led to no difficulty thanks to the wide-range analysis of the VTCR
(see Section 4.5.2).

5.3. Choice of the frequency ranges

The frequency range[0,ω′
c] being studied was divided into two parts: the low frequencies[0,ωc] and

the medium frequencies[ωc,ω′
c]. We will now study the influence of these ranges.

5.3.1. Influence of ωc Let us varyωc first. Figure 7 shows the velocities at the junction of the
two beams obtained with three different values ofωc and afixed value ofω′

c = 106Hz. On the
left-hand side, the velocity is represented over a rather large time span; the right-hand side of
Figure 7 is a zoom on the beginning of that signal. The different values ofωc are chosen such that
ωc = [16103Hz,65103Hz,145103Hz] generate maxima of 5, 10 and 20 oscillations respectively on
one of the two beams.
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Figure 7. Deflection at the junction for different values ofωc

As expected, the choice ofωc does not affect the accuracy of the response. Indeed, the frequency
contents of the three responses are the same; only the ways the frequency response function over part
of the frequency range are obtained are different, but in each case the FRF is calculated over the same
global frequency range.
Nevertheless, the choice ofωc affects the cost of the calculation: a largeωc would require an expensive
reduced basis in order to calculate the FRF over[0,ωc] (see Section 3.2). This could also lead to
numerical difficulties.
In practice,ωc is chosen such that this frequency does not generate more than 10 oscillations per beam.
Beyond 10 oscillations, the frequency is consideredto belong to the medium-frequency domain. In the
example presented, we hadωc = 65000Hz.

5.3.2. Influence of ω′
c Figure 8 shows the influence ofω′

c, i.e. the effect of the frequency content
on the response. On the left-hand side, the velocity is represented over a rather large time span; the
right-hand side of Figure 7 is a zoom on the beginning of that signal. The velocities atthe junction of
the two beams obtained with three different values ofω′

c and afixed value ofωc = 65000Hz are shown.
The values ofω′

c were chosen as follows:ω′
c = [ 1

2T ,
1
T
,

2
T
] = [0.25106Hz,0.5106Hz,106Hz], T being

the length of the impact (Figure 6).
One can observe that the frequency content of the response affects the velocity and, therefore, the

kinetic energy to a great extent. In order to evaluate the frequency range necessary to derive the correct
response, the maximum of the kinetic energy at the junction of the two beams during the observation
time is plotted on Figure 9 as a function of the frequency range taken into account in the response.

In this case, the frequency range which is necessary and sufficient to produce the correct energy
level seems to be[0,106Hz]; this range is designated on Figure 9 by the vertical solid line.ω′

c = 106Hz

is twice the characteristic frequency1
T

of the input signal. From here on,ω′
c will be chosen such that:

ω′
c = 2

T
= 106Hz. Looking at the spectrum of the impact loading in Figure 6, this criterionω′

c = 2
T

enables one to embrace most of the frequency content of the input signal.
In the above example,ω′

c = 106Hz corresponds to an excitation generating 40 oscillations per beam.
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Figure 8. Deflection at the junction for different values ofω′
c

0 2.5 5 7.5 10 12.5 15

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−11

Highest frequency in the response

M
a
x
im

u
m

o
f
th

e
k
in

e
ti
c

e
n
e
rg

y

Figure 9. Maximum of the kinetic energy at the junction of the two beams during
the observation time as a function of the frequency range taken into account

5.3.3. Summary of the frequency ranges chosen The different frequency ranges are described in
Figures 9 and 10: the vertical dashed lines represent the limit of the low-frequency range and the
vertical solid lines show the upper bound of the medium-frequency range, i.e. the frequency content of
the response. These frequency ranges will be used from here on for the remaining examples.

Table I summarizes the content of each frequency range.

The number of VTCR calculations for themedium-frequency range was reduced from 4,800,000 to
1,000 only by using the wide-frequency-range analysis of the VTCR presented in Section 4.5, which
was essential in this case.
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Table I. Content of each frequency range

Frequency range Low Medium

Method Reduced basis: 53 modes VTCR: 8 rays
Frequency range [0,65,000Hz] [65,000Hz,106Hz]
Nb. of sampling frequencies 308,600 4,800,000

⇒ 1,000 calculations

5.4. Importance of the medium frequencies

The importance of the medium frequencies has already been pointed out in Section 5.3.2. Figure 9
shows that taking into account the low frequencies alone (vertical dashed line) alters the kineticenergy
level.
Further comparisons emphasizing the importance of the medium frequencies can be made on the same
example. Let us consider two responses obtained with the frequency-domain approach, one taking the
medium-frequency range into account and the other ignoring it.

The deflections at the junction of the two beams with and without the medium-frequency content are
plotted in Figure 11.

On the left-hand side of Figure 11, the responses seem to be similar, but when zooming in on the
very beginning of the signal (on the right-hand side), one notices differences: in the absence of the
medium frequencies, the small oscillations due to these frequencies are killed.
Although the displacements due to the medium frequencies are small, the velocity and, therefore, the
kinetic energy due to these oscillations are very significant (Figure 12).

This velocity and this kinetic energy are even larger if one uses a damping law which decreases with
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Figure 11. Deflection at the junction
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Figure 12. Velocity at the junction

the frequency, as shown in Figure 13. Damping was taken as follows:

ω ∈ [0,ω0] η = 0.01

ω ≥ ω0 η = 0.01
ω0

ω

α

with ω0 = 1,000Hz. The maximum of the kinetic energy at the junction of the two beams during the
observation time is plotted in Figure 13 as a function ofα.

The more rapidly the damping decreases with the frequencies, the higher the kinetic energy level
when the medium frequencies are taken into account (black line). If one leaves out these frequencies
in the response, most of the kinetic energy is ignored (grey line), especially for high values ofα.
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Figure 13. Maximum of the kinetic energy at the junction of
the two beams during the observation time as a function ofα

This example emphasizes the importance of themedium-frequency range. Therefore, one cannot
leave out the medium frequencies, as these appear to a great extent in the velocity and, consequently,
in the kinetic energy. Ignoring these medium frequencies could lead to poor design of structures.

5.5. Comparison with a standard approach

Let us now compare the response obtained with our frequency-domain approach with that obtained
with a standard time-domain approach. The purpose of this comparison is to assess the effectiveness
of the new method.

The calculation of the response with the time-domain approach was carried out in such a way that
it produced the same high-frequency content as ourfrequency approach, i.e. 40 oscillations per beam
for the highest frequency taken into account. To achieve that result, thefinite element model required a
fine mesh with 280finite elements per beam, i.e 7 elements per oscillation. Classically, an explicit time
scheme with a time step based on the Courant-Friedrichs-Levy condition for the highest frequency
was used. Since the spatial discretization was very dense in order to take into account the medium
frequencies, this means that the time-domain method required a very large number of time steps.
Indeed 320,000 time steps per time period of thefirst eigenmode of the structure were necessary.
The integration of the time scheme could be achieved using the reduced basis with 146 modes.

Table II summarizes the sizes of the computational problems for the two methods: the frequency-
domain approach proposed in this paper and the classical time-domain approach. The period of time
of interestT1 is the time period of thefirst eigenmode of the structure.

The two responses are plotted in Figures 14 and 15. These show respectively the deflection and the
velocity at the junction of the two beams obtained with the time-domain approach (dashed lines) and
the new frequency-domain approach (solid lines).

On the left-hand side of Figures 14 and 15, the responses obtained with both approaches are very
similar, even when one zooms in on the very beginning of the signal (on the right-hand side).
If one takes the response obtained with the classical time-domain approach as the reference, the
conclusion from this comparison is that our methodyields good results containing a wide frequency
content.
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Table II. Sizes of the computational problems for the time-
domain (TD) and the frequency-domain (FD) approaches

(period of time of interest:T1 = 38ms)

Approach TD FD

Reduced basis Reduced basis VTCR

Finite elements (beams) 276 98
Eigenmodes 146 53
Complex rays 8
Number of calculations 320,000 308,600 1,000
Size of the computational problem 320,000×146 308,600×53+1,000×8
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Figure 14. Deflections at the junction

Furthermore, the results of the new method were obtained with a reduced numerical effort. Indeed,
the calculations for our approach were carried out in the low-frequency range using a small reduced
basis compared to that of the time-domain approach (see Table II). For more complex structures, in the
time-domain approach, the construction of a reduced basis sufficiently rich in modes to deal with fast
dynamics, such as shocks, is often unfeasible; therefore, in these cases, the time integration is carried
out on thefinite element matrices directly: this leads to even greater computation times. In our method,
thanks to the use of the wide-frequency-range analysis of the VTCR, the frequency content is extended
using only 1,000 VTCR calculations. The frequency domain analysis procedure also requires discrete
Fourier transforms, which are performed using the Fast Fourier Transform (FFT) algorithms. The use
of the FFT makes the frequency approaches efficient for the analysis of the dynamic response of linear
systems [28].

The weakness of the frequency-domain approach lies in the fact that regardless of the period of time
of interestT1, the response must be calculated for an observation timeTo long enough for the response
of the damped system to die out. This constraint, mentioned in Section 4.5, is due to the discrete Fourier
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Figure 15. Velocities at the junction

transform and its periodic properties.
Nevertheless, the extension of the observation time requires only afiner sampling of the frequencies,
which creates no particular difficulties since the wide-frequency-range analysis of the VTCR is used in
our approach; but it still takes memory to store the data.
The following section deals with the means of reducing the number of frequency samples by taking
advantage the quick fading-out of the medium frequencies.

5.6. Improvement of the proposed frequency-domain approach

Here, we focus on the properties of the medium frequencies in order to reduce the number of frequency
samples for the calculation of the frequency response function over the medium-frequency range.
Indeed, since the bending beam being studied is a scattering medium, the propagation velocity of
the medium frequencies is greater than that of the low frequencies; therefore, the time taken by the
medium frequencies to become negligible (Figure 16) is rather short compared to the observation time
T0 = 4.5s necessary in order to use the Fourier transform techniques.

Therefore, in Equation (36), the time response can be viewed as the superposition of two
components,flow(t) and fmid(t), corresponding to the low-frequency contributionf̂low(ω) and the
medium-frequency contribution̂fmid(ω) respectively.

f (t)t≥0 =
1
2π

Z +∞

−∞
f̂low(ω)

iωt
e dω+

1
2π

Z +∞

−∞
f̂mid(ω)

iωt
e dω

= flow(t)+ fmid(t) (36)

These two components can be calculated separately.flow(t) is obtained easily with any suitable and
efficient approach; the medium-frequency contributionfmid(t) is obtained with the frequency-domain
approach presented in this paper and added afterwards. Calculating the two components separately
is convenient becausein the calculation offmid(t) the low frequencies are put aside and the medium
frequencies alone are taken into account. Thus, one can take advantage of the rapid fading-out of
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these medium frequencies in the time response to shorten the observation time for the discrete Fourier
transform to a considerable extent, which reduces the frequency sampling of the FRFf̂mid over the
medium-frequency range.

The velocities and the maxima of the kinetic energy as functions ofα are compared in Figures 17
and 18: one response was obtained with the FD approach presented in the previous sections and the
other with the technique of superposition of the low-and mid-frequency components we just described.
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Figure 17. Velocity at the junction

The superposition of the two components yields very good results and requires far fewer frequency
samples for the calculation of the frequency response function over the medium-frequency range.
The fraction Ns

N
of the frequency samples for which the FRF̂fmid had to be calculated over the

medium-frequency range is shown in Figure 19:Ns andN are the numbers of frequency samples
over the medium-frequency range needed for the frequency-domain approach, with and without the
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Figure 18. Maximum of the kinetic energy at the junction of
the two beams during the observation time as a function ofα

superposition technique respectively.
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Figure 19. Comparison of the numbers of frequency samples

The number of frequency samples over themedium-frequency range for which the FRFf̂mid needs to
be calculated for the frequency-domain approach is considerably smaller when the components arising
from the medium-frequency and from the low-frequency contributionsare calculated separately.

6. CONCLUSION

A new theory for the calculation of transient dynamic responses with a high frequency content, has
been introduced and its effectiveness has been shown. The point of this technique is to cover both the
low and the medium frequencies, while decreasing the cpu-time. In this paper, only non-linearities in
the frequency domain have been considered. The extension to non-linearities expressed in the time
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domain and to 3D-problems is the subject of further developements.
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Structural Mechanics, Ladevèze P, Zienkiewicz O (eds). Elsevier, 1992; 347–365.

10. Soize C. Reduced models in the medium frequency range for general dissipative structural-dynamics systems.European
Journal of Mechanics A/Solids 1998;17(4):657–685.

11. Sarka A, Ghanem R. Mid-frequency structural dynamics with parameter uncertainty.Computer Methods in Applied
Mechanics and Engineering 2002;191:5499–5513.

12. Desmet D, Van Hal B, Sas P, Vandepitte D. A computationally efficient prediction technique for the steady-state dynamic
analysis of coupled vibro-acoustic systems.Advances in Engineering Software 2002;33:527–540.

13. Belov VD, Ryback SA. Applicability of the transport equation in the one-dimensional wave propagation problem.Journal
of Soviet Physics-Acoustics 1975;21(2):110–114.
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