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A new a posteriori error estimation for nonlinear time-dependent 
finite element analysis 

Pierre Ladeveze*, Nicolas Moes Laboratoire de Mecanique et Technologie, E.N.S. Cachan/C.N.R.S.!Universite Paris 6, 61, Avenue du President Wilson, Cachan Cedex, France In this paper, an error on the constitutive law (labeled the dissipation error) is used to measure the quality of finite element computations of plastic and viscoplastic structures whose behavior is described by internal variables. This measure takes into account all the classical sources of error involved in the computation: the space discretization (the mesh), the time discretization and the iterative technique used to solve the nonlinear discrete problem. More specifically, to quantify the quality of the space and time discretizations, two quantities, called indicators, are introduced. The efficiency of both the error and the indicators is shown for several examples. 
1. Introduction

Nonlinear finite element analysis for time-dependent problems is quite common nowadays. An important 
question now is to estimate the quality of these analyses and to minimize the cost of the computation for a given 
level of accuracy. This paper deals with the first part of the question, i.e. error estimation. Materials described by 
internal variable formulations (examples: Prandtl-Reuss model for plasticity, Chaboche model for viscoplastici­
ty [I], etc.) are considered. There is growing interest for this kind of formulation at the theoretical, experimental 
and computational levels. The assumptions of small strains and displacements, as well as isothermal and 
quasi-static loading, are made. 

Many papers have dealt with error estimation for linear problems. Three main differing approaches must be 
distinguished. The first one, chronologically speaking, is based on the concept of error on the constitutive law 
[2] and has been applied, among other areas, to thermal [2] and elastic problems [3]. The second one, introduced
by Babuska and Rheinboldt [4,5], then developed by Zienkiewicz et al. [6,7] and more recently by Oden et al. 
[8], uses the equilibrium residuals through local problems to estimate the error. The last one, developed by 
Zienkiewicz and Zhu [9-11], consists in comparing the finite element solution to a smoother one obtained by 
special averaging techniques. Finally, let us mention the dual analysis approach based on upper and lower 
bounds for the energy [12,13]. A validation of these a posteriori error estimators can be found in [14-16]. 

In comparison with the linear case, much less has been accomplished for the nonlinear case. For nonlinear 
time-independent problems, Babuska [ 17] and Johnson [ 18] have designed error estimates for nonlinearelasticity and Hencky-type plasticity, respectively. For nonlinear time-dependent problems, techniques devised
for linear problems or time-independent nonlinear problems are used at each time step [19-21]. Unfortunately, 
the error estimates so built do not take into account the errors due to the time discretization. In a time-dependent * Corresponding author.
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nonlinear problem, the quality of the finite element solution at time t depends indeed, not only upon the quality 
of the mesh, but also on the two following influences: the quality of the time discretization performed since the 
beginning of the loading, and the defect of convergence of the global iterative algorithm at each computed time 
(Newton's algorithm, for instance). 

An error on the constitutive law taking into account the three sources of error described previously has been 
proposed by Ladeveze [22}. This measure, based on Drucker's inequality, was first applied in [231 for plane 
stress problems and three-node triangles. In this paper, a procedure to adapt the mesh is also described. The 
Drucker error has recently been reused and enhanced in order to conduct a simultaneous adaptive control of the 
space and time discretization for three and six-node triangles in plane and axisymmetric problems [24]. The 
Drucker error is based on a sufficient condition that ensures the stability of the material. 

In this paper, we introduce and implement new a posteriori error estimates to characterize the quality of finite 
element calculations that are based upon the notion of dissipation errors as elaborated in [25] and [26]. This 
approach is designed for more common situations where the state of the material is described by a set of internal 
variables (plastic strain, hardening parameters, ... ). With this modeling approach being much more mechanical 
in nature, it is taking a step over the functional description of the material. The key idea herein is to divide the 
equations of the problem into two groups: 

• A group of equations related to the free energy including the equation of equilibrium, the kinetic
constraints, the state laws and the initial conditions. 

• A group of equations related to the dissipation, i.e. the constitutive laws describing the evolution of the
material state. 

The dissipation error characterizes the quality of an approximate admissible solution, i.e. a solution satisfying 
the first group of equations. This quality is quantified by the non-verification of the second group of equations. 
This fact naturally leads to the terminology of dissipation error. The finite element solution is of course not 
admissible. Thus, an important task is to elaborate, at low cost, a strictly admissible solution. Another important 
task is to define the error's measure. We will be mainly concerned here with the class of standard materials 
covering most of the plastic and viscoplastic materials. The extension of the notion of dissipation error to 
non-standard materials do not lead a priori to further difficulties, for instance by using the concept of bipotential 
[27 ,28]. An advantage of the dissipation error is that it is directly linked to a gap between the exact and the 
approximated solutions. This result, analogous to the Prager-Synge theorem for elasticity, is demonstrated in 
[26]. 

Let us now focus on the contents of this paper. The reference problem and the dissipation errors are described 
in Sections 2 and 3, respectively. The usefulness of such a posteriori error estimations is evaluated in theframework of the classical incremental finite element method in Section 4 and illustrated for several examples in
Section 5. As for the Drucker error, the dissipation error does take into account all the error sources involved in 
the computation. It is useful, for an adaptive control, for instance, to distinguish within the error the part due to 
the mesh from the one due to the time discretization. Two indicators are introduced for this purpose and tested 
in Section 6. 

2. The continuous reference problem
Concerning the notations, vectors will be underlined Ul., Y._*, .. . ) and second-order tensors bold italic. For

instance, strains and stresses will be denoted by u and e, respectively. This notation will also be used to denote 
the additional internal variables. For more complex operators, such as Hooke's tensor, they will be in bold roman, such as K. And finally, the first derivative of a function f with scalar argument will be denoted by f'.

The solid medium under study occupies at the initial time so as for the further moments (small strain and 
displacement assumption) a domain n bounded by an. The study is carried out over the time interval [O, T]. The environment of the medium is schematised for all t belonging to [O, T] with an imposed displacement Y._d ona part a1 n of the boundary, a surfacic load Et on a2n (complementary to a I fl) and a volumic load fd on thedomain n. We will assume, without any loss of generality, that the partition of an in a l fl and a2n is -constantwith respect to time. The desired solution must fulfill the kinematic constraints, the equilibrium equation, the
constitutive law and the initial conditions. Concerning the regularity imposed on the displacements, speeds, stress, ... i.e. the spaces where these fields are to be found, we will work in the usual bounded energy frame.
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For more details, see for instance [29]. OZl will denote the space where we look for the displacement field !l 
defined on fl and 9' the space where we look for the stress field, also defined on fl. The extension of these two
spaces to the whole time [0, T] will be denoted OZl ro,TJ and yro.n, respectively. Finally, Tr stands for the trace.
2.1. The kinematic constraints 

V E  OZ! io.TJ - ad 
OZ!'.,�-TJ = HI E OZ! ro.n such that !!.. = !l..d on [0, T] x a I fl} 

Let us also define the set OZL0 : 

OZL0 = { OZ! E OZ! such that !!.. = 0 on a I fl} 
2.2. The equilibrium equations (in quasi-static) 

c: c,,[O.TJ Uc: .J ad 
9'��.TJ = {u E yro .ri satisfying (5) 'v !!..* E OZL0 and 'v t E [0, T]} 
f Tr[ue(!J..*)J dfl -f f:i 0!l* dfl-J f.t 0!J..* dS = 0 

!l l1 - a2ll 

2.3. The behavior described by internal variables 

( I )

(2) 

(3) 

(4) 

(5) 

The state of the material is characterized at each point by the total strain e, the inelastic strain eP and a set of 
internal variables denoted by X. The associated variables are the stress for e and eP, and the quantity Y for X.
Thus, the expression of the dissipation is 

(6) 
The second term specifies the contribution of (X, Y) to the dissipation. If X denotes a column of R\ then Y is 
also a column of Rn and we have 

Y 0 i=Y'X 
where t stands for the usual transposition. More precisely, two space e and f are placed in duality by the 
following bilinear form: 

[ !;], [;] ➔Tr[ue] - Y 0 X
eXf ➔ R

As we work with the small strain assumption, the total strain is the symmetric part of the gradient of !J... In an 
orthonormed basis, one has 

and we have the additivity relation of the rate of elastic i e and inelastic iP strains: i = i e + i P . 
2.3.1. The state laws 

According to the first principle of thermodynamics, a free energy if,, depending only on the state variables e,eP and X, can be introduced. The following classical assumptions are made: 
• if, depends only upon the elastic strain e' and the internal variables X. • tf,(ee, X) = tf,,(e') + 1/1/X) 
• Elasticity is linear: 1/1,(e') = ½ Tr[Ke' e'], where K is Hooke's tensor. 
The derivation of If, yields the state laws u = Kee and Y = G(X), where G(X) is the derivative of if,P withrespect to X. 
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2.3.2. The evolution laws 
The fulfillment of the second principle of thermodynamics, written as follows: 

Tr[ uep] - y O X ;;. 0
warrants including in the model a relation between ( e, - X) and ( u, Y), in other words an evolution law for the
internal variables (eP, X). Formally, one can write 

eP = 0 , X = 0 for t = 0 (7)
B is an operator relevant to the material. It must be positive to respect the second principle of thermodynamics. 
The material is suppose to be initially virgin. E will denote the space where the fields (e, -X) defined on il
are to be found and E 10 ·TJ the history of these fields on [O, T]. The corresponding space for the dual fields are
denoted by F and F 10 ·TJ, respectively. 
2.3.3. Standard materials 

A typical way to define the operator B is to give a scalar function q;*(u, Y), generally convex, called the 
potential of dissipation, and to write 

( ��) EG:::�:, :D (8) 

where ( a u'P*, i3yq;*) denotes the subdifferential of q;* at (u, Y). When the potential is differentiable, the 
subdifferential becomes a classical gradient and the membership sign an equality. A model for which the 
evolution laws are given by the subdifferential of a dissipation potential (8) is called standard for the choice of 
variables (X, Y). The interest of a standard model lies in the following classical property. The second principle
of thermodynamics is fulfilled if one has a potential satisfying: 

q;* convex q;*(O, 0) = 0 q;*( ., • ) ;;. 0 (9) 

2.3.4. Examples of standard materials 
As an example, let us consider the Prandtl-Reuss plastic model and its viscoplastic version. Besides the 

plastic strain, the model involves another scalar internal variable p that can be interpreted as the cumulative 
plastic strain. The free energy is of the form: r/J(ee, p) = ½ Tr[Kee ee] + g(p)
where g is a function characterizing the hardening law. So, R = g'(p) (10) 

These are different classical hardening laws: R = kyp (linear hardening), R = kyp
11m (power hardening) andR = RM(l -exp(-yp)) (exponential hardening). ky, m, RM, y are constant material parameters. As for all

standard plastic models, the dissipation potential is the indicator function of the convex of elasticity. Such a 
function is zero in the convex of elasticity and +oo elsewhere. Here, the convex of elasticity is the set (u, Y) 
satisfying: 

z(u, R) = \\uD \\ -(R + R0) � 0
where uD is the deviator of the stresses, \\uD \\ its norm and R0 the initial yield stress. 

\\uD \\ = (Tr[uDuD])112 

One may easily check that q;* fulfills the sufficient conditions (9) ensuring the respect of the second 
thermodynamics principle. A viscoplastic version of the Prandtl-Reuss plastic model is obtained by the 
regularization of the plastic potential; for instance, with a power law: 

k )n+l q;*(u,R) = n + 1 (z + (11)
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where (z) + denotes the positive part of z: (z) + = (z + lzl) / 2.
2. 3.5. Non-standard materials described with a bipotential

Some typical material behaviors cannot be described in a standard way. For some of these materials, such as
the Coulomb's dry friction and the nonlinear kinematical hardening rule for cyclic plasticity of metals presented 
by Chaboche [I], evolution laws may be written in an elegant way using the bipotential notion introduced by de 
Saxce [27] that generalizes, in some way, the notion of potential to the non-standard materials case. A 
bi potential is a scalar function b( [ e, - i], [ u, Y]) satisfying the following conditions:

• b is convex with respect to both its arguments taken separately, i.e. b(•, [u, Y]) and b([e, -X], •) are
convex for all ( e, - i, u, Y). 

• b([e, -x'J, [u, Y])-Tr[uip] + Y 0 i;;;, 0 'v' (ip, -i, u, Y)
• Evolution laws are given by

b([e, -XI, [u, Y])-Tr[ue] + Y 0 X = 0. 
2. 3.6. Formulation of the behavior

In summary, the state of the material is defined by the total strain e, the inelastic strain eP and the internal
variables X. The dual quantities are u and Y. The constitutive laws are 
The state laws: 

Y= G(X) 
The evolution laws and initial conditions: 

eP = 0, X = 0 for t = 0 
If the model is standard, B is derived from a potential <p*(u, Y), i.e.

eP = 0, X = 0 for t = 0 
Eliminating the variables X, Y and eP, one gets the functional formulation of the constitutive law: 

u(t) = .sl/,(i(T), 7,o:;; t) t E [O, T]
2.4. Normal formulation of a constitutive law 

(12) ( 13) (14) 
Herein, we sum up the discussion about the choice of the internal variables given in [25]. Consider two sets of 

internal variables (X, Y) and (X, f) linked by the following change of variables:
X=R(X) f = S(Y) (16) 

and suppose this change does not modify the functional law (15). Why should one choose to formulate the 
behavior with the set (X, Y) instead of the set (X, f)? The significance of the variables or the dissipation's value
may help to decide. Although leading to the same functional law, the dissipation value is indeed in general 
modified by the variable change, i.e. - Y O i # - Y O i. If we fail to take into account these two arguments, there 
is no reason to favor one set of variables over the other. A formulation in which the variables X and Y have the 
same weight, i.e. linked by a linear relationship, is said to be normal. Such a formulation is given by 

[-exp·]-- s([ur]) _ _ X = 0, eP = 0 , for t = 0 
(17) (18) 

where A is a constant symmetric linear definite positive operator. In [25], the following results have been 
proven: 

• Every model of the type (12)-(13) implies a normal formulation.
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• A standard material admits a normal standard formulation if some conditions that are not too restrictive in
practice, hold. These conditions are necessary to preserve the standard initial standard character of the 
formulation when writing to the normal one. • Every bistandard material implies a standard normal formulation. A material model is said to be bistandard
if it is standard and fulfills the following conditions for the variable sets (Y, X)  and (X, Y):
- cp*(u, Y), cp*(u, G(X)): convex functions
- cp*(0, 0) = 0, cp* ;;,, 0, G(O) = 0 
- if,(e' , X) = if,/ee) + if,P(X): convex function 
Remark: a normal standard formulation is trivially bistandard. 

2.4.1. Examples of normal standard formulation 
If kY > 0, m > 1, RM > 0, y > 0, k > 0, n > 0, all the models earlier described are bistandard and thus implies 

a normal standard formulation. This formulation reads 

Now, z(u, 13 )  = l lu0 I I - (1(13) + R0) :,;::; 0
For the power hardening law: 

l(R ) = -1- Ra + l - a +  1 - with A =  -1- ((a + l )k t -a) / l + a)1 - a Y 
And for the exponential hardening law: 

1(8 ) = 13( 1 - 4!M 13) with A = RMy

( 19) 

I - mand a = --1 + m

In plasticity, the dissipation potential is the indicator function of the convex domain defined by z :,;::; 0 and in 
viscoplasticity, the expression ( 11) must be used. For a linear hardening law, the initial formulation is of course 
already normal (and standard). 

The next section is devoted to the dissipation error. First, the basic concepts are presented in detail. Then, wewill see how these concepts may be applied to normal standard, bistandard and non-standard formulations. 

3. The dissipation error: concepts and measurements
The notion of error on the constitutive law has been introduced in [30]. It relies on splitting the equations of

the problem into two groups. When the behavior is formulated by a functional law, the first group combines both 
the equilibrium equations and the kinematic constraints, and the second group contains the constitutive law. The 
quality of an approximate solution satisfying the first group (i.e. and admissible solution) is quantified by the 
non-fulfillment of the second group of equations (constitutive law). If Drucker's stability inequality holds for the 
material, a natural way to measure the error can be obtained [23,24]. The error on the constitutive relation is avery mechanical approach since less confidence is given to the behavior of the material. 

When the state of the material is described by internal variables, the admissibility notion must be revised. 
Indeed, the state laws, associated with the free energy, and the evolution laws, associated with the dissipative 
phenomena, must be distinguished in the formulation. In [26], the choice has been made to include the state laws 
in the definition of admissibility, with the error being measured on the evolution laws alone. The problem is 
divided precisely into two groups: 

• The first group defines the admissibility of a solution. It combines the equations related to the free energy:
the equilibrium equation, the kinematic constraints and the state laws u = K(e - eP) and Y = G(X). We 
also add to this group the initial conditions (defining the initial state of the material, taken here as virgin) (eP, X) = 0  at t = 0  on {l. 

• The second group, related to the dissipation, only includes the evolution laws. 
Two questions must be still answered to actually utilize the dissipation error concept. The first one deals with 
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the admissibility. In general, the finite element solution obtained from the computation is not admissible. For 
instance, the stresses are not exactly statically admissible. The construction of an admissible solution from the 
finite element one will be addressed in Section 4. The second question, that concerns the definition itself of the 
error measurement, is the topic of the next section. The measurement depends upon the type of formulation 
considered. If the material is standard, or more generally bistandard, a measurement is given by the inequalityproperty of the Legendre-Fenchel transform. If the material is not standard but admits a bipotential, properties of
the bipotential may be used. In the more general case, the measurement should use the monotony property of theoperator B. 
3. 1. Classical properties of standard formulations

With the help of the Legendre-Fenchel transform, one can associate a dual potential <p(iP, -X) to the primal
one <p*(u, Y). 

<p( ip, -X) = sup (Tr[ ue] - Y O X - <p*(u, Y)) (20) (u.Y)Ef 
The Legendre-Fenchel transform possesses two interesting classical properties: 

T/(e, x. u, Y) ;;, O  'v (u, Y, i p, -X) (21) 
(22) 

The condensed following notation has been used: 
T/(e, X, u, Y) = <p(ip, -X) + <p*(u, Y) - Tr[ue] + y 0 .X (23 )  

The inequality (21) is usually called the Legendre-Fenchel inequality, and the equality relation (22) simply 
means that T/ is zero if and only if the evolution laws are satisfied. 
3.2. Error measurement for standard model with normal formulation 

The quantity T/ allows measuring at each time and each place the quality of compliance with the evolution 
laws. The absolute error e can thus be defined as follows: 

IT e = j T/(e, X, u, Y) ctn dt 0 f1 
(24) 

The absolute error is zero if and only if the admissible solution and the exact solution both coincide on [0, T] .  
The norm chosen allows writing a direct link between the error and the gap occuring between the exact and 
admissible solutions. 
PROPERTY 1 e = r J Tf(eP, X, u, Y) + T7(iP, X, u, Y) ctn dtJo fl 

+ ½ L Tr[K- 1 (u -u)(u -u)] + A- 1 (Y -Y) 0 (Y -Y) dfl l T 

(1?, X, u, Y) denotes the exact solution and (iP, X, u, Y) the admissible one. This property has been established 
in [26] and is an extension of the famous Prager-Synge theorem [31]. 
3.2. 1. Absolute and relative error 

The relative error E is defined by E = e ID where 
D = 4 sup d, (25 ) tE(O.TJ  
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(26) 
The 'Y parameter (0 � 'Y � 1) allows weighting the values of the dissipation and the free energy in the denominator. We set 'Y = ½ .  For pure elastic problems, the dissipation tends to zero and the denominator 
becomes dramatically small compared to the numerator. Thus, we impose a minimum value for the dissipation 
given by 

where I !fr, I is the absolute value of the derivative with respect to time of the elastic free energy. This choice leads 
to reasonable dissipation error in elasticity in comparison to classical error norm for such problems. So, d, is 
now defined by 

3.2.2. Global error and local contributions 
Due to the simple norm chosen, it is easy to express the global error €. in terms of local contributions. The

local contribution to the err01: of the space-time domain w; (w; C [0, T] X D) is defined by 
L, YJ dW; 

€. =W; D (27) 
If the set of % i = 1, . . .  , I is a partition of [0, T] x n (i.e. u:= 1 w; = [0, T] X n and w; n w1 = 0 for i =/-c j), we 
have 

(28) 
In the finite element computation case, the time-space domain is naturally divided into elements E and time 
steps lit. Whether w denotes lit X E, lit X n or [0, T]  X E, €.w will represent the contribution to the error of a 
time step over an element, a time step over the whole structure or an element over the whole time period, 
respectively. Finally, if <p denotes [0, t] X n, we obtain the contribution of the time interval [0, t] over the whole 
structure: 

i' L YJ dil dt 
€.[O,rJ x n  = D 

3.3. Error measurement for bistandard model 
(29) 

For bistandard formulations,JL link between the error and the gap occuring between the exact and admissible 
solutions still exists [26]. ( eP, X ,  u, Y) again denotes the exact solution and ( e, X, u, Y) the admissible one. 
PROPERTY 2 

g = -2
1 f T f YJ(eP, x , u, Y) + YJ(tp, x, u, Y) + YJ(ep, i' , u, X) + YJ(fP, t, u, x) ctn ctro n ~ -
+ ½ L Tr[K- 1 (u -u)(u -u)] + (Y -Y) O (X -X) dDI T 
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The last term is positive due to the convexity of the X ➔ 1/1/X) part of the free energy. The absolute error is here 
defined as 

where 

I fT J . g = -2 r,(_ eP, X, u, Y) + TJ( eP, Y, u, X) dfl dt 
() f} -

9( e P, Y, u, X) = p( eP, -Y) + p*(u, X) -Tr[ueP] + X O Y 
p*(u, X) = cp*(u, G(X)) and p(fP, -Y) is the dual potential of p*(u, X).

3.4. Error measurement for a model with bipotential 
According to the properties satisfied by the bipotential, we propose defining the error as 

(30) 

(3 1 )  

(32) 

An absolute error is obtained using the norm (24 ). Unfortunately, it seems difficult a priori to obtain in the 
general case, a link between this error and the gap occuring between the admissible and exact solutions. 
3.5. Dual potential expressions 

Herein, we provide the expression of dual potentials for the standard normal formulations presented 
previously. The dual potential is calculated analytically from the expression (20). 8 and p have been replaced 
by R and p for the simplicity of notation. � is the indicator function associated with the convex domain A; z
stands for l luD I / - (R + R0) in the linear hardening case and / luD I I - (1/ (a + I ) R"+ 1 + R0) in the power
hardening case; a, a '  and n, n '  are linked by aa ' = 1 and nn ' = I ,  and finally: 

Cf = {(u, R) E f / z � 0} 
Ct = {(u, R) Ef / R ;;,, 0} 

cl = {( e P, -p ) E e / Tr[ePJ = 0} 
C2 = {( e P, -p )  E e /  l !eP I ! - p � 0} 
C3 = {(e P, -p ) E e J -p � 0} 

Prandtl-Reuss plastic model with linear hardening 
(33) 

Note that the condition R ;;,,  0 may be introduced to the definition of the dissipation potential. This does not 
change the behavior of the material, but the potentials are now written: 

<p*(u, R) = P-qnq (34) 
For a given admissible solution, the errors measured with the potentials (33) or (34) will not generally coincide. 
Thus, what potentials should be chosen? The choice of the potentials depends upon the context. Here, in 
applications, we will use the couple (34 ), as this choice ensures a continuity in writing the potentials in the 
power hardening law case. The condition R ;;,,  0 is indeed naturally respected in this case. 
Prandtl-Reuss plastic model with power hardening 

cp*(u, R) = Pc •nc• I 2 

Viscoplastic model with linear hardening 
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Viscoplastic model with power hardening 
k < )" + I  (f)*(u, R) = n + 1 z + + Pq 

. . . k ( \\e P \ \ ) n ' + I  1 ( p ) a ' + I  . (f)(e P, - p )  = Ro\\e P \ I + n ' + 1 -k- - a ' + l \ \iPI! \ \e P \ \ + 1frc, nc,
The regularization of the plastic potential 'P*, as we move to viscoplasticity, and of the linear hardening 

potential 'P, as we move to power hardening may be observed. 

4. Finite element and admissible solutions

The dissipation error cannot be directly measured on the finite element solution because it is not generally 
admissible. We will now see how it is possible to easily get an admissible solution from the finite element one in 
the case of the classical incremental finite element computation obtained through the displacement method. But, 
let us first detail the discrete problem. 
4. 1. The discrete problem

In an incremental method, the problem to be solved on [0, T] is divided into a succession of resolutions over
[tn, tn + i l  (n = 0, . . .  , N - 1; t0 = 0; tN = T ). Assuming the solution is known up until the time instant tn , one 
must then build the solution over [tn, tn + i l - First, a time discretization must be carried out. Usually, one only 
searches the solution at the final time t n + 1 • So, the kinematic constraints and the equilibrium equation are written 
at tn + I • and the behavior becomes a nonlinear algebraic relation linking the fields at tn + i · Formally: 

(35) 
where Un , en and Un + I '  en + l are the stresses and strains at the times tn and tn+ I' respectively. The .slf,n notation recalls that the stress at tn + i is no longer expressed as a functional law of the strain rate history, but now as a 
nonlinear algebraic law of the increase of strain en + 1 - en over the time step. Note that if the behavior is 
described by internal variables, they will, in general, explicitly appear in the numerical scheme. 

Concerning the space discretization, it is the displacement formulation (1, 4) that is commonly discretized.The domain is divided into elements on which the displacement field is interpolated between nodal values using
simple functions called shape functions. The displacement at M reads 

!l./M) = N(M)q (36) 
where N(M) is the shape function matrix and q the nodal displacement set. oUh denotes the finite element 
displacement space and Yh the space of stresses defined at the integration points of the domain n. The 
extensions of these two spaces to the whole time interval are denoted oU io,TJ and Yio,TJ. We are now able to 
write the discrete problem to be solved at tn + 1 :
The kinematic constraints U E ril1 1n + I  

-h,n + I ~u h,ad 

where 
oU ��;d' = {!l. E oUh such that !l. = Ila on a I n at t n + I }

Let us also define uuh ,O: 

(37) 

(38)
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U/ih O = ill E U/ih such that Y.. = 0 on a 1 11} 
The static equilibrium equations 

where 
� E !f''n+ i  h,n  + I h,ad 
!l';,�;J = { u E !l'h satisfying ( 41) at t n + 1 V Y..* E U/ih _o} 
f Tr[ue(Q*)] dlJh - f f<t O Q* dn-f Ea O Y..* dS = 0 n,, n - a2n 

The behavior 
uh ,n + l - uh ,n = dn (e(Qh ,n + l ) - e(Y..h ,n )) 

(39) 

(40) 

(4 1 ) 

(42) 
The integration f n · dlJh in ( 41) is classically done using a discrete integration technique. An exact analytical
integration is indeed not possible due to the nonlinearities present in the behavior. Thus, the stresses given by 
the computation (as well as the plastic strains and internal variables) are only known at the integration points. 

Eqs. (37), (40) and (42) form a nonlinear algebraic system. This system is solved in an iterative way, 
typically with Newton's method. Two types of solutions always exist as the iterations proceed: a solution 
(!l.h .n +  1 , frh .n � 1 ) satisfying both the kinematic constraints and the equilibrium in a finite element sense: UV 

E m, 'n + I  -h ,n + I -u h,ad

and a solution (Qh,n + " uh ,n + 1 ) satisfying both the kinematic constraints and the 'discrete' behavior: 
U E U/J, 'n + I  -h,n + 1 h.ad (43) 

(44) 
Classically, deriving a solution (Qh ,n + i '  uh ,n + l )  from the solution (!l.h ,n + l' uh ,n + l )  ( 'behavior phase') is
performed by integrating the behavior at each integration point of the structure with Qh ,n + 1 = Qh ,n + 1 • Deriving a
solution (!l.h ,n + l' rrh ,n + l )  from (Qh ,n + l' uh ,n + I ) ( 'equilibrium phase') is performed by a linear global resolution. 
When the two types of solutions are close to one another, the iterative process stops and the code generally gives 
the solution satisfying the 'discrete' behavior. 
4. 2. The construction of an admissible solution

From the finite element solution, we must construct an admissible solution (denoted by hats), i.e. satisfying:
0 E U/1 (O,T J 
- ad 

A E a[O. TJ 
U J ad 

y = G(X) on [0, T] X n
( iP, X ) = 0 at t = 0 on n

Depending on the type of model, an admissible solution will not necessarily lead to a bounded error. For 
instance, for models such that the plasticity or viscoplasticity takes place at a constant volume, i.e. Tr[ e] = 0, 
the error will be +oo if Tr[r] ¥- 0 (whether we are working with a standard normal, bistandard or even a non-standard bipotential formulation). So, among the admissible solutions, we will only consider the ones 
leading to a finite error. The rather unrestrictive assumption of linear evolution for imposed loads and displacements between
consecutive computed time is applied. We also assume that the prescribed displacements and applied loads are 
zero at t = 0. 
4. 2. 1. Construction of ir E !/'��-T l

The finite element stresses are not statically admissible at the time steps (they are not even known at every 
point, but only at the integration points). Let us first construct rigorously equilibrated stresses at each time step.Suppose we do have stresses that satisfy the equilibrium equation in the finite element sense uh ,n+ 1 (if this is 
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consist first of building load densities in equilibrium with the applied loading on the boundary of each element.
Then, stresses are built on each element separately. The density-building only requires the resolution of small 
linear 

 
local problems, and the stress-building is conducted analytically element by element. 

equilibrated stresses at each time step at our disposal and owing to the linear evolution of the loading, 
we interpolate them over each time step to obtain 6- E Y��-TJ ,  Let an and an + 1 be the values of a at tn and tn + i ,  respectively,. Linear interpolation of a means 

fn + l  - f f - [n a = --"-�- a + --- a l f n t - t n + 1 n + I  - n n + l  n 
At t = 0, we take uh ,o = 0, which is statically admissible with the initial null loading. 
4.2.2. Construction of Q E JU ��-Tl 

(45) 

Since the prescribed displacements display linear evolution on each time step and since the finite element 
displacement field satisfies the kinematic constraints at each computer time, an element of 0/L��-TJ is simply obtained by interpolating the finite element displacement field between the computed times. At t = 0, we take 
Q = 0, which is kinematically admissible with the initial prescribed null displacement. If the inelastic strains 
occur at constant volume, the finite element field must be modified at each computed time before the 
interpolation in order to fulfill the incompressibility condition Tr[e(f)_) - K- 1 u] = 0. This modification can be 
achieved and is inspired by previous work for incompressible and quasi-incompressible elasticity [32]. It will be 
the subject of a forthcoming paper. For the plane stress problems treated in the application, the condition 
Tr[ e(Q) - K - i u] = 0 can be achieved easily. 
4.2. 3. Construction of the inelastic strains 

The following expression must be used to compute the inelastic strains on [O, T]  X n in order to respect 
Hooke's law: 

(46) 
As Q = 0 and 6- = 0 at t = 0 on n, we have eP = 0 at t = 0 on n. We thus satisfy the initial condition on e. 
4.2. 4. Construction of the internal variables 

The computed internal variables are seldom given in classical finite element code. Herein, we do not consider 
them given at the computed time, and we construct them. Several choices are possible. We may, for instance, 
build them in order to minimize the error or in order to be as close as possible to the numerical integrationscheme used in the computation. Let us consider these two cases. 
Error minimization 

As the behavior of the material is local in space, the minimization is carried out independently at each point 
of the structure. X [O,TJ denotes the space where the internal variables defined on [0, T] are to be found. The 
minimization problem at a given point of the structure reads 

with 
f T  min 'T/ dt:i'EXIO,TJ 0 

Y = G(X) and X = O  at t = 0 
The expression of 'T/ depends upon the model considered. The variables 6- and e have been built at each time 
step, and then interpolated between these times. We will follow the same path to build the internal variables. In order to limit costs, this building process will be incremental. Suppose the internal variables are known up until
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tn at a point, the internal variables at tn + 1 will be obtained at the same point by solving the following local
problem: 

(47) 
with 

X'" + '  denotes the space where the internal variables defined at t + 1 are to be found. In order to explicitly express 
( 4 7) in terms of the unknown i,, + " an approximate integrati�n can be performed. 

We now focus on the case of a normal standard formulation. On [t,,, t,, + 1 ] ,  X and e P are constants and 17 
depends on times only through if and Y. Using the trapezoidal integration rule to approximate (47), one gets 

min Xn + I EX'n + I  (48) 
with 

The goal function of this minimization problem is strictly convex with respect to i,, + 1 • Thus, the solution will 
be unique. Also, note that owing to the convexity of 11 with respect to the variables ( u, Y), the expression ( 48)
always overestimates the exact expression ( 47). In the particular case of plasticity, both expressions are 
equivalent. 
Numerical scheme 

We consider the models described in Section 3.5. Suppose the internal variable p is known up until tn at a 
point, the internal variable at t,, +  1 will be obtained at the same point by Pn + 1 = sup{fi 1 ,,, + "  Pz.n + 1 ) where P 1 .n + 1 and p2 _ ,, + 1 depends on the model considered. For the Prandtl-Reuss plastic model with linear hardening P i ,n + i and p2 _,. + 1 are given by 

P 1 .n + I  = Pn + Un + l  -tn)IJe : + 1 11 
l P2 .n + I  = A (llo-�+ 1 1 1 - Ro)+ 

For the Prandtl-Reuss plastic model with power hardening: 
P 1 .n + I  = P,, + Ctn + !  -t,,)l le:+ 1 l ll '( AP 1 .n + 1 > 

I P2 .n + I = A l - l ( (l lu� + ,  I I -Ro)+ )
For the viscoplastic model with linear hardening: 

For the viscoplastic model with power hardening: 

A = _!__C,  ((11 A D 11 - R  - ( l le�+ 1 ll )
1 '") ) P2,n + l ,\ lTn + l  O k + 

where l(R) = l /(a + I ) R"+ 1
• These relations are inspired by the numerical implicit scheme used m the 
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computation. In the applications, we will use this second approach to build the internal variables instead of 
minimizing the error. In fact, the results obtained by the two approaches are quite similar and in the particular case of the plastic model with linear hardening, they are identical. 

5. Examples of dissipation error estimation

We will consider plane stress problems. The incompressibility condition for the inelastic strains is satisfied by 
adequately choosing the strain in the width (e33 ).  The finite element solutions are obtained by the code 
CASTEM2000. Triangular elements with three and six nodes are used. All examples were treated dimensional­
essly. 

5.1. First example: The holed plate problem 
A loading (Fig. 1 ), followed by an unloading, is applied to the extremity of a square plate with a square hole. 

Owing to the symmetry, only a quarter of the problem is considered (Fig. 2). The Prandtl-Reuss plastic model 
with linear hardening and the following dimensionless parameters is used. 

R0 = 1 ,  ky = 8. 16 , E = 244.95 , v = 0.3 
E and v denote Young's modulus and Poisson's ratio, respectively. The finite element computation is performed 
with 42 six-node triangular elements (Fig. 3) and eight equal time increments. The final hardening threshold 
level is given in Fig. 4. The dissipation error is 14. 7 1  % . Figs. 5-7 highlight each element contribution, the 
evolution in time of the contribution to the error and each time step contribution, respectively. 
5. 2. Second example: The frame problem

A frame (Fig. 8 )  is submitted to a growing, then deceasing load on its right side (thin line in Fig. 9). Then, an
increasing pressure is applied to its upper part (thick line in Fig. 9). The Prandtl-Reuss plastic model with linear 
hardening is again considered. The finite element computation is carried out with 352 three-node triangles (Fig. 
10) and 12  time increments (8 for the pressure on the right side, and 4 for the upper side). The threshold levels
obtained at t = 2 and t = 4 are given in Figs. 1 1  and 12, respectively. The dissipation error is 35.97%. Figs. 

1 .  
◄ - - - - - - - - - - - ►

◄ - - - -
0.5 I 

0.5 I 
I 

+ Fig. 1. The loading. F 

0.75 

0.75 1 .5 Fig. 2. The holed plate problem. 
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.00056 

.00664 ■ 

.01273 ■ 

.01881 

1.00 

1 .62 ■ 
2.23 ■ 
2.85 Fig. 3. The mesh: 42 six-node triangles and 10 3 nodes. Fig. 4. Final hardening threshold; initial threshold: R0 = I . 

. 1 6  

. 14  

. 1 2  

. 10  

.08 

.06 

.04 

.02 

.0 

.0 .2 .4 .6 .8 1 .0 1 .2 1 .4 1 .6 time Fig. 5. Contribution of each element to the error. Fig. 6. The evolution of the contribution to the error vs. time (see Eq. (29)). 
13- 15 show each element contribution, and evolution in time of the contribution to the error and each time step
contribution, respectively. 

5.3. Third example: The square plate problem 
Consider a square plate loaded on its right side under uniform tension. A uniform body force places this 

tension in equilibrium. Owing to the symmetry, only the upper-half part of the plate will be studied (Fig. 16). 
The loading evolves monotonically (Fig. 17). The viscoplastic version of the Prandtl-Reuss plastic model with 
linear hardening is used. The dimensionless material parameters are: 

R0 = 0.7 , kv = 8.16 , E = 244.95 , v = 0.3 , n = 2 ,  k = 2.25 
The mesh (Fig. 18) contains 16 three-node triangular elements. The plastic computation is carried out with four 
identical time increments. The plastic threshold obtained at the final time is given in Fig. 19. The error 
dissipation is 2 1 .30% for this computation. Figs. 20-22 display each element contribution, the evolution in time 
of the contribution to the error and each time step contribution, respectively. The last time step, on which the 
viscoplastic zone is the largest, contribute the most to the error. Concerning the space, the right part of the plate,where viscoplasticity occurs, contributes more to the error than the left one. 

15 | 24



7. 

6. 

5. 

4. 

3. 

2. 

1 .  

F 

.0 

0.25 

0.125 

-2
· 10

.2 .4 

1 .  
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1 .0 1 .2 1 .4 
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l 
I 

t .  I
I 

I .. ◄►0.1Fig. 7. Contribution of each time increment to the error. Fig. 8 .  The frame problem. 
4. Fig. 9. The loading (thin line for the right side and thick line for the upper part). Fig. I 0. The mesh: 352 three-node triangles and 235 nodes. 

5.4. Fourth example: The particular case of an elastic computation 
Consider a (visco)plastic problem for which the exact solution is elastic, i.e. a problem with no singularity and 

a small loading. The finite element computation for this problem with a single time step leads (if the stresses are 
all below the yielding stress) to a solution satisfying: 

This solution is not admissible since the field stress iih does not exactly satisfy the equilibrium equations. The construction of an admissible solution will, is general, yield a non-zero inelastic strain i P, thereby leading to anon-zero error. 
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u fjFig. 1 1 .  Hardening threshold at the end of the first loading; initial threshold: R0 = I .  Fig. I 2. Final hardening threshold. 
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time Fig. 13 .  Contribution of each element to the error. Fig. 14. The evolution of the contribution to the error vs. time (see Eq. (29)) . 
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time Fig. 1 5. Contribution of each time step to the error. Fig. 1 6. The square plate problem. 
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2 t Fig. 1 7. The monotonous loading. Fig. 1 8. The mesh: 16 three-node triangles and 1 5  nodes . 
. 70 .0022 □ □ 
,89 .01 17 ■ ■ 
1 .08 .0212 ■ ■ 
1 .28 ,03()7 Fig. 19. Final hardening threshold; initial hardening threshold: R0 = 0.7. Fig. 20. Contribution of each element to the error. 

. 12  

.20 
. 10  

. 15  .08 

.06 
. 10  

.04 

.05 
.02 

.0 .o 
.0 .5 1 .0 1 .5 2.0 .0 .5 1 .0 1 .5 2.0 

time time Fig. 21 . The evolution of the contribution to the error vs. time (see Eq. (29)) . Fig. 22. Contribution of each time step to the error. 
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1 .4 .------.----..-----.----...,......----,----,------, 

1 .2

�'---o-.o��---o·.o-1 --o-.·01_s ___ o�.o-2 ___ 0�.0�2S---o-.��---o�.�sFig. 23. Equivalent stress-strain relation for the four materials Ml ,  M2, M3, M4 ordered from the bottom to the top. 
As an example, consider the square plate problem with a small loading so that the plate stays in an elastic 

state. The dissipation error is 1 1 .06%. Note that the classical elastic error [3] obtained for the same problem is 
1 2. 1 1  % . So, the two errors are similar. 
5.5. Fifth example: Influence of the hardening law on the error 

We consider four different plastic material M l ,  M2, M3, M4. Fig. 23 gives the stress-strain relation for the 
tensile test and Table 1 the dimensionless parameters used. m denotes the power used in the power hardening
law. In each case, the elasticity parameters are the same (E = 244.95, 11 = 0.3). 

The dissipation errors obtained with these materials for the square plate problem are given in Table 1. Four 
time steps are used and several meshes are considered. We can observe that the errors are quite close for the 
different materials. 

Let us now compare the dissipation error E with the classical free energy norm exact error ? defined by 

where 

2 sup,E (O,T] (/luh -ull� - l  + IIYh -Yll!- 1 ) 
/; = 2 - 2 sup,E (O,T] (lluh +ullK - 1 + IIYh + Yt- , ) (49) 

The plate square problem treated with eight time steps and 16  elements gives a dissipation error of 23% for 
the material M4 and the exact free energy error is 14%. So the dissipation error overestimates the exact one by a 
1 .6 factor. If the loading is smaller, so that the exact solution is elastic, the factor is 1 .9. Table 1 Values of the dimensionless models parameters for the four plastic materials and dissipation errors obtained with different meshes 

m Rv ky Mesh 1 Mesh 2 Mesh 3 Mesh 4 Ml  4.5 0 .3 2.05 28 .09 23.48 1 3.48 8 .56 M2 2.0 0 .8 2.56 24.39 1 8 .8 3  1 1 .06 6.78 M3 1.25 0 .95 4.8 6 23.46 1 7.59 10 .58 6.27 M4 1.0 1 .0 8 . 16 22.8 9 17.23 10 .53 6.02 
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6. Discretization quality influence and error indicators

6.1. Time and space reference errors 
The dissipation error takes into account all the unavoidable error sources entering into the computation of a 

time-dependent nonlinear problem: the space discretization, the time discretization and the iterative technique 
used to solve the nonlinear discrete problem. Let us observe the behavior of the error when the space or time 
discretization is refined (the influence of the non-convergence of the iterate algorithm will not studied in this 
paper). Table 2 presents the evolution of the error E with an increasing number of time increments for a given 
mesh and Table 3 presents the evolution of the error for an increasing quality of the mesh and a given time 
discretization. 

We can conclude that the error decreases as the space or time discretization is refined an tends to stabilize 
beyond a given level or refinement. This result proves that the error depends upon both the space and time 
discretizations. Beyond a certain refinement in space (time resp.), the error is stable because it is mainly due to 
the time (space resp.) discretization. 

Let a time (space resp.) discretization be given, '=time ('=space resp.) is defined as the dissipation error due to this
discretization only, assuming that no error due to space (time resp.) discretization has been committed. 
Formally, we have Table 2 Error, space and time indicators in % for a growing number of time steps 
The holed plate problem nb step 2 4 8 16  32 
E 39.58 12.96 7.93 7.30 7.66 
;space 5.20 5.40 6.04 7.08 7.78 
i,ime 37.61 8 . 15 2.05 0.51 0. 17
The frame problem nb step 3 6 12  24 48 
E 25.75 16.37 13.83 1 3.76 14.01 
;space 10.90 1 1 .67 12.47 1 3.29 13.87 
i,ime 17.68 4.82 0.92 0.24 0.08 
The square plate problem nb step I 2 4 8 16  
E 42.25 17.62 13.96 12.76 12.57 
;space 10.91 1 1 .49 12 . 18 12.45 12.70 
;time 39.92 8.24 2.64 0.80 0.33 Table 3 Error, time and space indicators in % for a growing quality of the mesh Meshes Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 
The holed plate problem 
E 14.71 7.93 4.35 3.70 2.59 
i,ime 2. 15 2.04 2.08 2.08 2. 1 1
;space 12.23 6.04 2.33 1 .60 0.52
The frame problem 
E 40.94 35,89 21 .79 19,47 18.64 
;time 19.29 17,93 17.66 17.65 17.65 
ispace 34,08 26.50 5.44 2.35 1 .25 
The square plate problem 
E 24.90 17.62 12.54 9,88 8.81 i,ime 8.80 8.24 8.06 8.04 8.10 
;space 20.20 1 1 .49 5.26 2.05 0.76 
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Etime = lim E and E,pace = lim E h--->0 At--->0 (50) 
h (At resp.) stands for the quality of the space (time resp.) discretization. Etime and E,pace are called the time andspace reference errors, respectively. 1:,ime and E,pace are theoretical quantities since it is impossible, in practice, to
compute a solution with h = 0 or At = 0. For a given finite element computation, let us see how it is possible to 
approximate these quantities. 

Two problems exist between the continuous reference problem and the complete discrete problem: the 
problem discretized in space only and the problem discretized in time only. The dissipation error concept 
applied to these two 'new' problems give accurate estimates of the theoretical quantities Etime and E,pace · These 
estimates will be denoted i,ime• i,pacc and are called time the space error indicator, respectively. Note that a time
error indicator has already been introduced in a similar way for the Drucker error [24]. 
6.2. Space and time indicators associated with a finite element solution 
6.2.1. Time error indicator 

The 'time' problem is: 
The kinematic constraints: 

u E au 10 -TJ-h ad 

au ro.TJ = fU E oU 10·T 1 such that U = U  on (0 T] X a fl}h,ad � - ::::.d ' 1 
The equilibrium equations: 

E a[O,TJ Uh .J h,ad 

Yl��:1 = { u E Yl0·n satisfying ( 41) 'v !l. * E 0/Lh .o and 'v t E [0, T]} 
0/Lh ,O = {!l. E 0/Lh such that !l. = 0 on a I n}

The state laws: 
on [O, T] X nh 

The evolution laws: 
on [O, T] X nh 

at t = 0 On Jlh 

( t� ) E (auh <p*(uh , Yh )) -xh d yh <p*(uh , Yh) 
e� = 0 xh = O

The time error indicator is 
/time = f T f T/(E�, Xh , {rh , Yh ) d[}h dt

0 flh 

(5 1 )  
(52) 

(53) 

(54) 

(55) 

(56) 

(57) 
The integration over .n,, means that we use the same integration points as those used in the finite element
computation. The admissible solution (e�, Xh , frh, Yh) must satisfy (51), (53), (54) and (56). /time is the absolute 
time indicator. The relative indicator itime is defined by /time / Dtime where 

Dtime = 2 sup d, 
tE [O,T] 

(58) 

(59)
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6.2.2. Space error indicator 
0/,L co. TJ .1 will denote the space where the displacements defined on [0, T] .:i X [1 are to be found, and gro , n .1 

the space where the stresses also defined on [0, T l .:i X [1 are to be found. [0, T l.:i denotes the set of computed 
times and the following notation is used: 

The 'space' problem is: 
The kinematic constraints 

u E 0/,L [O, TJ .1  -n + l ad 
0/,L [O, TJ .1  = 5U E 0/,L [O, TJ .1 such that u = U on [0, T] A X  a l n} ad � - -d � 

The equilibrium equations
O' E g[O,TJ .1 n + l  ad 

The state laws: 

The evolution laws: 
on [O, T l .:i X l1 
on [1 e� = 0 X0 = 0 

The space error indicator is 

(60) 

(6 1 )  
(62) 

(63) 

(64) 

(65) 

(66) 

(67) 
/space really measures the error associated with the problem (61 )-(66) because of the following property that is 
simply a rewriting of (22) at the particular time tn + i  · 

(68) 

The admissible solution (i:+ l' Xn+ I ' un + P Yn + i ) must satisfy (6 1 ), (63), (64) and (66) and is constructed byreusing parts of already described techniques. The relative space indicator is pace is defined by /spacJ D space where
Dspace = 2 sup dk (69)kE[O, . . .  ,N- 1]  

(70)

22 | 24



6.3. Examples 
The space and time error indicators have ben calculated for the examples previously described. Tables 2 and 3 

summarize the results. We note that: 
• The time indicator is almost insensitive to the number of elements and approximates very well the time

error.
• The space indicator barely depends on the number of time steps and approximates very well the space error.
• The space and time indicators decrease monotonically with respect to the number of elements and time

steps, respectively.
In other words, space and time indicators do behave very well globally. 

7. Conclusions
A new error, labeled the dissipation error, has been utilized in order to a posteriori estimate the errors

committed in nonlinear time-dependent finite element computations for materials described by internal variables. 
This error, based on sound mechanical concepts, is directly linked to the gap occuring between the exact and 
approximate solutions. 

Two error indicators have also been introduced to estimate the error due to either the space discretization or 
the time discretization solely. The time (space resp.) error indicator is the dissipation error associated with the 
reference problem discretized in space (time resp.). Satisfactory properties for the indicators have been 
demonstrated. 

The error, as well as the indicators, will be used in a forthcoming paper to adapt both the time and space 
discretizations. A study of the influence on the error generated by the iterative technique will also be conducted. 
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