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Abstract. This paper deals with the cure of an in-plane isotropic carbon-polymer tooling material, 

with a complex microstructure [1]. The Mori-Tanaka (MT) and Eshelby-Kröner self-consistent 

(EKSC) models are used in order to achieve a two-steps scale transition procedure, relating the 

microscopic properties of the material to their macroscopic counterparts. This procedure enables 

estimating the multi-scale mechanical states experienced by the material, i.e. the local (microscopic) 

stresses due to thermal and chemical shrinkage of the resin, along a typical, macroscopic stress-free, 

cure process. The influence of the chosen scale transition model on both the calculated effective 

properties of the material and its local stress states, is investigated. These results are a first step for 

investigating the service life fatigue of the material, as well as its failure behaviour. 

Introduction 

Context. In the last decade, composite materials based on carbon (or glass) fibers and thermoset 

resins have been more and more involved in the design of mechanical parts. However, the 

engineering of composite parts yields several scientific challenges. One of them is the computation 

of the microscopic internal stresses, due to the properties mismatch between the fibers and the 

matrix. As curing is considered, the strong thermo-chemical shrinkage of the matrix is counteracted 

by the fibers, and yield self-compensated stresses in the constituents. These stresses can 

significantly affect the macroscopic stress-strain, fatigue and failure behaviour, and can result in 

fiber-matrix debonding or in increased fibers waviness (microbuckling) [2,3]. 

Review of predictive models. Various experimental approaches were developed for measuring 

these local stresses and strains; an extensive summary of these methods is given by Parlevliet et al. 

[4]. Meanwhile, scale transition models proved to be a relevant predictive approach. Tsaï-Hahn’s 

rules of mixtures [5] first gave an easily-understandable estimate of the properties of unidirectional 

composite plies, taking into account the anisotropy, but failed to predict the local stress states. 

Another class of models, the so-called “self-consistent” models, became trendier in the last decade. 

Among them, Mori-Tanaka (MT) [6] and Eshelby-Kröner Self-Consistent (EKSC) estimates [7,8] 

are the most used. These models can take into account the morphologies of the heterogeneities 

(inclusions) constituting the material [9,10]. They can also systematically predict the distribution of 

the mechanical states in the very constituents of the materials. It was recently taken advantage of 

this capability in order to realistically model realistically the various features of the multi-scale 

hygro-mechanical coupled phenomena occurring in composite structures submitted to humid air 

[11,12]. 

Purpose of the study. The study is focused on a composite tooling material with a non-trivial 

microstructure, which cannot properly be accounted for, by classical rules of mixture. The EKSC 

and MT models will be used to carry out a multi-scale analysis of the material behaviour during the 

cure process. The evolutions of the properties of the resin during the cure will be described, and 

used to predict the effective mechanical behaviour of the material and the development of residual 

stresses. The influence of the chosen model on the results will then be investigated and discussed. 
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The scale transition procedure 

Description of the models. Scale transition models are based upon a representation of the material 

at two distinct scales: a) the local scale (denoted by the superscript 
i
), of the size of the constituents

and b) the macroscopic scale (
I
), where the behaviour of the effective medium is observed. The

corresponding mechanical states are related through Hill’s volume weighted average relations [13]: 

iI εεεε====εεεε and iI σσσσ====σσσσ . (1) 

The arithmetic mean was used according to [14], which showed that it provides more reliable 

estimates than the geometric average for modeling organic matrix composites. In a previous work, 

Eshelby studied the behavior of an ellipsoidal inclusion embedded in a homogeneous ambient 

medium 
a
 loaded at the infinite [15]. His work led to the following relation, expressed by Hill [16]:

(((( ))))aiai :* εεεε−−−−εεεε−−−−====σσσσ−−−−σσσσ L , (2) 

where L* represents Hill’s constraint tensor, which depends upon the stiffness of the medium, and 

the morphology (orientation and shape factors) of the inclusion (see also [8,17,18]). Both relations, 

combined with the behaviour law, are used for estimating the effective (macroscopic) properties of 

the material. They also provide an estimate of the mean local mechanical states, with the following 

approximations indeed: the inter-particles interactions, the interphase and interfacial effects, are not 

represented. That’s why the choice of the embedding medium has a deep influence on the predicted 

local states. This choice distinguishes the MT from the EKSC model. For the EKSC scheme, the 

embedding medium is supposed to have the properties of the effective material at the macroscopic 

scale; whereas for the MT model [6], one of the constituents (usually, the matrix phase or the 

dominant phase) is chosen as the ambient medium.  

Application to the Hextool. The present work is focused on a composite material developed by 

Hexcel Composites for manufacturing complex parts: the Hextool [19]. It is made of unidirectional 

(UD) rectangular-shaped (60x8x0.15 mm) reinforcing strips, randomly disposed in the layout 

(Fig. 1b). The UD strips are constituted by AS4 fibers and M61© system (high-temperature 

toughened bismaleimid resin) [19]. The overall resin volume ratio is about 47 %, distributed inside 

the strips and between the strips (5 % of the overall resin volume). Thereby, the structure of the 

material involves three different scales: microscopic, mesoscopic and macroscopic. A two-steps 

scale transition procedure (Fig. 1a) is performed: first, the properties of resin and fibers 

(microscopic scale) are homogenized to obtain those of the UD strip (mesoscopic scale). Then, 

another homogenization provides the macroscopic properties, from those of the resin and the UD 

strips (mesoscopic scale) previously estimated. 

Figure 1: (a) Principle of the two-steps scale transition procedure (b) Aspect of the Hextool 

For the first step, three options will be considered: using MT model with either the resin (MTres) or 

the fibers (MTfib) as the embedding medium, and using the EKSC model (effective material as the 

embedding medium). For the second step, only EKSC model was considered, as one cannot 

distinguish any dominant phase. Moreover, the reinforcing strips were assumed to be disc-shaped 

for avoiding some limits of EKSC model [1] and optimizing computation time. 

Micro-scale Meso-scale 

1
st
 step : UD strips 2

nd
 step: Hextool 

Macro-scale 
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Investigation of the mechanical properties and cure kinetics of the resin 

During the cure process, the local and macroscopic behaviours can be described by the following 

differential chimio-thermo-elastic law, relating the stress σ to the strain ε: 

(((( ))))χT: ����
kkkkk L ηηηη−−−−αααα−−−−εεεε====σσσσ  with k = {i, I}, (3) 

where the stiffness is represented by the 4
th

-order tensor L and the Coefficients of Thermal

Expansion (CTE) and Chemical Expansion (CCE) by the 2
nd

-order tensors α and η, respectively.

The temperature and conversion degree are denoted by T and χ, and the time derivative by the 

upperscript  � . A differential form is required, as the resin undergoes important evolutions of its 

properties during the cure, that strongly affect the development of residual stresses. In order to 

precisely describe those evolutions, the mechanical properties of the M61 resin were investigated. 

Cure kinetics. The autocatalytic polymerisation reaction of the M61 resin can be parameterized by 

the conversion degree χ, defined as the ratio of the enthalpy released at a time, per the overall 

released enthalpy. This conversion degree is a state variable, and can be used for identifying the 

mechanical properties of the resin. The cure kinetics of a M21 organic resin, obtained with 

Differential Scanning Calorimetry (DSC) by Msallem et al. [20] was used in the present study. A 

180°C cure cycle was considered, as described in (Fig. 2a). The gradients of temperature and 

conversion degree, which can occur in thick parts due to the exothermic reaction, were neglected. 

Figure 2: (a) Cure cycle and conversion degree (b) Young’s modulus of the M61 resin 

Elastic modulus. The extreme evolution of the viscoelastic modulus of the resin reflects the 

deep changes of its physical state. At the beginning of the cure, the resin is in a liquid state and has a 

viscous behaviour. At the gelation point, the resin turns into a solid state, and the relaxation times 

become important enough so that residual stresses start to develop. The stiffness then increases with 

the conversion. Although several models were developed to model this hardening of the resin, most 

authors assume a linear dependence of the elastic modulus upon the conversion degree. However, 

the percolation theory [21] gives a more suitable expression, as discussed in [20]: 

(((( )))) (((( ))))
8/3
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−−−−

−−−−
==== , (4) 

χgel stands for the conversion degree at the gelation point, whereas Ecured(T) the elastic modulus of 

the fully cured resin. Fig. 2b above displays the resulting evolution of the elastic modulus versus the 

temperature and reticulation degree. The evolution of the stiffness with temperature was 

determined, by co-workers (see acknowledgements), through Dynamic Mechanical Analysis 

(DMA). DMA provides the instantaneous modulus, which is very close to the equilibrium stiffness 

if the resin is in a vitreous state. This hypothesis might be partially wrong during the hardening 
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phase, as the vitreous transition temperature is close to the cure temperature. The (Eq. 4) used here 

neglects the relaxation phenomena, and may thus yield a slight overestimation of local stresses.  

Thermal expansion. The CTE of the resin also experiences severe evolutions during the curing 

process: it increases with the temperature and decreases with the conversion degree. However, the 

dependency on conversion degree should not influence the results here, as the resin is either liquid 

or fully cured during the heating and cooling stages of the cure cycle. The evolutions of the CTE 

during the cure process were described by (Eq. 5): 

(T)αχ)(1(T)αχχ)α(T, rawcured ××××−−−−++++××××====  with




××××====

××××++++××××++++====

(T)α4(T)α

T0.0003T0.119135.465(T)α

curedraw

2

cured
. (5) 

Cure shrinkage. The polymerisation reaction corresponds to the formation of covalent bonds 

between the macromolecules and a constriction of the amorphous network. This induces important 

bulk shrinkage of the resin, in the order of 3 % up to 9 %, which is comparable to the thermal 

shrinkage. In this study, we use a value of 5.7 % for the chemical volume shrinkage [20], which 

corresponds to a linear Coefficient of Chemical Expansion η, equal to -1.9 %. 

Results of the scale transition procedure 

Computation of effective properties. The scale transition procedure presented above is used to 

compute the effective properties of the material during the cure process, summed up in (Fig. 3). The 

gelation point is denoted by a marked gap of some properties. The choice of a model or another 

mainly affects the out-of-plane properties, but also the in-plane stiffness; the EKSC model results in 

a more rigid material than the MTres model, but less rigid than the MTfib model. 

Figure 3: Evolutions of the main effective properties of the Hextool during the cure process 

The few available experimental results [19] are consistent with the estimated effective properties, 

even though discrepancies occur for the in-plane properties (weaker stiffness and stronger 

coefficients of expansion). The discrepancies are attributed to out-of-plane waviness of the 

reinforcing strips, and also to the uncertainties on the fiber content.  

Computation of local residual stresses. The scale transition procedure was used in order to 

incrementally compute the residual stresses along the cure process. The macroscopic stresses were 

supposed null, although other boundary conditions (fixed in-plane displacement, interactions with a 

metallic mold…) can be considered in the same way. Whatever, extensive tests showed that local 

stress created by those “external stresses” mostly vanish after removal from the mould. 
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Figure 4: Residual cure stresses in the material 

(Fig. 4) above shows the development of residual stresses at the macro, meso and micro levels, 

dropped in the coordinate system of each reinforcing strips (x, y and z respectively stand for the 

axial, transverse and out-of-plane directions). One can observe three well-differentiated periods, 

corresponding to the pre-gelation phase, the hardening, and the thermal cooling. The largest part of 

residual stresses is created by thermal shrinkage. The role of chemical shrinkage is also significant, 

but may be overestimated, due to relaxation phenomena. Residual transverse stresses evolutions, 

predicted in the present study, can be qualitatively compared to those obtained by White and Kim 

[22] on a [0°/90°]s carbon-epoxy laminate subjected to manufacturing process. This comparison is 

limited by the Hextool’s specific microstructure and resin (BMI instead of epoxy). 

The choice of the model affects the residual stresses at the meso-level, only. Thus, MT and KESC 

estimates provide identical results for the UD strips and the extra-strips resin. At the microscopic 

scale (intra-strips resin and fibers), the MTfib model results in the strongest stresses and the MTres 

model in the weakest. This gap is particularly sensitive along y and z axes. In the x-direction, the 

rigid elements undergo compression stresses which may yield micro- and meso-bucklings 

phenomena. The wavy aspect of the Hextool ply seems to corroborate this statement. On the 

contrary, the resin undergoes important traction stresses in every direction, which could be the 

source of delaminations. A Tsaï-Wu quadratic failure criterion [5] enabled quantifying this risk, 

using data taken in the literature for a high-strength epoxy resin [23]. The values of the “failure 

factor” (inverse of the standard resistance R) are widely weaker than 100 %, which indicates that the 

residual stresses should not damage the material after the cure process. 

Conclusions and perspectives 

Two scale transition models were used for describing the multi-scale mechanical behaviour of a 

meso-structured composite material, through a two-steps procedure. This method was applied to the 

prediction of effective properties and local stress states in the composite, during the cure process. 

The results show significant residual stresses at the micro-level, but also the strong influence of the 

chosen scale transition model: the results given by the EKSC model, widely used for computing 

local stresses, can be enclosed by the two versions of the MT model. The thermal stresses were 

found predominant over those created by the chemical shrinkage, which may moreover be partially 

or totally relaxed. According to the results of a Tsaï-Wu failure criterion, the residual stresses in the 
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resin should not induce material damage, but may play a significant role on failure under service 

loads. The method could also be applied for predicting the material service-life duration (fatigue 

under repeated thermal cycles, in particular). In further works, those estimates shall be compared to 

full-field approaches, which provide more realistic estimates of the local stress fields.  
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