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Abstract. The present work aims to investigate the validity of Eshelby-Kröner self-consistent model 
[1] for thermoelastic behaviour, in the case of a material reinforced by inclusions randomly oriented 
in the ply plane. The model provides predictive information on the properties and multi-scale 
mechanical states experienced by the material, accounting for its constituents properties, but also 
their morphology. However, it cannot reliably account for multiple inclusion morphologies (shape 
and orientation) in the material [2-4]. A study of the two applicable formulations and their limits 
leads to suggest a mixed formulation as an acceptable compromise between those alternatives. The 
results of this original approach are also described in the case of a thermo-mechanical load. 

Introduction 

The recent development of composite materials during the last decades opened new prospects to 
mechanical part engineering, particularly for aeronautical applications, because of their high 
strength-to-weight ratio as well as corrosion and fatigue resistance. However, the inherent 
heterogeneity of these materials induces internal stresses during the curing process, and complex 
mechanical behaviour under service loads. The so-called “scale transition models” answer the 
necessity to predict the distribution of stresses between the constituents of the composite plies. 
Among these, the self-consistent model for the polycrystals [1] suggests a realistic and interesting 
approach; it enables one to calculate the homogenized properties of the material, but also the 
mechanical states experienced by the constituents, accounting for their morphology and properties. 

The present application is focused on an in-plane isotropic composite material [5] made of 
unidirectional reinforcing strips with rectangular shape (60x8x0.15 mm) and randomly disposed in 
the ply plane (see Fig. 1 below). The strips themselves are composed of an unidirectional (UD) 
carbon-organic ply. An N5208 epoxy matrix and T300 carbon fibers were considered for this study. 

Figure 1: Schematic representation of the microstructure of the composite 

Reinforcing 
UD strip 

 Fibers 
+ Matrix 

2 
y 

x 

ΘΘΘΘ    

1 

Matrix 

1



The self-consistent model is used twice in our approach, in order to perform a two-steps scale 
transition procedure (Fig. 2). First, the effective properties of the reinforcing strip are estimated 
from those of the intra-reinforcements matrix and the carbon fibers. These effective properties are 
then used for the second homogenization step, in order to find those of the whole composite. 

Figure 2: Schematic representation of the two steps scale transition procedure 

The self-consistent model 

Hill’s formalism and Eshelby’s inclusion. Scale transition models are based on a representation 
of the material at several scales: on the one hand, the “local” scale denoted by the superscript i, 
where one observes the behaviour of each constituent, considered as an ellipsoidal and 
homogeneous inclusion (also called Base Volume or BV). On the other hand, the macroscopic scale, 
denoted by the superscript I, defines the behaviour of the Effective Medium (EM). A linear thermo-
elastic law (Eq. 1) expresses those behaviors. In this relation, the stiffness is represented by the 4th-
order tensor L , and the Coefficients of Thermal Expansion (CTE) by the 2nd-order tensor α. The 
temperature increment is denoted by ∆T, whereas σ and ε stand respectively for the stress and strain. 

(((( )))) Ii,k,∆T: ====αααα−−−−εεεε====σσσσ kkkk L .  (1) 

Hill [6] demonstrated, in a very general way, the equivalence between volume integrals and set 
(i.e. volume fraction weighted) averages, denoted here by angle brackets <…>. The semi-statistical 
(“mean-field”) approach studied here uses Hill’s volume average relations over the mechanical 
states, written as in the equations below (Eq. 2, Eq. 3): 

iI εεεε====εεεε ,  (2) 

iI σσσσ====σσσσ .  (3) 

In a fundamental work, Eshelby [7] determined the behavior of an inclusion embedded in a 
homogeneous medium, loaded at the infinite. He demonstrated that, if the inclusion had an 
ellipsoidal shape, the local stresses and strains were homogeneous inside the BV. Using this work, 
Hill [8] proposed the following relation (Eq. 4) between local and overall states, where L* is widely 
known as Hill’s constraint tensor.  

(((( ))))IiIi :* εεεε−−−−εεεε−−−−====σσσσ−−−−σσσσ L , with  (4) 

(((( )))) (((( ))))II(4)II LEISLL −−−−====−−−−====
−−−−−−−− 11

:* .  (5) 

This tensor can be obtained from the Eshelby tensor SI or the Morris tensor EI [1, 9] (also referred 
to “ influence tensor” PI), thanks to Eq. 5 (with I (4) the 4th-order Identity tensor). In the general case, 
the computation of the Morris tensor is a key-point of the model, as it implies several tensorial 
inversions and a numerical integration. Yet, analytical expressions can be found in the literature for 
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a few specific configurations [10]. Morris’ tensor depends on the stiffness of the embedding 
medium, and most importantly, on the shape ratios and orientation of the elementary inclusions. 
This dependency allows one to take into account the morphology of the constituents, i.e., to 
represent the microstructure of the considered material. Thus, the material anisotropies yielded by 
the microstructure (in glass fiber unidirectional plies, for instance) can be taken into account 
straightforwardly, which is a great advantage over to the more classical “rules of mixtures”. 

Several models are derived from these equations. The first and simplest one is the “dilute 
approximation”, where one inclusion interacts with an embedding medium. The Mori-Tanaka 
scheme is an extent of this approximation to non-dilute inclusions, where one of the constituents 
(often called the “matrix phase”) is considered as the embedding medium; the model is mainly 
adapted for materials whose matrix phase volume fraction dominates all the others. On the contrary, 
within the self-consistent model, the embedding medium is given the properties of the EM, which 
makes the expressions of the effective stiffness implicit. Yet, this approach is more adapted than 
Mori-Tanaka’s for materials where all the phases have comparable volume fractions, as the EM 
yields a better emulation of the inter-particle interactions than the resin [11]. At high reinforcement 
ratios, the self-consistent model gives more reliable information than the Mori-Tanaka model upon 
the effective properties, particularly over the shear moduli. For this reason, the self-consistent model 
should be preferred to the Mori-Tanaka model to perform the second homogenization step (meso-
macro), where one cannot define a dominating medium.  

Eshelby’s equations were first used by Kröner for estimating the elastic moduli and the plastic 
behaviour of polycrystals [12, 13], from the properties of its constitutive crystallites. This 
elastoplastic model inspired similar studies on the thermoelastic behaviour of heterogeneous 
materials [14], then on the time-dependent creep and relaxation of polycrystals [15]. They were also 
found interesting for composite materials with organic [10, 13] or metallic matrix [16], owing to the 
strong heterogeneity of their constituents.  

Formulation with stresses and strains. If the inclusions constituting the material do not present 
a single morphology in the macroscopic coordinate system RI, the tensor L* is not purely 
macroscopic anymore but related to each inclusion (and in consequence, denoted L* i). Then, using 
(Eq. 1) and (Eq. 4), one can express the local stresses and strains as: 

(((( )))) (((( )))) (((( ))))[[[[ ]]]] ∆T. : ∆T ::    :*:*   1 iIiIIiiIiIiii
Ri aεALLLLLL ++++====αααα−−−−αααα++++εεεε++++++++====εεεε

−−−−
, and  (6) 

(((( )))) (((( )))) (((( ))))[[[[ ]]]] ∆T. : ∆T :   :: *:* :  
1 1 iIiiI iIIiIiiii

Ri bBL*LLLLLL ++++σσσσ====αααα−−−−αααα++++σσσσ++++++++====σσσσ
−−−−−−−−

,  (7) 

where A i is the elastic strain localization tensor, Bi is the elastic stress concentration tensor, and ai 
and bi are the thermal strain and stress polarization tensors, respectively. Of course, Hill’s averages 
principles imply and the following relation over the averages of A i, Bi, ai and bi (Eq. 8, Eq. 9), 
where 0(2) represents the 2nd-order null tensor: 

(4)i IA ====  and (2)i 0a ====  (8) 

(4)i IB ====  and (2)i 0b ====   (9) 

Hill’s averages principles are expressed over both strains and stresses. Nevertheless, in the 
classical self-consistent scheme, only one relation is needed in order to obtain the effective 
properties, which leads to two alternate expressions. Actually, using Hill’s average principle over 
the stresses (formulation denoted Hσ), one obtains the following stiffness and CTE given in 
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(Eq. 10) and (Eq. 11). On the contrary, if one uses Hill’s average principle over the strains 
(formulation denoted Hε), one would obtain the effective properties given in (Eq. 12) and (Eq. 13). 

iiIH ALLσ :==== ,                                                                                                                        (10) 

(((( )))) (((( )))) iiiiiiiiiIH L*L*LLL*L*LLσ αααα++++++++====αααα
−−−−−−−−−−−−

::::::
111

;  (11) 

111
::

−−−−−−−−−−−−
========εεεε iiiIIH BLALL ,  (12) 

(((( )))) (((( )))) iiiiiiIIH LL*LL*LL αααα++++++++====ααααεεεε −−−−−−−−−−−−−−−−
::::

1111
.  (13) 

Self-consistency of the model. Several authors have shown that the two above formulations are 
equivalent, but with some restrictions over the materials microstructure: either the inclusions must 
have the same morphology (shape and alignment), or the material and inclusions must be isotropic. 
Analytical expressions of the thermo-elastic macroscopic properties of the EM have been 
determined for these specific cases in a series of paper from Benveniste, Dvorak and Chen [3, 4]. 
These configurations match many industrial applications, and in particular polycrystals and 
unidirectional composites plies.  

Similar models have also been applied to new industrial materials that present a microstructure 
containing anisotropic inclusions of various morphologies or geometrical orientations [17]. 
However, for such microstructures, Benveniste, Dvorak and Chen [2-4] demonstrated that the Mori-
Tanaka and self-consistent approximations may lead to two distinct sets of effective properties, and 
violate some rigorous bounds. At the present time, the computation of thermo-elastic properties for 
materials exhibiting this kind of microstructure still seems to constitute an open question. 

Computing the effective properties of the composite 

Effective properties of the reinforcing strips. The homogenization of the reinforcing strip 
corresponds to the case, treated in a recent paper [18], of an unidirectional fiber-reinforced 
composite ply. As a unique morphology is considered for every constituent of the reinforcing strip, 
the two above formulations of the self-consistent model lead to the same results. Consequently, one 
will only give the effective properties of the reinforcing strip (Table 1), accounting for a fiber 
volume ratio of 63 %.  

Mechanical moduli CTE 
Ex 

[GPa]
Ey, Ez 
[GPa] 

νxy, νxz Gxy, Gxz 
[GPa] 

νyz Gyz 
[GPa] 

αx 
[10-6/K]  

αy, αz 
[10-6/K]  

Reinforcing strip 146.8 10.2 0.274 7.0 0.355 3.8 -0.620 48.0 

T300 fibers [18] 230 15 0.20 15 0.07 7 -1.5 27 

N5208 matrix [19] 4.5 4.5 0.4 1.61 0.4 1.61 60 60 
Table 1: Thermomechanical properties of a reinforcing strip and its constituents. 

Effective properties of the composite. The second homogenization step is more problematic, as 
it involves inclusions of ellipsoidal shapes presenting a random geometrical orientation, combined 
with a strong anisotropy of the constituents and the effective medium. As a consequence, the two 
formulations detailed above (Eq. 10-13) will be used to perform this second homogenization step.  
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(Eq. 10) and (Eq. 12) provide the effective stiffness of the composite. The averaging operations 
are achieved onto the two previously described constituents (reinforcing strips with 95 % volume 
ratio and extra-reinforcement matrix with 5 % ratio). A set of 10 orientations, uniformly distributed 
on 180° in the 1-2 plane (ply plane, see Fig. 1), is considered in order to account for the random 
orientation. The effective elastic moduli obtained are summed up in the Table 2 below. The notation 
Hmixed denotes the direction-dependent formulation, described below. 

E1, E2 
[GPa] 

E3 
[GPa] 

ν12 G12 
[GPa] 

ν13, ν23 G13, G23 
[GPa] 

Hσ 55.48 11.24 0.290 21.49 0.266 3.97 
Hε 16.63 9.92 0.121 7.42 0.337 4.45 

Hmixed 55.41 11.20 0.289 21.49 0.279 4.496 
Voigt bound 55.46 11.28 X 21.49 X 5.20 
Reuss bound 15.44 9.66 X 6.65 X 4.46 

Table 2: Estimated elastic moduli of the effective composite. 

One may first notice that the two methods lead to drastically different stiffnesses, particularly for 
the components that govern the in-plane behaviour (E1, ν12 and G12). On the contrary, the “out-of-
plane” components (E3, ν13 and G13) do not vary very much from a homogenization procedure to the 
other. Moreover, these moduli respect, within the prescribed 10-3 accuracy, the Reuss and Voigt 
bounds (see Table 2). The elastic moduli obtained with the strain-based formulation are close to the 
Reuss bound; whereas those obtained with the stress-based formulation are practically merged with 
the Voigt bound. Yet, previous works achieved on composite laminates (which have a similar 
structure) suggested that extreme direction-dependent homogenization procedures gave satisfying 
results on both in-plane and out-of-plane behaviour. 

A mixed homogenization scheme, inspired from the Vook-Witt model [20, 21] is thereby 
proposed. The in-plane behaviour is modeled using the stress-based formulation, whereas the strain-
based formulation is used for the out-of-plane behaviour. With this mixed formulation, the stiffness 
tensor of the composite satisfies the form given in (Eq. 14) below. The results given by this 
formulation are also summed up in Table 2 above. 


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Lσ00000

0Lε0000
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IHmixed L .  (14) 

The computation of the averages for localization and concentration tensors, upon the two 
constituents and all the orientations, is a good indicator of the relevance of each formulation (see 
Table 3 below). For the two “pure” formulations (Hσ and Hε), the in-plane components (11, 12 and 66 
components in Eq. 14) exhibit very important errors regarding Hill’s averages principles; for them, 
the stress-based formulation (Hσ) gives the lowest errors. On the contrary, for the out-of-plane 
components, the strain-based formulation (Hε) is the most reliable. The direction-dependent 
formulation combines the advantages of those two and guarantees a relative error lower than 3 % on 
every term.  
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It is important to notice that these errors are null for a penny-shaped morphology, whichever 
formulation is used. However, they quickly grow up with an increased stretching or thickness of the 
reinforcing strips, so the model is satisfying only for a limited range of morphologies. 

iA A11 = A22 A33 A44 = A55 A66 A12 = A21 A13 = A23 A31 = A32 

Hε 1.001 1 0.5 0.5 0 0 0 
Hσ 1.031 1 0.443 0.512 0.007 0 -0.033 

Hmixed 1.029 1 0.500 0.511 0.007 0 -0.015 
iB B11 = B22 B33 B44 = B55 B66 B12 = B21 B13 = B23 B31 = B32 

Hε 3.465 1 0.5 1.431 0.604 -1.178 0 
Hσ 1.000 1 0.5 0.5 0 0 0 

Hmixed 1.001 1.001 0.497 0.5 0.001 -0.009 0.001 
Expected 1 1 0.5 0.5 0 0 0 

Table 3: Averages of the localization and concentration tensors, for the composite. 

As above, the Coefficients of Thermal Expansion have been computed with respect to the three 
homogenization approaches previously presented (see Eq. 11 and Eq. 13). With the mixed 
formulation, the effective CTE satisfies the structure given below (Eq. 15). The stiffness obtained 
with each formulation was used for computing the corresponding CTE. This leads to the results 
presented in Table 4 below. As for the stiffness, a significant deviation between the results occurs, 
depending on the homogenization procedure used. This discrepancy remains if the same stiffness is 
used for the three formulations. In order to quantify the relevance of these results, the dimensionless 
errors X and Y were also defined as in (Eq. 16), and detailed in Table 4. 
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One can observe that the strain-based formulation satisfies Hill’s averages principle over the 
strains, but leads to some errors on thermal stresses and mainly in the normal direction. 
Respectively, the stress-based formulation satisfies Hill’s averages principle over stresses but 
underestimates the in-plane thermal strains by more than 200%. As observed for the elastic 
behaviour, the mixed formulation gives the best compromise between these two aspects, and leads 
to absolute errors lower than 3 % on every term (increasing with the shape ratios of the reinforcing 
strips). This error vanishes if one prescribes a penny-shaped morphology to the constituents. This 
demonstrates that the classical self-consistent model is valid if and only if a single morphology is 
used for all the constituents in the Representative Elementary Volume. This fact is very important 
as, for this particular case, the property values obtained using a penny-shaped morphology and a 
stretched one are very close (with Hmixed formulation only), which opens a way for a significant 
simplification of the model. 
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CTE Error on ε Error on σ 
α1, α2 

[10-6/K]  
α3 

[10-6/K] 
X1 X3 Y1 Y3 

Hε 24.8 49.9 0 0 -2.088 0 
Hσ 3.5 114.9 0.062 -0.424 0 0 

Hmixed 3.5 64.3 0.031 0.027 0.004 0.002 
Expected [5] 3.5~5 45~50 0 0 0 0 

Table 4: Estimated CTEs of the composite and associated errors. 

A few experimental results can corroborate the estimated effective properties. The in-plane 
elastic modulus was measured to be approximately 42 GPa [5], and the CTEs were also measured at 
room temperature (see Table 4). These values are in the same order of magnitude to those estimated 
with the scale transition procedure. The difference is due to the use of slightly different constituents 
(AS4 fibers and bismaleimide resin) and fiber ratio (53 %), and to out-of-plane waviness of the 
reinforcing strips (which deteriorate their in-plane apparent properties). A more realistic estimation 
is given in [22], for which the predicted properties match the measured ones to within ±5 %. 

Application to thermo-mechanical loads 

Response of the composite to purely mechanical load. In order to describe the multi-scale 
mechanical behaviour of the composite, a macroscopic uniaxial in-plane traction of 100 MPa is 
considered. (Eq. 7) is used to compute the local stresses in the constituents, dropped in the local 
coordinate system Ri.  

Figure 3: Local stress states in the composite under a 100 MPa uniaxial traction. 

One can observe (Fig. 3) that these stresses evolve with the orientation angle as π-periodic 
sinusoids. At the mesoscopic scale, the in-plane stresses are strongly heterogeneous (contrarily to 
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the in-plane strains, which are rather homogeneous); the reinforcing strips experience up to 260 
MPa in the x-direction, while the organic matrix undergoes less than 10 MPa. This concentration of 
stresses is a result of the orientation mismatch between the reinforcement strips and the loads. It is 
increased into the fiber constituting the reinforcement strips, which experience more than 400 MPa 
while the matrix takes less than 20 MPa. On the other hand, out-of-plane stresses are very low: one 
will only notice the emergence of complementary stresses between the constituents of the 
reinforcing strips. 

Response of the composite to purely thermal load. A similar study was achieved for the case 
of a macroscopically stress-free -100 °C thermal load, which is typical of the cool-down that occurs 
after the curing stage of composite materials, and which induces severe residual stresses [23, 24]. 
Contrarily to the mechanical load studied previously, the thermal expansion respects the in-plane 
symmetry of the material, thus the shear stresses and strains are null, and the mechanical states are 
independent on the orientation angle Θ of the reinforcing strip. This result can be generalized to any 
load respecting the in-plane symmetry.  

Scale Medium 
Stresses (MPa) 

σxx σyy σzz 
Macroscopic Composite 0.0 0.0 0.0 

Mesoscopic 
Extra-reinforcement matrix 42.6 42.5 0.4 

Reinforcing strips -48.1 44.1 0.1 

Microscopic 
Intra-reinforcement matrix 57.79 55.51 25.39 

Fibers -109.9 37.5 -14.7 

Table 5: Stress states in the composite and its constituents exposed to a -100 °C thermal load. 

The local stresses inside the composite are summed up in the Table 5 above. At the mesoscopic 
scale, one can observe a marked gap between the σxx stresses in the two constituents: the matrix 
undergoes traction stresses, although the reinforcing strips are compressed (which implies a risk of 
meso-buckling). The same scheme appears at the microscopic scale: the fibers are compressed and 
the matrix stretched. Along the normal direction z, one can also notice the emergence of non-
negligible complementary stresses in the fibers and the matrix, due to the gap of properties. 

Discussion and perspectives 

A two-steps scale transition procedure based on the self-consistent model has been introduced to 
describe the thermo-mechanical behaviour of a composite material reinforced by inclusions 
randomly oriented in the ply plane. The limits of the self-consistent model for this kind of 
microstructures have been discussed on the base of Hill’s averages principles, which were used to 
define error estimators. Those results inspired the use of a mixed direction-dependent formulation, 
which enables to drastically reduce the error for this particular material and microstructure.  

This method may also be applicable to other particles-reinforced materials such as short-fibers 
reinforcements, or nanocomposites (as an interesting alternative to the Krenchel model [25, 26]). 
More generally, for materials constituted by inclusions with very distinct shapes and/or alignment, a 
special attention must be paid to the uniqueness of estimated properties and the satisfaction of Hill’s 
averages principles. 

In a second time, this mixed formulation has been applied to the simulation of local stresses in 
the constituents of the material, when subjected to thermal of mechanical loadings. For uniaxial 
loading, a dependency of the local stresses on the orientation angle between the reinforcing strips 
and the direction of solicitation was found, along with high stress levels into the rigid elements. On 
the other hand, thermal loading (cooling) seems to tax mainly the matrix with tensile stresses, while 
the fibers are subjected to compressive stresses that might induce micro-buckling effects. However, 
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as the self-consistent model only provides average values of the local stress fields, its application to 
the determination of material health is somewhat limited.  

A direct application of this work is the simulation the development of residual stresses during the 
manufacturing process of carbon-epoxy composites [22]. The very low computational time cost of 
the self-consistent method may be an advantage for this kind of simulations, where the very non-
linear behavior of the resin during the fabrication process (due to hardening, thermo-chemical 
shrinkage, dependency with temperature…), implies repeated computations of the effective 
properties. 
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