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A multi-scale analysis of local stresses development
during the cure of a composite tooling material

E. Lacoste & K. Szymanska & S. Terekhina & S. Fréour &

F. Jacquemin & M. Salvia

Abstract This paper is dedicated to the cure of an in-plane
isotropic carbon-epoxy tooling material presenting a specif-
ic mesostructure. Eshelby-Kröner self-consistent model
(EKSC) is used to achieve a two-steps scale transition
procedure, allowing relating microscopic to macroscopic
properties of the material, and estimating its multi-scale
mechanical states. This procedure is used to predict the local
residual stresses due to thermal and chemical shrinkage of
the resin, depending on the manufacturing process condi-
tions. An experimental investigation provides the BMI resin
cure kinetics and mechanical properties as a function of the
temperature and conversion degree. The consequences of
these evolutions on the local mechanical states are investi-
gated and discussed.

Keywords Composite material . Residual stress .

Multiscale . Cure process . Thermoset polymer

Introduction

General purpose

In the last decade, composite materials based on carbon
fiber and thermoset matrices have been more and more

involved in the design of mechanical parts, particularly for
aeronautical applications. Their high strength-to-weight
ratio as well as corrosion and fatigue resistance make them
an interesting alternative to metals, which are still commonly
used. However, as a counterpart of this technological break-
through, the engineering of composite parts yields several
scientific challenges. Among them is the computation of
internal stress at the microscopic level, due to the properties
mismatch between the fibers and the matrix. As curing is
considered, the strong chemical and thermal shrinkage of the
matrix is counteracted by the fibers, which are far stiffer and
less dilative, yielding self-compensated stresses (“residual
stresses”) in the constituents. These stresses only exist at a
microscopic level; nevertheless, several authors showed that
they significantly affect the macroscopic stress–strain and
failure behaviour. They can result in fiber-matrix debonding,
or in increased fibers waviness (microbuckling), both of these
yielding a change of properties for the ply. A good review of
this subject can be found in a series of bibliographical papers
from Parlevliet et al. [35–37]. The present study is focused on
the computation of these local stresses created during cure,
when the material undergoes homogeneous loads.

Review of predictive models

Various experimental approaches have been developed in
order to measure the local stresses and strains in composite
materials. An extensive description of these methods is
given by Parlevliet et al. [36]. On the other hand, scale
transition models proved to be an interesting approach for
predicting both the local stresses, and the effective mechan-
ical properties of composite plies.

A first class of models uses a statistical description of the
microstructure, accounting for the mechanical properties,
morphologies and volumic ratio of the phases constituting
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the material, while neglecting the geometrical arrangement
of the individual inclusions. The first historical examples of
this approach are the well-known Tsaï-Hahn’s rules of mix-
tures [46], which gave an easy-understandable estimate of
the properties of unidirectional composite plies. Hashin and
Shtrikman [17] also suggested rigorous bounds for compos-
ite material properties, which are still often used for achiev-
ing such calculations. An extension of this approach, the
class of so-called “mean-field” models, became trendier in
the last decade. Among them, Mori-Tanaka (MT) and
Eshelby-Kröner Self-Consistent (EKSC) estimates [3, 23]
are the most used. In exchange for their more pronounced
mathematical complexity, these models can take into ac-
count the morphologies of the heterogeneities (inclusions)
constituting the material (the interested reader can refer, for
instance, to Jacquemin et al. [20]). Moreover, they can also
be used to predict in a systematic and robust way, the
mechanical states (stresses and strains) experienced by the
very constituents of the materials. A comparison between
these two models, focused on the application to the model-
ling of composite materials, can be found in [12]. In partic-
ular, predicting the residual micro-stresses during the cure
process, which is the aim of the present study, can be
achieved through both these approaches. However, since
unidirectional structures are the most frequently considered,
and relatively well represented by rules of mixtures, self-
consistent methods are rarely used.

Another class of models takes advantage of the finite
elements method (FEM) for a direct representation of the
microstructure’s geometrical complexity. This “full-field”
approach provides a more detailed estimate of the local
mechanical states. The implementation and computation
costs required by FEM is nevertheless much more important
than their mean-field counterparts. However, such an ap-
proach is not the topic of the present study, but the interested
reader can, for instance, refer to [15, 16, 21].

Purpose of the study

A semi-analytic self-consistent model will be used to carry
out a multi-scale analysis of the residual cure stress in a
specific composite material, which mechanical response
cannot be appropriately described by classical rules of mix-
tures, because of a very specific microstructure. An exper-
imental investigation enabled to characterise the mechanical
behaviour and the cure kinetics of the resin constituting this
material. These properties will be used as input data in
EKSC model, in order to compute the composite’s effective
properties.

Residual stress at the microscopic level will also be
computed in the case of a simplified cure process, illustrat-
ing the most interesting feature of the model. Three typical
boundary conditions, approximately representing mould-

part interactions, will be considered here: (i) a stress-free
cure of the material, (ii) a cure with fixed in-plane displace-
ments, and (iii) a cure with prescribed thermal in-plane
displacements. These conditions would approximately
match those applied to a thin part cured into different kinds
of moulds, respectively made of (i) polymer, (ii) Invar, or
(iii) metal (steel). The stresses, experienced by the material,
during the cure process, and after removal from the mould,
will be computed at macroscopic and microscopic scales,
through the multi-scale analysis.

The scale transition procedure

Description of the EKSC model

Eshelby-Kröner scale transition model is based on a repre-
sentation of the material at two distinct scales: on the one
hand, the«local» scale, denoted by the superscript i, where
one observes the behaviour of each constituent, considered
as an ellipsoidal and homogeneous inclusion with principal
axes lengths {2 a1, 2 a2, 2 a3} (also called Base Volume or
BV) ; on the other hand, the macroscopic scale denoted by
the superscript I, where one can observe the behaviour of the
Homogeneous Equivalent Medium (or HEM). In the case of
a chemical-thermo-chemio-elastic linear behaviour, the fol-
lowing law is written:

σk ¼ Lk : "k ��ak:ΔT� ηk:Δc
� �

; where k ¼ i; I ð1Þ
In this relation, the stiffnesses are represented by the 4th-

order tensors L, the Coefficients of Thermal Expansion
(CTE) and Chemical Expansion (CCE) being referred to,
by the 2nd-order tensors α and η. The temperature and cure
degree increments are denoted by ΔT and Δχ respectively,
whereas σ and ε stand for the stress and strain. Relation (1)
can be modified to handle any inelastic strain (or eigen-
strain). The scale transition relations are basically written as
volume averages operations on stresses and strains. Hill [19]
demonstrated, in a very general way, the equivalence
between set (i.e. volume) averages and volume integrals.
Hill’s volume average relations over the mechanical states
(also called, in the following of the present work: “consis-
tency principles on mechanical states”), write as follows:

"I ¼ "i
� �

; ð2Þ

σI ¼ σi
� �

; ð3Þ
where the brackets <…> represent the arithmetical volume
average. An extensive discussion about the choice of a
mathematical method for achieving set averages can be
found in [13]. In a fundamental work, Eshelby [6] studied

2



the behaviour of a single inclusion embedded in a homoge-
neous medium loaded at the infinite. He demonstrated that,
if and only if the inclusion had an ellipsoidal shape, the local
stresses and strains were homogeneous inside the BV, and
fulfilled the following relation:

σi � σI ¼ �L�: "i � "I
� �

; ð4Þ
where L* is Hill’s constraint tensor, which represents
the interaction between the inclusion and its surrounding
medium. It can be obtained from Eshelby tensor SIesh or
Morris tensor EI, thanks to (Eq. 5), where I is the 4th-
order Identity tensor. Morris tensor is written as an
integral that must be numerically computed, except for
a few simplified cases. The interested reader can refer
to [23, 24, 33], where expressions of Morris tensor and
a detailed presentation of Eshelby-Kröner model, are
provided.

L* ¼ LI : SIesh
�1 � I

� �
¼ EI�1 � LI ð5Þ

In the EKSC scheme, the embedding medium is
assumed to exhibit the macroscopic properties of the
material. This implies that the homogenization relations
providing the effective properties are implicit and must
be solved numerically. Some models, such as the dilute
approximation or the Mori-Tanaka model [29], can pro-
vide explicit expressions by considering the major phase
(often the matrix phase) as the embedding medium.
However, as these models neglect inter-particles inter-
actions, they are not reliable for materials where the
constituents have comparable volume fractions. The
deviation between the effective properties, obtained by
these two models (in auxiliary computations that will
not be presented here), was not found extremely signif-
icant for the material considered in the present work
(except for the in-plane Coulomb modulus). However, it
was observed that the model had some influence over
the predicted local mechanical states: Mori-Tanaka ap-
proximation slightly underestimates some local stresses
components, in comparison with EKSC model.

Starting from the local and macroscopic constitutive
responses, and using the scale transition relation given
above (Eq. 4), one can express the local strains as a
function of their macroscopic counterparts, as follows
[10]:

"i ¼ Li þ L*
� ��1

: ½ LI þ L*
� �

: "I þ Li : ai � LI : aI
� �

ΔT

þ Li : ηi � LI : ηI
� �

c�
ð6Þ

Introducing Hill’s average relation over the strains, and
the macroscopic constitutive response, one then obtains the
effective properties given by Eqs. (7) to (9). The model is
self-consistent, i.e. leads to identical results (effective

properties and mechanical states) if written upon stresses
instead of strains.

LI ¼ LI : Li þ L*
� ��1

: LI þ L*
� �D E�1

ð7Þ

aI ¼ LI
�1

: Li þ L*
� ��1
D E�1

: Li þ L*
� ��1

: Li : ai
D E

ð8Þ

ηI ¼ LI
�1

: Li þ L*
� ��1
D E�1

: Li þ L*
� ��1

: Li : ηi
D E

ð9Þ

In the following, these three Eqs. (7 to 9) will be used to
compute the effective mechanical properties of the compos-
ite, all along the cure process; the Eqs. (6) and (1) will then
be used, in a time-differentiated version, to compute the
local mechanical states in the constituents of the material.

Application to the Hextool®

The present application is focused on a high-performance
composite material, developed by Hexcel Composites©, for
the design of composite parts to be used as a tooling material
[18]. The Hextool® is made of unidirectional, rectangular
shaped (50×8×0.15 mm3) reinforcing strips, being randomly
arranged in the layout (see Fig. 1). The strips themselves are
composed of AS4 fibers and M61 bismaleimid (BMI) matrix,
set as a unidirectional ply.

The material presents itself as a thick layer (1.3 mm)
exhibiting in-plane isotropy of its mechanical properties.
In order to lighten the expressions, a “local” coordinate
system Rxyz, oriented along the axis of the fibers constitut-
ing the strips, is introduced. This coordinate system is
obtained by a rotation Θ around the 3-axis of the reference
frame R123 bound to the effective material. The overall fiber
volume ratio is about 53 %, and thus the volume ratio of
matrix is 47 % (the porosity is negligible). The matrix is
assumed to be mainly contained in the strips, but a small
fraction of the matrix (5 % of the total matrix volume) was
also considered being located between the strips, to ensure
the material’s consistency.

As a consequence, the structure of the material should be
described at three different scales: microscopic, mesoscopic
(intermediate) and macroscopic. The EKSC model will be
used to perform a two-steps scale transition procedure (see
Fig. 2). First, the effective properties of the reinforcing strip
(mesocopic scale) are estimated from those of the intra-
reinforcements matrix and the carbon fibers (microscopic
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scale). Then, another homogenization procedure is achieved
in order to find the behaviour of the material (macroscopic
scale), from the properties of the extra-reinforcements
matrix and those of the reinforcing strips (mescoscopic
scale). The strong reinforcement ratio of the mesostructure
(95 % of reinforcing strips) explains why the EKSC scheme
was chosen, preferably to the MT model.

For the micro-meso scale transition, the fibers of infinite
length, are supposedly aligned and have a volumic ratio Vf0

56 %. The strip thereby exhibits a transverse isotropy of its
properties. An analytical expression of Morris tensor, given
in [11] for this specific configuration, enables a very fast
computation of the reinforcing strips effective properties
during the first step of the homogenization procedure (see
Fig. 2). The non-negligible components of this tensor are
prompted in Eq. 10; the negligible components were given a
low constant value (resulting from a numerical evaluation of
the tensor).

EI
22 ¼ EI

33 ¼ 3
8LI

22
þ 1

4ðLI
22�LI

23Þ
EI
23 ¼ EI

32 ¼ LI
22þLI

23

8ðLI
22L

I
23�LI

22
2Þ

EI
44 ¼ 1

8LI
22
þ 1

4ðLI
22�LI

23Þ
EI
55 ¼ 1

8LI
55

ð10Þ
For the meso-macro scale transition, the reinforcing

strips, the volume fraction of which is Vr095 %, were
supposed to be randomly oriented in the plane. This led to
an in-plane isotropic behaviour at the macroscopic scale.
Moreover, their morphology was assumed to correspond to
an infinitely thin disc, in order to respect some fundamental
hypothesis of the EKSC model, described in a previous
paper with a similar material [26]. Those limits were

recently dispelled with a rigorous method, which will be
described in future works. Moreover, extensive tests numer-
ically demonstrated that this “thin-discs” approximation had
neither significant influence on the predicted effective prop-
erties nor on the local mechanical states. This enabled also
using an analytical expression of Morris tensor (which non-
negligible terms are given in Eq. 11), historically established
in [47]. This ensures a very fast computation of the macro-
scopic properties, at the second step of the homogenization
procedure (see Fig. 2).

EI
33 ¼ 1

LI
33

EI
44 ¼ EI

55 ¼ 1
4LI

55
ð11Þ

Experimental investigation of the mechanical properties
and cure kinetics of the BMI resin

The development of residual stresses in organic matrix
composites is strongly related to the evolutions of the
mechanical properties of the resin. In order to precisely
describe those evolutions, the mechanical properties and
cure kinetics of the M61 resin were experimentally
investigated by S. Terekhina and K. Szymanska,
respectively.

Cure kinetics

Models

The M61 resin is a toughened thermoset resin cured at 190 °
C, following Hexcel Composites’ recommendations [18].

Fig. 1 Schematic description
of the studied material
microstructure

Fig. 2 Principle of the
two-steps scale transition
procedure

4



The polymerisation reaction is exothermic. As a conse-
quence, one can define the conversion degree χ as the
following ratio:

c ¼ ΔH

ΔHtot
; ð12Þ

where ΔH is the enthalpy released since the beginning of
the reaction, whereas ΔHtot is the enthalpy released during
the whole process. This conversion degree is a state vari-
able; it allows the parameterization of the cure kinetics, but
also of the thermal and mechanical properties of the resin.
Enthalpy variations are easily measured using Differential
Scanning Calorimetry (DSC), that’s why this technique is
widely used to experimentally investigate the cure kinetics
of polymers.

The conversion rate c
�
is generally defined as a function

of both the absolute temperature T and conversion degree:

c
� ¼ dc

dt
¼ f c;Tð Þ ð13Þ

Rigorous mechanistic descriptions of the cure kinetics
can be established, from the knowledge of the elementary
chemical reactions beneath the polymerization process. This
can be accomplished, for a given resin formulation, using
techniques such as near infrared spectroscopy [38]. Howev-
er, as the resin formulation and required instruments are not
always available, several phenomenological models have
been proposed in the literature to describe the cure kinetics
of arbitrary polymers from DSC measurements. One can
quote the widely-used model of Kamal and Sourour [22],
which fundamental relation writes:

c
� ¼ K1 þ K2c

mð Þ 1� cð Þn; ð14Þ
where m and n are adjustment parameters, whereas K1 and
K2 are Arrhenius-type functions of the temperature. Another
model, proposed by Bailleul [2], enables a more accurate
description of the cure kinetics, through:

c
� ¼ K Tð Þ:f cð Þ ¼ exp � Ea

R:T

� 	
:G cð Þ; ð15Þ

with G(χ) a polynomial expression, and K(T) an Arrhenius-
type function, depending on two parameters: the tempera-
ture and an activation energy. For all these models, the
Arrhenius-type functions (e.g. the activations energies) are
supposed independent of the conversion degree, and merely
correspond to optimisation parameters. This lack of strong
physical meaning is also the source of some inconsistencies
occurring between the interpretations of isothermal and
anisothermal data. To avoid those inconsistencies, Sbirraz-
zuoli and Vyazovkin [42] proposed to write the activation
energy (in Eq. 15) as a function of the conversion degree
(“Model Free Kinetics”, MFK). This method was retained as

the most relevant to describe the complexity of the cure
kinetics of the BMI resin.

Experimental investigation

The cure kinetics were investigated through Differential
Scanning Calorimetry (DSC), using a Mettler Toledo
DSC1 STARe System, under a neutral atmosphere (nitro-
gen) for avoiding resin oxidation phenomena. Dynamic and
isothermal runs were operated on 14.40±0.15 mg-weighting
samples of M61 resin systems. The dynamic runs were
performed at the following heating rates: 5 °C/min, 10 °C/
min, 15 °C/min and 20 °C/min. Two isothermal runs were
also performed at 190 °C and 220°, during four hours. After
each (isothermal or dynamic) run, a second dynamic run
was performed in order to establish the conversion residue,
which is equal to 8.7 % for the 190 °C isothermal run, and
null for all the others. The resulting conversion-temperature
curves for the dynamic runs, as well as the conversion-time
curves for the static runs, are given in Fig. 3a and b,
respectively.

Parameterisation of the cure kinetics

The activation energy and the conversion function were
computed upon the five considered dynamic runs, using
the “isoconversional method”, as defined by Sbirrazzuoli
and Vyazovkin. According to this definition, the activation
energy was computed by minimizing the following
functional over several heating programs (temperature
instructions):

Φ Ea cð Þð Þ ¼Pn
i

Pn
j6¼i

J Ea;TiðtcÞ½ �
J Ea;TjðtcÞ½ �

with J Ea;TiðtcÞ

 �

¼ Rtc
tc�Δc

exp � Ea cð Þ
R:TiðtcÞ

� � ð16Þ

This operation was performed with a dedicated module of
the Mettler Toledo DSC analysis system, and corresponds to
the curve shown in Fig. 4a. The conversion functions were
then deduced from each of the anisothermal runs, and plot-
ted on Fig. 4b. Unexpectedly, these four curves where found
significantly different, which can be attributed to the defini-
tion of the activation energy by an optimisation process. The
conversion function obtained from the 5 °C/min run was
arbitrarily chosen as a reference to establish the cure
kinetics.

In order to simplify the implementation, the curves
corresponding to the activation energy Ea(χ) and to the
conversion function G(χ) were fitted with polynomial
expressions. A special attention was paid to this operation,
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as the functions are highly contrasted. Moreover, a slight
change in the activation energy has a strong influence on the
conversion rate, as a result of the exponential form of the
Arrhenius-type function.

Description of the considered manufacturing process

The manufacturing process recommended by Hexcel Com-
posites, shown on Fig. 6, was considered in the present
work. A cure plateau of four hours at 190 °C (preceded by
a short plateau at 150 °C) is applied to the part, which is then
removed from the mould before being post-cured during
sixteen hours at 220 °C. The MFK method was applied to
this cure process, and the corresponding values of the con-
version rate was numerically integrated (with the method of
rectangles), in order to obtain the conversion degree
reported on Fig. 5.

One can notice that the predicted conversion rates during
the 190 °C and 220 °C isothermal phases are slightly dif-
ferent from those obtained with the corresponding DSC runs
(Fig. 3b). The reason for these discrepancies is that the MFK
model was optimised on dynamic runs, for which the

temperature stays above the glass transition temperature;
this is not the case for isothermal runs, where the glass
transition occurs and sharply slows down the conversion
rate. In order to correctly model this effect, diffusion-
controlled reaction kinetics should be applied (see, for in-
stance, Sanford and McCullough [41], or Matsuoka et al.
[27]).

Nevertheless, being given the hypotheses of this study, and
the cure process considered here, only three values are as-
sumed to significantly influence the predicted stress states: the
temperature at which the gelation of the resin occurs (190 °C),
the conversion degree after the first cure cycle (91.3 %) and
the final conversion degree (100 %). The slight change of the
conversion degree during the 190 °C–20 °C–220 °C cool-
down and heat-up phase is supposed to have a nearly
negligible influence over the predicted stress states.
Consequently, the results can be uncoupled from the
time-dependent cure kinetics, and related only to those
critical “state indicators”. As those values are in good
agreement with the results of the isothermal DSC runs
(Fig. 3b), this cure kinetics model will be considered as
acceptable for the purpose of this study.
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Mechanical properties of the BMI resin system

Elastic modulus

The polymerisation of the resin along the cure process induces
deep changes of its physical state and, subsequently, mechan-
ical properties; from an initial liquid state, the resin turns into
an amorphous solid, then into a glassy solid. The liquid–solid
transition, named “gelation point”, is considered by most
authors as the initiation of residual stresses [31, 32]. All these
transformations yield extreme evolutions of the viscous and
elastic moduli of the resin, which strongly affect the level of
residual stresses created. However, in this study, only the
long-term elastic response of the resin, and its evolutions
(the toughening effect), will be considered; the viscous and
history effects will be not be taken into account.

In order to model the toughening of the resin, most authors
suppose a linear dependence of the Young’s modulus on the
conversion degree, from the gelation point (considering that
the viscous stresses created before this point are instantly
relaxed), with a constant Poisson’s ratio. Bogetti and Gillespie
[4] use an enhanced version of the expression, historically
provided by Dillman and Seferis [5], where a second-order
term enables one to take into account the competition between
the toughening of the resin and the viscous relaxation. How-
ever, Adolf and Chambers [1] showed that the percolation
theory gives a more suitable (and physically-consistent)
description of the equilibrium stiffness, in the amorphous
domain, with the following expression for the Young’s mod-
ulus (and, still, a constant Poisson’s ratio):

E T;cð Þ ¼ Ecured Tð Þ: c2 � c2gel
1� c2gel

!8=3

; ð17Þ

with χgel the conversion degree at the gelation point and
Ecured(T) the modulus of the fully cured resin, at a given

temperature. The influence of glass transition temperature
should be accounted for via a corrective term, such as the
one proposed byMsallem et al. [31, 32]; however, this level of
complexity could not be reached in this paper, due to the lack
of experimental data on the stiffness of the resin in the amor-
phous state. Consequently, the expression given by Eq. 17will
be used in the following of the present work, but still keeping
in mind the potential sensitiveness of the results to the glass
transition temperature.

The evolution of the stiffness of the fully cured resin as a
function of the temperature (namely, Ecured(T)) was deter-
mined through Dynamic Mechanical Analysis (DMA).
DMA testing is a standard thermo-mechanical analysis tech-
nique for characterizing viscoelastic properties of polymers
and polymer-based materials as a function of frequency and
temperature [28]. It consists in the observation of the time-
dependent behaviour of a material under dynamic periodic
(sinusoidal) strain or stress. According to Etienne et al. [7],
one can extrapolate the complex shear modulus G* from the
stress and strain measurements: G*0G’+jG”, where G’ is
the storage (elastic component) modulus, G” standing for
the loss (viscous component) modulus. The loss (or damp-
ing) factor is denoted by tan δ0G”/G’, where δ represents
the phase shift between stress and strain. In this paper, the
tests were carried out at controlled strains in the linear
domain of viscoelasticity of the material, and the
corresponding stress was measured.

The DMA50 0.1 dB Metravib dynamic mechanical ana-
lyzer was used for measuring the temperature-dependent
elastic modulus (instantaneous stiffness) of the fully cured
resin. As the fully cured resin is in a vitrous state for the
temperature range considered in this DMA test, the instan-
taneous and equilibrium (long-term) moduli were supposed
equal. Dynamic testing was performed on a 26×4.1×
1.5 mm3 rectangular bar, in the tensile/compressive mode,
at a frequency of 1 Hz. The temperature ranged from −20 °C
to 230 °C at a heating rate of 1.5°C/min, under a flow of
nitrogen. Figure 6 sums up the evolution of the stiffness
versus the temperature and conversion degree. A decrease of
Young modulus E with rising of temperature was observed
[45].

DMA tests were also performed on the uncured resin for
estimating the gelation point. As the resin was initially in a
liquid state, another standard was used: the tests were per-
formed on the shear mode (sinusoidal shear strains) at a
frequency of 1 Hz, using two plane plates (one rotating
plate, the other being fixed). A heat ramp at 5 °C/min, from
24 °C to 350 °C, was applied at the same time, in order to
polymerise the resin. The resulting log(G’) versus time
curve remains horizontal during the first half-an-hour of
the experiment, then shows a sudden increase of the storage
modulus, rapidly followed by a linear evolution. The gela-
tion time was then defined as the intersection between the

Fig. 5 Manufacturing process considered (temperature, conversion
degree)
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corresponding linear interpolation line, and the axis of time.
By comparison with the 5 °C/min DSC runs, it was then
easy to determine the conversion degree at this point (χgel),
which was found equal to 45 %.

Thermal expansion

The CTE of the resin also experiences severe evolutions
during the curing process: it increases with temperature
and decreases with conversion degree. The evolution of
the fully cured resin CTE was given by Hexcel for
three ranges of temperatures. A linear data interpolation
was achieved using the middle point of each tempera-
ture range (see Table 1).

The dependence upon the conversion degree could also
have a significant effect on the results, as the resin under-
goes temperature changes while still not being fully cured.
This dependency was represented by a linear evolution of
the CTE as a function of conversion degree, the CTE of the
totally uncured resin having been fixed at a mean value of
220.10−6/K.

Cure shrinkage

The polymerisation reaction corresponds to the creation of
covalent bonds between the macromolecules, and a constric-
tion of the amorphous network. This induces important bulk
shrinkage of the resin, in the order of 3 % up to 9 %

(depending on the chemical formulation of the resin). This
chemical shrinkage is comparable to the thermal shrink-
age and thus, shall not be neglected. An estimation of
5.7 % for the bulk shrinkage of our BMI resin was
obtained (unpublished results), using a dedicated equip-
ment (a PVTα mold), also used by Msallem et al. This
shrinkage was also supposedly proportional to the con-
version coefficient, leading to a linear Coefficient of
Chemical Expansion (CCE) η being equal to −1.67 %.
The hypothesis of a constant CCE along the cure pro-
cess is, yet, quite discussable from a physical point of
view (see Rabearison et al. [39]).

Effective properties and internal stresses computation
during the cure process

Computation of the effective properties

The above presented scale transition procedure is used for
computing the effective properties of the material during the
cure process. The properties at room temperature (20 °C) of
the fully cured Hextool, and of its constituents, are summa-
rized in Table 2. A few experimental results can confirm the
estimated effective properties.

The in-plane elastic modulus was determined through
tensile tests (EN 2561). It varies between 41 and
45.7 GPa. The in-plane shear modulus was found equal to
14.4 GPa (Iosipescu test ASTM D5379), and the CTEs were
also measured at room temperature (ASTM E831 and
E228). Large relative uncertainties (in the order of 10 %)
are observed upon the in-plane properties, as the sample
sizes are probably too small to ensure a good representativ-
ity. Taking into account those uncertainties, one can say that
the experimental and calculated values are close enough.
Using the Mori-Tanaka model instead of the self-
consistent approach gives a slightly better estimate of
the shear moduli, but lower CTEs. The discrepancies
between the numerical and experimental results can also
be attributed to the out-of-plane waviness of the rein-
forcing strips (which deteriorate their in-plane apparent
properties).

To follow the evolution of these properties during the
manufacturing process, the temperature and conversion
degrees presented on Fig. 5 are considered. The properties
of the matrix are then computed and introduced in the
homogenization scheme, in order to obtain the macroscopic

Table 1 Coefficients of thermal
expansion of the fully cured
BMI resin

20<T<70 °C 70<T<120 °C 120<T<170 °C Interpolation [10−6/ °C]

41.4×10−6/ °C 49.3×10−6/ °C 58.8×10−6/ °C αcured(T)033.285+0.1743×T

Fig. 6 Young’s modulus of the M61 resin, as a function of the
temperature and conversion degree
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effective properties given in Fig. 7, for each time points. The
method is very cost-effective, as the computation of one set
of effective properties lasts less than ten seconds on a recent
computer.

All properties are set to zero until the gelation of the
matrix occurs (χgel045 %, tgel0129 min): i.e. the resin is
considered as a liquid before this point. The sudden change
of some properties at the gelation point is a numerical issue,
and a side effect of the analytical expressions used for the
Morris tensor. One can then observe a significant evolution
of the properties as the matrix stiffens, followed by a stabi-
lisation; weaker evolutions can also be observed during the
heat-up and the cool-down steps of the process. The curves
show that out-of-plane properties are clearly matrix-
controlled, whereas in-plane properties are mainly related
to the fibers’ high stiffness and weak coefficients of expan-
sion (particularly the in-plane modulus E1). However, this
last observation should be moderated, as the behaviour of
the matrix is strongly viscoelastic just beyond the gelation
point.

Computation of the local residual stresses

As the properties of the material and the constituents
vary along the cure process, the Eqs. (1) and (6), giving
the constitutive responses, must be written in a differ-
ential form, then integrated over time. Considering a
small time step δt, the increments of temperature, con-
version degree, strain and stress are denoted as follows:
δT, δχ, δε and δσ. Moreover, the effect of a chemical

shrinkage is taken into account, which yields the fol-
lowing relations:

dσk ¼ Lk : d"k � akdT� ηkdc
� �

;where k ¼ i; I ð18Þ

d"i ¼ Li þ L*
� ��1

: ½ LI þ L*
� �

: d"I þ Li : ai � LI : aI
� �

dT

þ Li : ηi � LI : ηI
� �

dc�
ð19Þ

Those increments are computed, using the mechanical
properties computed at the beginning of the time step, then
cumulated to obtain the mechanical states (with the same
method as the evaluation of the conversion degree). The
time increments are small enough to ensure a precision
higher than 1 % over the integrated mechanical states.

Results and discussion

For the range of this study, a fictive thin part is considered,
and is affected idealised boundary conditions, representing
mould-part interactions. This enables to free oneself of any
structural or transient effects, and to obtain uniform temper-
ature and macroscopic states fields. Consequently, time
appears as a virtual parameter: the results only depend of a
few “state indicators” described in “Description of the con-
sidered manufacturing process”, and of the constitutive re-
sponse of the resin (which is itself described by state
variables). Three typical cases are considered here: (i) a cure
without external mechanical loading of the material (case
#1); (ii) a cure with prevented in-plane macroscopic strains

Table 2 Thermo-chemio-elastic effective properties of the Hextool and its constituents

Mechanical moduli

Ex [GPa] Ey,Ez [GPa] νxy, νxz Gxy,Gxz [GPa] νyz Gyz [GPa]

M61 resin 3.5 3.5 0.40 1.6 0.40 1.6

AS4 fiber a 207 20.7 0.20 27.6 0.05 6.9

UD strips 117.0 9.5 0.28 7.6 0.56 3.0

E1,E2 [GPa] E3 [GPa] ν12 G12 [GPa] ν13,ν23 G13,G23 [GPa]

Hextool 46.3 12.3 0.27 18.2 0.37 3.9

Exp. b 41~45.7 X X 14.4 X X

CTE CCE
αx [10

−6/K] αy, αz [10
−6/K] ηx [10

−6] ηy,ηz [10
−6]

M61 resin 38.2 38.2 −19000 −19000

AS4 fiber −0.35 11.8 0 0

UD strips 0.32 27.4 −353 −9940

α1,α2 [10
−6/K] α3 [10

−6/K] η1,η2 [10
−6] η3 [10

−6]

Hextool 2.98 42.5 −1323 −15894

Exp. b 3.5~5 45~52 X X

a Elastic moduli provided by White and Kim [48], CTEs provided by Hexcel Composites [18]
b Values provided by Hexcel Composites [18]
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(case #2); (iii) and a cure with imposed thermal strains in the
plane of the ply (case #3). For these two last cases, the
removal from the mould will also be considered, by releas-
ing the macroscopic stresses. Any of these loads respects the
in-plane isotropy of the material, so the local states are
independent of the orientation Θ of the considered strip
(see Lacoste et al. [26])

Process case #1

For this case, the macroscopic stresses are set to zero during
the whole cure process. The gelation point (tgel0129 min) is

considered as the initiation of residual stresses and strains.
Figure 8 shows the evolution of stresses in the constituents,
at the microscopic and mesoscopic scale. The stresses fol-
low the evolution of the thermo-chemical shrinkage, with a
first peak after the first cure cycle, and another peak at the
end of the post-cure stand. The stresses are very weak when
the temperature reaches 220 °C, which roughly corresponds
to the stress-free temperature. During the first cure cycle, the
curves also show a neat decomposition of chemical and
thermal shrinkage, the second yielding nearly 300 % more
residual stresses than the first. This result is consistent with
results from other authors (see, for instance, Zhao et al.

Fig. 7 Evolutions of the material effective properties during the cure process
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[49]). However, during the post-cure cycle, the thermal
expansion from 190 °C to 220 °C nearly nullifies the effect
of the chemical shrinkage, so that the post-cure temperature
can roughly be considered as a stress-free temperature. This
result justifies the hypothesis of neglecting the viscoelastic
relaxation at high temperature, but this should not be trans-
posed to the viscoelastic effects occurring during the cool-
ing. Also, the chemical shrinkage shall not be neglected, as
it plays an important role over the strain states, particularly
in the z-direction (out-of-plane).

The microscopic constituents (fibers and intra-
reinforcement matrix) undergo more important stresses than
mesoscopic elements. In particular, the intra-reinforcement
matrix undergoes about 75 MPa in the x and y directions,
which might lead to its failure or to fiber-matrix debonding.
In order to determine the risk of matrix failure, a Tsaï-Wu
failure criterion is used, and the inverse of the strength factor
is plotted on Fig. 8. The parameters of the criterion are taken
from the engineering strength of a high-strength epoxy

matrix, given by Fiedler et al. [9]. This shows that
residual stresses in the matrix can reach 64 % of its
strength at failure, which is critical. Moreover, the self-
consistent approach provides average (mean-field) val-
ues of the local stresses, so these may reach even
stronger values in the actual material. This subject will
be discussed later. On the contrary, the self-consistent
approach gives a more realistic description for rigid
elements (fibers and reinforcing strips), as they can be
viewed as inclusions with well-defined morphologies. In
the fiber direction, they experience compression stresses
of −60 MPa and −170 MPa, respectively. These loads
may not cause local degradations because of their high
strength, but there is a risk of micro-buckling of these
elements. Despite weaker stresses, there is a greater
danger for reinforcing strips, because of their pre-
existent waviness. This could also be detrimental for
the surface state of the material and would increase
the need of a surface treatment after fabrication.

Fig. 8 Time dependent evolutions of the local stress states during the curing process, computed for the case #1.
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Process case #2

For this case, the macroscopic in-plane strains were set to
zero during the first cure cycle, and the cumulated macro-
scopic stresses were released at the end of the cure cycle.
The post-cure step was treated in the same way as in case #1
(stand-alone post-cure). Given the in-plane symmetry of the
problem, the macroscopic strain increments of the Hextool
are then given by Eq. 20. This results in tensile stress states
in the Hextool during the cure phase.

d"I11 ¼ d"I22 ¼ 0

d"I33 ¼ aI
3 � dTþ ηI3 � dc

� �þ aI
1 � dTþ ηI1 � dcÞ � 2LI

13 LI
33

��
 ð20Þ

The resulting stresses in the composite and its constitu-
ents are depicted in Fig. 9. The stress states discontinuity
corresponds to the removal of the material from the mould.
It can be seen that the ultimate stresses experienced at the
end of the manufacturing process #2 are very close to those
observed for the stress-free cure. This shows that the

macroscopic stresses applied before releasing, combined to
the slight evolution of the in-plane modulus of the compos-
ite during the cure, have little influence on the final result.
One can also observe that the stress states experienced by
the matrix before releasing are very close to those observed
for the stress-free cure, which can be interpreted by the very
weak stiffness of the matrix. The in-plane mechanical
stresses applied to the composite are mainly transmitted to
the rigid elements in the x-direction. This results to weaker
stress states for those elements, which is beneficial for the
material.

Process case #3

For this case, the macroscopic in-plane strains were as-
sumed proportional to the temperature increments, the pro-
portionality factor being equal to the CTE of steel (αsteel0

12.3×10-6/ °C). The strain increments in the composite are
then computed via Eq. 21, and the resulting stress states are

Fig. 9 Time dependent evolutions of the local stress states during the curing process, computed for the case #2.
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given in Fig. 10. These stresses coarsely represent the inter-
action between a composite part and a massive steel mould.

d"I11 ¼ d"I22 ¼ asteel:dT

d"I33 ¼ aI
3:dTþ ηI3:dc

� �þ aI
1 � asteel

� �
:dTþ ηI1:dc

� �� 2LI
13 LI

33

�


ð21Þ

The mould-part interactions result in tensile stress states
during the cure plateau at 190 °C (due to the chemical
shrinkage of the material), whereas strong compressive
stresses occur during the cooling of the part.

At first hand, one must notice that those boundary
conditions are unrealistically severe, as they yield
very important compressive stresses in the composite
(about −93 MPa). In any real manufacturing process,
the adhesion of the mould and the part is not sufficiently
strong to sustain those stresses, and debonding would
probably occur.

The stress states in the matrix constituents are not strong-
ly affected by the mould-part interactions, and their influ-
ence is mostly beneficial to the matrix, as they reduce the
stress states experienced during the cure process. On the
other hand, for the rigid elements, the external compressive
load yields important stresses in the x-direction, before
removal from the mould: −230 MPa in the reinforcing strips
and −445 MPa in the fibers. These stresses are known to
depend on the tooling material’s CTE, but also on the cool-
ing rate, due to viscoelastic effects [25]. This shows that the
choice of a proper tooling material and cure cycle is funda-
mental to avoid material degradations during the cure
cycles.

Indeed, with such levels of compression, one can fear a
buckling of the rigid elements, particularly the reinforcing
strips (“meso-buckling”) which already have an important
initial waviness. Rosen [40] gave a very coarse estimate of
the microbuckling load, by simply relating the critical

Fig. 10 Time dependent evolutions of the local stress states during the curing process, computed for the case #3.
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compressive stress in the fiber to the transverse shear mod-
ulus of the matrix:

σf
critical ¼

1

VfVm Gm
13 ð22Þ

This estimate, quite reassuring, is nevertheless consid-
ered as excessive by most authors [34, 43, 44], since it does
not take into account the initial reinforcement waviness.
Many studies on this subject can be found in the literature
(see, for instance, works by Grandidier et al. [14]), but
cannot be easily transposed to this particular material be-
cause of its very specific mesostructure. We may say, as a
comparison, that the experimental compressive strength of
the composite (330 MPa, EN-2850-B test) is much higher
than the loads considered in the present section. Moreover,
the risk of mesobuckling shall be moderated considering
that the stresses applied for this virtual process case are
unrealistically severe.

Discussion of the results

The numerical results obtained with the multiscale simula-
tion could not (yet) be compared with experimental results,
except for some of the mechanical properties. The random
mesostructure makes it difficult to obtain a reliable measure
of the local strains or stresses with classical methods (Fiber
Bragg Gratings, incremental hole drilling method…).

Despite this lack of experimental confrontation, the sim-
ulation results highlight several interesting facts. The first is
the effect of the chemical shrinkage, which has a significant
influence over the local stresses after the first cure cycle, but
which seems to be erased by the post-cure cycle (for our set
of material parameters). Secondly, the evolution of the local
properties affect the final stress state, and this final state
doesn’t seem to depend much on the history of the mechan-
ical loads (or tool-part interaction) applied during the curing
process (after removal from the mold, of course).

The results also highlight two main concerns about the
strength of the material under residual stresses and, thereaf-
ter, about its durability under service-life loads: the risk of
micro- and meso-buckling of the rigid elements, under com-
pressive residual stresses, and the failure of the resin under
tensile stresses. Unfortunately, both mechanisms are diffi-
cult to represent with the mean-field approach, used in the
present work, which neglects the inter-particles interactions.
As a consequence, the average values obtained for the local
stresses do not provide sufficient information for treating
phenomenon such as the failure or the progressive damage
of the material. The computation of resin-reinforcement
interface stresses would be a possible and easy enhancement
to the model, as this is a corollary of the historical Eshelby’s
inclusion problem. However, this simplified problem does
not take into account the perturbations induced by the

proximity of the inclusions. For instance, at the mesoscopic
scale, the random shear stress experienced by the resin due
to the disorientation of the UD strips, should not be
neglected, as they are a key damage mechanism of the
Hextool. In order to properly take into account the geomet-
rical information upon the microstructure and mesostruc-
ture, several approaches can be considered. If the local
structure corresponds to a periodic pattern, two complemen-
tary methods are widely used: the multilevel FE² method,
which combines macroscopic and periodic degrees of free-
dom [8, 15, 16, 21], and the FFT-based method, which uses
the Fast Fourier Transform to compute the Green’s influence
operator [30]. These methods are relevant for the UD strips,
which microstructure is much more structured. However, in
order to describe the mesostructure of the Hextool, with its
random nature and the reinforcements’ waviness, the use of
a full-field approach seems unavoidable.

Conclusions and perspectives

A scale transition procedure based on Eshelby-Kröner self-
consistent model was established, in order to describe the
multi-scale thermoelastic behaviour of a composite material
exhibiting a very specific microstructure. This procedure
was applied to the prediction of the time dependent evolu-
tions of the effective properties and local stress states in the
composite, during the cure process. An experimental inves-
tigation was led to determine the cure kinetics and the
properties of the BMI resin along the cure process. The
obtained results were taken into account in the homogeni-
zation procedure devoted to compute the composite’s effec-
tive properties. These properties were found in good
agreement with experimental results on the cured material.

The local stresses created by the thermal and chemical
shrinkage could be computed for three processing condi-
tions. The thermal shrinkage was found much more signif-
icant over local stresses states than the chemical shrinkage;
nevertheless, this last shall not be neglected as it has a
significant influence on out-of-plane strains. Also, the influ-
ence of viscoelastic relaxation during the cool-down periods
remains to be characterized.

The influence of macroscopic loads on the local mechan-
ical states was also investigated. At first hand, it seems that
they do not fairly influence the residual stresses after re-
moval from the mould, which can be explained by the
relative stability of the in-plane stiffness during the cure.
However, the macroscopic loading has a tremendous influ-
ence on the stresses experienced by the rigid elements along
the cure process. It was shown that using a rigid mould with
a strong CTE might result in important material degrada-
tions before removal from the mould, due to microbuckling
effects.
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The residual tensile stresses in the resin were found very
important, and are a key factor for the explanation of the
failure and damage behaviour of the material. However, a
full-field approach, able to handle the mesostructure of the
material, would be more relevant than the mean-field
approach used here, for the prediction of both the strength
and durability of the material.

Whatever, this multi-scale approach exhibits strong com-
plementarities with structural problematics. A coupling with
the Finite Element Method would enable the computation of
structural effects such as gradients of temperature, conver-
sion degree [32, 39], or fibre ratio in composite parts (for
RTM processes, particularly).
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