
HAL Id: hal-01004851
https://hal.science/hal-01004851

Submitted on 6 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A multi-material CCALE-MOF approach in cylindrical
geometry

Marie Billaud-Friess, J. Breil, Stephane Galera, P.-H. Maire, M. Shashkov

To cite this version:
Marie Billaud-Friess, J. Breil, Stephane Galera, P.-H. Maire, M. Shashkov. A multi-material CCALE-
MOF approach in cylindrical geometry. Communications in Computational Physics, 2014, 15 (2),
pp.330-364. �10.4208/cicp.190912.080513a�. �hal-01004851�

https://hal.science/hal-01004851
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A multi-material CCALE-MOF approach in cylindrical

geometry
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Abstract

In this paper we present recent developments concerning a Cell-Centered

Arbitrary Lagrangian Eulerian (CCALE) strategy using the Moment Of

Fluid (MOF) interface reconstruction for the numerical simulation of multi-

material compressible fluid flows on general unstructured grids in cylindri-

cal geometries. Especially, our attention is focused here on the following

points. First, we propose a new formulation of the scheme used during the

Lagrangian phase in the particular case of axisymmetric geometries. Then,

the MOF method is considered for multi-interface reconstruction in cylin-

drical geometry. Subsequently, a method devoted to the rezoning of polar

meshes is detailed. Finally, a generalization of the hybrid remapping to cylin-

drical geometries is presented. These explorations are validated by mean of

several test cases that clearly illustrate the robustness and accuracy of the
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new method.

Keywords: Cell-centered scheme, Lagrangian hydrodynamics, ALE, MOF

interface reconstruction, Rezoning algorithm, polar meshes, axisymmetric

geometries.

1. Introduction

Initialization

tn+1 = tn + ∆t
Lagrangian phase

Thermodynamical closure

for multi-material flows

Interface reconstruction Rezoning phase

Remapping phase

Figure 1: Multi-material CCALE algorithm flowchart.

In this work, we consider the simulation of multi-material compressible

flows on unstructured meshes in cylindrical geometry. For this, we adopt

an ALE description [14] that has the great advantage to combine the best

features of both Eulerian and Lagrangian approaches. Indeed, this choice is

not only well adapted to naturally track free surfaces and interfaces between

different fluids as purely Lagrangian methods, but also to handle flow distor-

tion as Eulerian methods. Here, a CCALE [10, 11] approach is particularly
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considered whose the main elements are as follow.

As depicted on figure Fig.1, the first step of the algorithm relies on an ex-

plicit Lagrangian phase in which the physical variables and grid are updated

thanks to a slightly modified version of the Explicite Unstructured Cell-

Centered Lagrangian HYDrodynamics (EUCCLHYD) scheme [19, 20, 21] in

cylindrical coordinates. Recently, new investigations have been made about

cell-centered Lagrangian schemes [3, 7]. The scheme presented in this paper

is a modified version of the area weighted finite volume scheme of [19]. Then,

multi-material flows treatment is done thanks to specific interface capturing

method. This choice allows to track the volume fraction of each material used

for the thermodynamical closure relying on the equal strain rates assump-

tion. This approach is quite simple to implement and to use and remains

sufficient in almost cases [11, 24]. This, leads to constant evolution of the

volume fraction during the Lagrangian phase. Such an approach allows to

reconstruct with accuracy the interface between each material. In this con-

text, many development have been done for 2D Cartesian geometries. First, a

previous version of the CCALE algorithm solving two-material compressible

flows using a Volume Of Fluid (VOF) have been proposed in [6, 11]. Then

an extension to Moment Of Fluid (MOF) approach has been considered to

enhance multi-material (more than two components) flows in [8, 10]. Subse-

quently, a rezoning phase is realized. It consists in moving the Lagrangian

nodes to improve the geometric quality of the grid [15]. Finally, the physi-

cal variables are conservatively interpolated from the Lagrangian grid onto

the new rezoned one during the remapping phase. Here an extension of the

hybrib remapping [4] to cylindrical geometries is introduced. We want to
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notice that in ALE framework using cell-centered formulation, this phase is

straightforward. In the lines of these works, the main goal of this paper is

to extend the CCALE-MOF algorithm to treat both Cartesian and cylindri-

cal geometry. To this end, several modifications are given to the algorithm

previously presented. In a first part, we propose a new formulation of the

numerical scheme introduced in [19] for treating axisymmetric geometries

during the Lagrangian phase. To build this scheme, an area-weighted formu-

lation of the Lagrangian system of equations is proposed. Then, this system

of equations is discretized using a cell-centered finite volume (FV) scheme.

Contrary to [19] in which fluxes are directly deduced from the Geometric

Conservation Law (GCL) constraint, here a simpler formulation that gives

similar results is retained. These two main choices lead to a robust first-

order scheme conservative for the total energy that has the great advantage

to preserve spherical symmetry for one-dimensional flow on uniform angular

polar grids. The high order extension has been performed using the Gener-

alized Riemann Problem (GRP) described in [19]. To treat interface flows, a

MOF interface reconstruction method is retained in the sequel. Once again,

the difficulty here is to propose a natural and consistent adaptation of this

approach able to treat axisymmetric interface flows. To this end, formula-

tions of the moments needed to track interface are revisited for cylindrical

coordinates as in [2]. This leads to an accurate and second order interface

reconstruction method that allows to treat multi-material (more than two)

interfaces in the lines of [8]. The third part of this study is dedicated to

recent enhancement of the rezoning algorithm to improve the mesh quality

during computation especially on polar meshes. As it is done in [10, 11],
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mesh rezoning is based on the Condition Number Smoothing (CNS) [15] al-

gorithm on unstructured meshes. Moreover, when used for polar meshes, it

is well known that CNS algorithm pushes the nodes toward the origin dete-

riorating the mesh quality. To avoid this drawback, the main idea developed

in this paper is to adapt CNS algorithm to polar grids. Then, extension to

unstructured grids (Cartesian-polar) is also explored. Finally, a generaliza-

tion of the remapping procedure to cylindrical geometries is proposed. Here,

an efficient method adapted to multi-material flows is presented. The main

idea is to use an hybrid remapping that combine the main advantages of

the swept-face and multi-material cell-intersection remapping as in [4, 10].

Finally, a specific attention is done to polynomial integration that preserves

the method efficiency.

The paper is structured as follows. We detail in the second section a

new formulation of the first-order area weighted Lagrangian scheme used for

axisymmetric geometries. Further extensions to high-order are notably de-

tailed in [19]. Afterwards, the extension of the MOF axisymmetric interface

reconstruction method is presented for treating multimaterial flows. Then,

we describe the General Condition Number Smoothing (GCNS) algorithm

for unstructured meshes. Finally, the description of the new hybrid remap-

ping procedure for cylindrical geometry is done. For a complete description

of the CCALE-MOF method see [10, 11], except new advances presented

in this paper. Then presentation of numerical experiments is made in Sec-

tion 4. They demonstrate not only the robustness and the accuracy of the

present methodology but also its ability to handle successfully complex two-
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dimensional multi-material fluid flows notably computed for axisymmetric

geometries. Finally concluding remarks and perspectives about future works

are given in the last section.

2. Lagrangian phase in axisymmetric geometry

In this part, an extension of the cell-centered Lagrangian scheme [20, 21]

is presented for the numerical simulation of compressible flows in pseudo-

Cartesian geometries for unstructured meshes as in [19]. This choice has

the great advantage to treat both axisymmetric and Cartesian geometries.

In this paper, a new and simple formulation of the scheme introduced in

[19] for first-order approximation is proposed. To this end, an area weighted

formulation of classical Lagrangian equations is first introduced. Then these

equations are discretized with a node-centered approximate Riemann solver.

2.1. Governing equations

During the Lagrangian phase, the rates of change of volume, mass, mo-

mentum and total energy are computed assuming that discretized volumes

move following the flow. Thus, each arbitrary volume V (t) depending on the

time t > 0 moves satisfying the following system of equations

d

dt

∫
V

ρdV = 0, (1)

d

dt

∫
V

dV −
∫
V

∇ ·UdV = 0, (2)

d

dt

∫
V

ρUdV +

∫
V

∇PdV = 0, (3)

d

dt

∫
V

ρEdV +

∫
V

∇ · (PU)dV = 0, (4)
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where
d

dt
is the Lagrangian derivative and ρ,U, P, E are respectively the

density, velocity, pressure and total energy. In addition, this system is closed

thanks to an equation of state (EOS) as

p = p(ρ, ε), (5)

with the internal energy ε defined as ε = E − |U|2/2. At last, we have local

kinematic equation
dX

dt
= U, X(0) = X0, (6)

with X the location of a point of the control volume surface S(t), at time

t > 0 and X0 its initial value. This equation is equivalent to (2) also known

as geometric conservation of law (GCL).

2.2. Area-weighted formulation

eY

eX

Y

X

A(t)

L(t)

R(Y )

N V (t) =

∫
A(t)

RdA

S(t) =

∫
L(t)

RdL

Figure 2: Notations related to the pseudo-cartesian grid.

For defining the differential operators used in the system of Lagrangian

equation (1)-(4) a pseudo-Cartesian reference frame {0, X, Y } for the or-

thonormal basis (eX , eY ) is used (see Fig.2). Thus each point is localized
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by means of its positions X and R(Y ) = 1 − α + αY the pseudo-radius.

When α = 0, the Lagrangian equations for Cartesian geometry are recov-

ered, otherwise for α = 1 this corresponds to axisymmetric equations. In

this way, axisymmetric geometry is obtained from Cartesian one through a

rotational symmetry about the X-axis. This implies that the volume V (t) is

generated by the rotation of the area A(t) about the X-axis. In consequence,

the element volume dV writes as dV = RdA with dA = dXdY the element

area in the pseudo-Cartesian frame. In the same manner, the control surface

S(t) delimiting V (t) is obtained through the rotation of L(t) the boundary

of A(t) and the surface element is given by dS = RdL. Note that we have

omitted the 2π factor in the evaluation of the element volume.

In a such framework, the velocity divergence and the pressure gradient

read as follows

∇ ·U =
1

R

[
∂(Ru)

∂X
+
∂(Rv)

∂Y

]
, where Ut = (u, v) (7)

and

∇P =

(
∂P

∂X
eX +

∂P

∂Y
eY

)
. (8)

Using the previous definitions and after some calculations using the Green’s

formula, it is possible to rewrite (1)-(4) at least in two different ways. The

first one, obtained without any approximation is the control volume formu-

lation. When discretized this formulation leads to a conservative scheme for

both equations of energy and momentum, and satisfies the local semi-discrete

entropy inequality. However, as shown in [19] it does not preserve symme-

tries. Consequently, an area-weighted formulation is adopted here leading

8



to a conservative scheme for energy equation that respect spherical geome-

tries. This formulation is deduced from the control volume one assuming

that momentum equation (3) is written in Cartesian geometry. Like this, the

area-weighted formulation for the Lagrangian equations reads

m
d

dt

〈
1

ρ

〉
−
∫
L

N · RUdL = 0, (9)

m
d

dt
〈U〉+R

∫
L

PNdL = 0, (10)

m
d

dt
〈E〉+

∫
L

PN · RUdL = 0, (11)

where m =
∫
V
ρdV represents the mass of the volume V . Each physical

variable per unit of mass (E,U) is noted as φ, and has its mass density

mean value defined by 〈φ〉 = 1
m

∫
V
ρφdV . The average R corresponds to

ratio R = V
A

. In such case, as m = ρV , the momentum equation is solved in

Cartesian geometry. For Cartesian case V = A, we recover R = 1. Further

details on the derivation of this system are available in [19].

2.3. Numerical scheme

Thereafter, we recall briefly the first order cell-centered Lagrangian scheme

introduced in [19]. To this goal, similar notations as [10, 19, 22] are employed

in the sequel. Let us consider a set {Ωc}c∈N of non-overlapping polygonal cells

that approximates A(t). Each cell noted Ωc is assigned a single index c. Each

vertex of the cell c is labeled with the index p and is localized thanks to its

coordinates Xp = (Xp, Yp)
t in the pseudo-Cartesian frame. In addition, we

introduce P(c) the list of the vertices belonging to the cell Ωc and C(p) the list

of the cells sharing the vertex p. These two sets are counterclockwise ordered.
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Let us introduce p− and p+ the previous and the next nodes with respect to

p in P(c). We denote by L−pc, L
+
pc the half length of the edges [pp−], [pp+].

Similar notations are used for the normals outward N+
pc and N−pc. Finally,

the corner normal LpcNpc is given by LpcNpc = L+
pcN

+
pc + L−pcN

−
pc. All these

notations have been displayed in Fig.3.

eY

eX

Y

X

Ωc•

•

•

• p

p+

p−
××
N+
pc

N−pc

Npc

L+
pcL−pc

LpcNpc = L+
pcN

+
pc + L−pcN

−
pc

Rc = VC/AC

Rp = Yp

Rp

Figure 3: Notations for the cell-centered scheme.

The first order spatial approximation of (9)-(11) is obtained considering

local integrals on each cell Ωc rotated about the X-axis. The mass mc of the

cell Ωc is mc =
∫

Ωc
ρdV and each flow variable φ (as total energy, velocity)

is averaged over each cell through the formula

φc =
1

mc

∫
Ωc

ρφdV,
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named cell-centered value. Then, we have

mc
d

dt
Uc +Rc

∑
p∈P(c)

Fpc = 0, (12)

mc
d

dt
Ec +

∑
p∈P(c)

Fpc · RpUp = 0. (13)

In addition, the mesh is moved through the local kinematic equation given

at each node by

dXp

dt
= Up for t > 0 and Xp(0) = X0

p, (14)

with Up and X0
p respectively the velocity and the position of a node p at

initial time. In the previous equations, Fpc is the numerical flux at each

node p of each cell c defined by

Fpc = LpcPcNpc −Mpc(Up −Uc), (15)

with Up the velocity at the point p and Pc the mean value of the pressure in

the cell c. The 2× 2 matrices Mpc and Mp are defined as

Mpc = Zc
(
L−pcN

−
pc ⊗N−pc + L+

pcN
+
pc ⊗N+

pc

)
, and Mp =

∑
c∈C(p)

Mpc. (16)

Where, we introduce the “swept mass flux” [9] associated to the isentropic

sound speed ac that is

Zc = ρcac. (17)

This is nothing but the acoustic impedance. As it has been demonstrated in

[22] the total energy and momentum conservation is equivalent to∑
c∈C(p)

Fpc = 0. (18)
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Finally using (15), the nodal velocity Up is deduced from (18) by solving

the linear system

MpUp =
∑
c∈C(p)

(LpcPcNpc + MpcUc). (19)

In [19], the numerical fluxes used in the discretization of (9) and (11) are

chosen for satisfying the local GCL constraint (14). Here, we rather adopt a

more simple approach that give similar results. Since (14) is explicitly solved

for moving the mesh in time, there is no need to solve (9). Thus, each cell

volume Vc is directly deduced from (14). Thereby, it is possible to choose for

the numerical flux in (11) a simple form as in (13) with Rp = 1 − α + αYp.

Concerning, the momentum equation the mean value Rc is equal to the

discrete ratio Rc =
Vc
Ac

.

Let us note that this new formulation of the area-weighted discretiza-

tion relies on a node-centered solver which is exactly the same as the one

developed in [20] for two-dimensional Cartesian geometry. However, the

present spatial discretization does not satisfy rigorously the GCL compat-

ibility requirement. In what follows, we will assess the discrepancy of our

discretization to the GCL by analyzing the corresponding discrete divergence

operator. The discrete divergence operator that corresponds to the present

scheme writes as

(∇ ·U)c =
1

Vc

∑
p∈P(c)

Rp(L
−
pcN

−
pc + L+

pcN
+
pc) ·Up, (20)

where Rp denotes the pseudo-radius of vertex p. It is shown in [22, 19] that

the discrete divergence operator deduced from the GCL reads

(∇·U)GCLc =
1

Vc

∑
p∈P(c)

1

3
[(2Rp+R−p )L−pcN

−
pc+(2Rp+R+

p )L+
pcN

+
pc] ·Up. (21)
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If the time evolution of the position vector, Xp, of vertex p is governed by

the trajectory equation [14], then one can prove that the time rate of change

of the cell volume, Vc, satisfies

1

Vc

dVc
dt

= (∇ ·U)GCLc .

Subtracting (20) and (21) leads to

(∇·U)c−(∇·U)GCLc =
1

3Vc

∑
p∈P(c)

[(Rp−R−p )L−pcN
−
pc+(Rp−R+

p )L+
pcN

+
pc] ·Up.

(22)

Knowing that the summation in the previous equation is cyclic, shifting the

index in the second term of the right hand-side yields

(∇ ·U)c − (∇ ·U)GCLc =
1

3Vc

∑
p∈P(c)

[(R+
p −Rp)L

+
pcN

+
pc] · (Up+ −Up). (23)

In case of a one-dimensional spherical flow on an equi-angular polar grid,

the right-hand side of the previous equation is equal to zero. To prove this

result, let us consider a quadrangular cell of an equi-angular polar grid. The

proof proceeds in the following two steps:

• Either p and p+ are located on the same angular sector and thus the

nodal velocity Up and Up+ are colinear to the direction of the angular

sector which is orthogonal to the unit outward normal N+
pc. Hence,

(Up+ −Up) ·N+
pc = 0.

• Or p and p+ are located on the same cercle of radius R, then the

Cartesian components of their nodal velocities reads as

Up = U(R)

cos θ

sin θ

 , Up+ = U(R)

cos(θ + ∆θ)

sin(θ + ∆θ)

 .
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Here, θ denotes the angle of the angular sector, U(r) is the module of

the one-dimensional velocity field, and ∆θ is size of the angular sector.

A straigthforward computation shows that

Up+ −Up = 2U(R) sin(
∆θ

2
)

− sin(θ + ∆θ
2

)

cos(θ + ∆θ
2

)

 .

Knowing that the unit outward normal is given by

N+
pc =

cos(θ + ∆θ
2

)

sin(θ + ∆θ
2

)

 ,

we obtain that (Up+ −Up) ·N+
pc = 0.

This ends the proof. This result shows that our new area-weighted dis-

cretization satisfies rigoroulsy the GCL compatibility requirement for one-

dimensional spherical flows on equi-angular polar grids.

3. MOF multi-material interface reconstruction phase in axisym-

metric geometry

The method used in this work to reconstruct interfaces, is the MOF ap-

proach well adapted for treating multi-materials interface problems [1, 8].

Indeed, such a method enables to capture more accurately interfaces than

the classical VOF strategy and allows the treatment of general multi-material

flows (more than two materials) [10, 17]. This method has been recently ex-

tended in cylindrical geometries, for a single interface problem [2]. Here,

extension to multi-material interface reconstruction phase to cylindrical co-

ordinates is considered.
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3.1. Moment of fluid method

The main idea of MOF is to track each fluid in a cell using the zeroth

and first moments [8]. Given these two moments, interface is linearly re-

constructed insuring volume conservation. To this end, interface update is

done minimizing the discrepancy between the given moments and the recon-

structed moments of the polygon behind the interface. One should note that

no information from neighboring cells is required. This method is exact for

linear interfaces and is second order accurate for smoothly curved ones. In

the context of multi-material configurations, one has to face to material or-

dering when reconstructing interface. The method presented here, allows to

automatically determine the order of materials by constructing all the pos-

sible combination and choosing the sequence that leads to the configuration

where the reconstructed moments are the closest to the given ones. The main

difference between cylindrical and planar geometry relies in the definition of

the different moments. Since the interface reconstruction is done under vol-

ume conservative assumption, the zeroth moment M0
k,c of the k-th fluid in

each cell c is obviously given by

M0
k,c =

∫
Ωk,c

RdA, (24)

from this moment we can deduce the volume fraction

αk,c =
M0

k,c

Vc
, (25)

with the cell volume Vc =
∫

Ωc
RdA.

Contrary to the zeroth moment, the first moment can be defined without

any specific requirement. Thus, it is possible to compute them in the two

15



following different manners. In the one hand we can use the natural extension

to axisymmetric geometries

M1
k,c =

∫
Ωk,c

RXdA, (26)

and from this moment we deduce the pseudo-centroid

Xk,c =
M1

k,c

Vk,c
, with Vk,c = Vcαk,c. (27)

This pseudo-centroid for a matter of simplicity will be called here the ax-

isymmetric centroid.

On the other hand it can also be done with a planar definition as follows

M1,pl
k,c =

∫
Ωk,c

XdA, (28)

and thus planar centroid will be obtain from

Xpl
k,c =

M1,pl
k,c

Ak,c
, (29)

where Ak,c is the area of the k-th fluid in the cell c.

Since this interface reconstruction method is coupled to our Lagrangian

hydrodynamics scheme it requires to update the volume fractions and ma-

terial centroids. Using the equal strain assumption, the volume fractions do

not evolve during the Lagrangian step (see [11] for more details). However,

the centroid locations are given from the Lagrangian step using a barycentric

combination of the new positions of the mesh nodes as done in [10].

3.2. Numerical validation

The main goal of this section is to compare the results given by both

axisymmetric and planar formulations of the centroids on several static test
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cases in one cell. As in [8], we consider three different mixed-cell layouts

that are filament (without junction), T-junction and Y-junction. The first

two configurations correspond to C2-serial partitions whereas the third is not.

In the considered test cases, the parameter χ corresponds to the radius of

the circles defining the interfaces. Two values are considered with χ = 1 and

χ = 64. In addition, the computation domain is reduce to the cell [0; 1]×[0; 1]

(see figures Fig.4 and Fig.5).

In the first case, with χ = 1, we notice small differences for the filament

case, no notable difference on the T-Junction but the Y-junction results

for axisymmetric and planar formulations present distinct interface positions

due to a different ordering of the materials. For a large radius χ = 64, the

curves are reduced to piecewise linear interfaces. Then, the result using both

formulations are very close to each other. For the two first cases filament

and T-junction, the results are exact. Regarding the Y-junction, it remains

a good approximation. These results illustrate the capability of both planar

and axisymmetric centroid formulation for MOF to treat accurately multi-

material problem. Nevertheless, for consistency with the global cylindrical

coordinate formulation, the axisymmetric formulation for the centroids is

retained in the sequel.
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Figure 4: MOF interface reconstruction test for three materials. From the top to the

bottom: the true partitions for χ = 1 and their MOF reconstructions obtained with

planar and axisymmetric centroids. From the left to the right: filament, T-junction and

Y-junction configurations.
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Figure 5: MOF interface reconstruction test for three materials. From the top to the

bottom: the true partitions for χ = 64 and their MOF reconstructions obtained with

planar and axisymmetric centroids. From the left to the right: filament, T-junction and

Y-junction configurations.
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4. Rezoning phase improvement for polar meshes

The rezoning phase introduced in [10, 11] consists in moving the La-

grangian grid to improve its geometric quality. The objective of this part is

to extend this approach to polar meshes. To this end, the proposed proce-

dure relies on two main steps. The first phase is dedicated to compute the

smoothed grid from the Lagrangian one through CNS method. Then the

final mesh is deduced from the smoothed one by a relaxation procedure to

keep the rezoned grid as close as possible to the Lagrangian grid in order

to insure computation accuracy and avoid unphysical mesh rezoning. In the

sequel one should note that rezoning is formulated only for planar geometry

in the frame {0, X, Y }.

For the sake of readability, in the rest of the paper the quantities without

any accent a are associated to Lagrangian mesh. After the rezoning step

we use arez, and finally after relaxation the quantities related to the rezoned

mesh are noted with the tilde accent ã.

4.1. General condition number smoothing (GCNS)

As it is pointed out in the introduction, CNS approach is well adapted

to rezone Cartesian meshes but it still suffers from drawbacks for polar ones.

Indeed, in this case the mesh seems to collapse (like an implosion) to the ori-

gin. To circumvent this difficulty, it has been proposed to modify the CNS

algorithm using specific weight associated to the mesh geometry [25] that

controls mesh rezoning with regards to the radius for example. Nevertheless,

this approach is not completely satisfactory. First, it strongly depends on
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the choice of the weight, that may affect the quality of the mesh which can

be shifted in the opposite direction to the origin for example. Furthermore,

there is still a residual compression near the origin due to singularity at this

point. In conclusion, it does not preserve a uniform polar mesh. For this

reason, a different strategy is presented here. The main idea developed here

is to apply the CNS rezoning algorithm in (r, θ)-coordinate system. In fact, a

polar mesh initially expressed using a Cartesian coordinates (X, Y ) leads to a

structured Cartesian mesh in (r, θ)-coordinates. Here, a general presentation

of the algorithm is made for unstructured meshes.

Assuming that the resulting mesh from the Lagrangian phase is unfolded

(otherwise untangling procedure is used to correct invalid cells [26]) . Thus,

the proposed algorithm consists for polar meshes in three different steps as

depicted on Fig.17. For the sake of simplicity, we consider in the sequel only

the case of Cartesian and polar structured meshes.

(X lag, X lag)

T

(rlag, θlag)

CNS

rezoning

(rrez, θrez)

T−1

(Xrez, Y rez)

Figure 6: Rule representation for GCNS algorithm for a polar mesh.

The first step, is dedicated to the mapping between Cartesian and polar

coordinates. To this end, consider c a given cell of the Lagrangian grid for

(X, Y )-coordinates, p ∈ P(c) a node of this cell. Notation used in the sequel

are depicted on Fig.7. The mapping between a point p ∈ c of Cartesian
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Ωc

Xp = (X,Y )

•
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•

•
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•
p

p+

p−

T = Rθ

Ω̂c

•

•

◦

◦

•

•

•

•

•

p

p+

p−

X̂p = (r, θ)

• mapped nodes, ◦ extrapolated nodes

Figure 7: Notations and mapping between cartesian and polar coordinates.

coordinates Xp = (X, Y )t to X̂p = (rp, θp)
t in polar ones is done through the

following linear transformation

X̂p = TXp, (30)

where T(Xp)
def
= Id − βId + βR(Xp) with β ∈ {0, 1}. For β = 1 then

T(Xp) = R(Xp) with the rotation matrix

R(Xp) =

 cos(θp) − sin(θp)

sin(θp) cos(θp)

 ,

using the definition θp = arctan

(
Yp
Xp

)
and rp =

√
X2
p + Y 2

p . In the case

β = 0, this formula leads to Cartesian rezoning with the identical transfor-

mation X̂p = Xp. When mapping (X, Y ) to (r, θ), the origin node has to

be specifically treated. Indeed the transformation (30) is not defined for this

point. Then as it is needed in the rezoning algorithm in the (r, θ) frame, the

origin node is defined by a mapping of the first row on r = 0 axis (see Fig.7).

Note that these nodes are not used for the final backward mapping.

The second step is the GCNS algorithm. It is based on a minimization

problem of a local functional that controls the quality of the mesh. As done
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in [10, 11], one has to distinguish boundary nodes and internal node for which

the smoothing procedure is different.

For internal nodes, let us introduce as in [15] the condition number for (r, θ)-

coordinates that writes

κ(Ĵcp) =
||X̂pp+ ||2 + ||X̂pp− ||2

Âcp
, (31)

where X̂pp± = X̂p − X̂p± , and Âcp = det(Ĵcp) is the area of the triangle

delimited by {p, p+, p−} in the rezoned grid and Ĵcp = [X̂pp+ | − X̂pp− ] the

2× 2 Jacobian matrix associated to each corner at vertex p of cell c. Thanks

to this condition number we define the local function associated to the node p

Fp(X̂p) =
∑
c∈C(p)

κ(Ĵcp), (32)

Finally, the new position X̂rez
p is obtained by the minimization of the local

function Fp using the first step of a Newton algorithm. This leads to the

formula

X̂rez
p = X̂p − H−1

cp (X̂p)∇Fp(X̂p), (33)

where H−1
cp and ∇Fp are respectively the Cartesian 2× 2 Hessian matrix and

gradient related to the local functional Fp.

For boundary nodes, the rezoned position X̂rez
p of p is computed in consistent

way with the GCNS algorithm. To this end, X̂rez
p is given thanks to a second-

order interpolation Bézier curve [11] leading to

X̂rez
p = X̂p(srez) = (1− (srez)2)X̂p− + 2(1− srez)X̂i + (srez)2X̂p+ , (34)

where X̂i such that X̂p(1/2) = X̂p. Furthermore, the parameter srez is com-

puted to minimize Fp(X̂p(s)) (for more details on this procedure see [11]).
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Finally, the third step consists in backward mapping between X̂rez
p and

Xrez
p using (30), where the inverse of the transformation matrix is taken

equal to T−1(Xp)
def
= Id − βId + β [R(Xp)]

−1 with β ∈ {0, 1} and [R(Xp)]
−1

the inverse rotation matrix .

4.2. Relaxation algorithm

The relaxation algorithm consists in making a convex combination be-

tween rezoned grid obtained from GCNS step and its location after La-

grangian step. This reads for each mesh node p by:

X̃p = Xp + ωp(X
rez
p −Xp), with ωp ∈ [0, 1],

where X̃p is the new mesh node position after the complete rezoning phase.

The coefficient ωp is computed as a function of the right Cauchy-Green tensor

associated to the Lagrange grid deformation over a time step (for details see

[11, 18]).

4.3. Numerical validation

In this section, we compare results obtained by the GCNS algorithm

to those obtained for classical CNS for the rezoning of uniform polar and

unstructured meshes.

Uniform mesh. First, we consider an uniform polar mesh made of 20× 10

elements see Fig.8-(a). Results obtained after 100 iterations for the clas-

sical and general smoothing are presented on Fig.8. For each method the

relaxation coefficient ωp is taken equal to 1. As already mentioned, the clas-

sical smoothing does not converge on polar mesh and implies the collapse

of cell layers to the origins (see Fig.8-(b)). However, for the GCNS, the

24



result obtained (see Fig.8-(c)) is converged. The mesh initially uniform, is

not modified at the end of the computation. This clearly illustrates the good

behavior of our smoothing algorithm.
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Figure 8: Smoothing of a static polar grid 16× 10: (a) initial grid; Smoothed grids after

100 iterations: (b) CNS, (c) GCNS.

Unstructured mesh. Now, rezoning for an unstructured mesh is studied.

Let us consider a mesh made of 175 quadrangular cells as depicted on Fig.9-

(a). When applying the full Cartesian rezoning to the mesh, similar obser-

vations as previously can be made. It suffers from an implosion of central

cells to the origin and does not converge (see Fig.9-(b)). For the full GCNS

algorithm, one can see after convergence, the formation of mesh distortion

on the square region and a polar mesh far from the center (see Fig.9-(c)).

Nevertheless, it is possible to improve this rezoning. Thus, the main idea

developed in the sequel is to apply the GCNS rezoning algorithm differently

for a node belonging initially to a Cartesian or polar region of the mesh.

To this end, the transformation T between (X, Y ) and (r, θ) coordinates is
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Figure 9: Smoothing of a static unstructured grid: (a) initial grid; Smoothed grids after

100 iterations (b) CNS, (c) GCNS after 100 iterations.

modified in the following way

T(Xp)
def
= Id − β(Xp)Id + β(Xp)R(Xp), (35)

with

β(Xp) =

 1 if X0
p ∈ Ppol,

0 if X0
p ∈ Pcar,

where Pcar and Ppol are the sets of nodes that belong to the Cartesian and

respectively polar region of the mesh at the initial time. These regions are

represented thanks to red and blue color (see Fig.10-(a)) for the considered

mesh. Nodes localized at the frontier between the polar and Cartesian meshes

(black nodes on Fig.10-(a)) can be considered either polar, or Cartesian.

As represented on Fig.10-(b,c), both possibilities are tested. The obtained

results illustrate that the Cartesian choice remains better contrary to the

polar one that introduce mesh distortion.
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Figure 10: Smoothing of a static unstructured grid: (a) initial grid with Cartesian (blue)

and polar (red) rezoning regions; Smoothed grids after 100 iterations (b) GCNS with

interfacial polar rezoning, (c) GCNS with interfacial Cartesian rezoning.

5. Hybrid remapping in axisymmetric geometry

During the remapping phase, the physical unknowns (density, velocity,

total energy) computed thanks to the Lagrangian step are conservatively

remapped from the Lagrangian mesh to the rezoned one. To this end, an ex-

tension of the Hybrid Remapping Algorithm for multi-material flows [10, 16, 4]

to cylindrical geometry is proposed here. This strategy consists in the follow-

ing two steps. First a swept-faced remapping is used to treat cells and nodes

localized far from the interface. Then, a cell-intersection-based method [11]

is applied to the cells and nodes in the neighborhood of the interface. In

this way, this approach combines the ability of the cell-intersection method

to remap the interface and the efficiency of the swept flux approach for the

other cells that significantly reduce the global computing cost of the method.

As done previously, in the perspective of general use of the method, a global

formulation including both Cartesian and axisymmetric framework is pre-

sented.
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We assume in the sequel, that there is no topology change of the mesh,

the cells of the Lagrangian and rezoned grids are respectively designed by Ωc

and Ω̃c.

5.1. Multi-material cell-intersection-based (MCIB) remapping

eY

eX

Y

X

◦

◦ ◦

◦
�

� �

�

Ωc

Ωk,c

Ωl,c

Ω̃c

Ωc = Ωl,c ∪ Ωk,c

Figure 11: Notations for MCIB method.

The main goal of remapping is as follows. Given the piecewise constant

representation of the physical variables per unit of volume (ρ, ρU, ρE) noted

ψc = ρcφc in each cell of the Lagrangian grid, we want to compute its equiv-

alent ψ̃c in each cell of the rezoned grid given as

ψ̃c =
1

Ṽc

∫
Ω̃c

ρ̃φRdA, (36)

with Ṽc the volume of the cell Ω̃c. Contrary to single fluid approach, here

the rezoned values ψ̃c can not be computed directly in each cell c. In fact,

one has to take into account multi-material aspects.
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First of all, let us introduce some notations. Each material of the flow

noted k occupies the polygon Ωk,c ⊂ Ωc, within the MOF framework, such

that Ωc =
⋃
k

Ωk,c and is characterized by its partial mass, density, pressure,

internal energy and variables per unit of volume (total energy, momentum)

whose averaged values in each sub-cell are respectively mk,c, ρk,c, Pk,c, εk,c and

ψk,c = ρk,cφk,c with φk,c the partial velocity or energy per unit of mass.

Thus, for multi-material flow, the main idea of remapping is not to di-

rectly compute the global rezoned quantities ψ̃c but the partial rezoned ones

noted ψ̃k,c. This is particularly true for the MCIB method that is dedicated

to treat cell in the interface neighborhood. To this end, we first propose

a second order reconstruction Ψk,c(X) of ψk,c over each Lagrangian cell c

through the piecewise linear function

Ψk,c(X) = ψk,c + (∇Ψk)c(X−Xk,c), (37)

where (∇Ψk)c denotes the constant gradient of Ψk,c within cell c computed

thanks to a least-squares approach. Finally Xk,c is the centroid related to

the k-th fluid in the cell c given by

Xk,c =
1

Vk,c

∫
Ωk,c

RXdA. (38)

Thanks to these notations, the remapped value for MCIB is given by

ψ̃k,c =
1

Ṽk,c

∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RΨk,cdA, (39)

where the intersection polygons Ωk,d ∩ Ω̃c are computed thanks to a specific

triangulation of the mesh. The procedure is detailed in [11]. The set C(c) con-

tains the cells including c that share at least one node with the cell c. At last,
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the partial volume defined on the rezoned cell is Ṽk,c =
∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RdA.

In the context of MOF reconstruction, one has to define additional quanti-

ties as the partial remapped mass corresponding to material k. It is computed

as m̃k,c = ρ̃k,cα̃k,cṼk,c with the volume fraction

α̃k,c =
1

Ṽc

∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RdA, (40)

thus the partial volume can be also expressed as Ṽk,c = Ṽcα̃k,c. In addition,

each material centroid position is defined thanks to

X̃k,c =
1

Ṽk,c

∑
d∈C(c)

∫
Ωk,d∩Ω̃c

RXdA. (41)

5.2. Pure cell swept-face (PCSF) remapping

X

eY

eX

Y

•

• •

•
p+

p

�

� �

�

p

p+

Ωc

Ω̃c
Af Ω̃c+

Ωc = Ωk,c

Ωc+ = Ωk,c+

Figure 12: Notations for swept face-based method.

As explained before, the PCSF remapping is used only to treat single

fluid cells. In this context, one should remark that Ωc = Ωk,c, thus the mean
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value ψ̃c,k is given through

ψ̃k,c = ψk,c +
∑
f∈F(c)

∫
Af

RΨk,fdA, (42)

with Af the quadrangular signed area swept by the face f of a cell c between

the Lagrangian grid and the rezoned grid delimited by the ordered nodes of

coordinates {Xp, X̃p, X̃p+ ,Xp+} (refer to fig Fig.12). We note F(c) the set

of the faces f of a cell c. In addition, Ψk,f is the upwind value given by

Ψk,f =

 Ψk,c+ if Af > 0

Ψk,c otherwise.
(43)

with c+ the neighbor cell of c through the face f . During this step the volume

fractions α̃k,c = αk,c do not change as we consider single fluid cells and the

material centroid can be updated directly from the geometry X̃k,c = X̃c

where X̃c is the centroid of the cell Ω̃c.

5.3. Integration strategy

For both PCSF and MCIB remapping, one has to compute several surface

integrals, on polygons where the integrand is a polynomial function of (X, Y ).

This can be done using a triangulation of these areas. Nevertheless, this is

expensive. Here, we rather adopt a more efficient method as in [23]. In this

context, integrals are simplified using Taylor decomposition of the polynomial

integrand and Green’s formula leading to compute circular integrals over the

edges of the polygons defining the integration areas. For further details on

integral computations see [23].
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Figure 13: Hybrid remapping principle in one-dimension case.

5.4. Hybrid remapping algorithm

In this part, we detail the hybrid remapping algorithm that is summarized

on Fig.13. To this end, let us introduce N P and NM the sets of nodes and

in the same manner CP and CM the sets of cells respectively used for PCSF

and MCIB remapping. Here NM collects mixed nodes belonging to cells

that contain the interface or are on this interface (white nodes on Fig.13)

despite N P contains the pure ones (black nodes on Fig.13). In addition, CM

is the set of mixed cell that include cells intersected by the interfaces and

their neighbors by nodes. Finally, CP contains the cells that have at least

one node in N P .

The hybrid remapping procedure consists in performing the following steps.
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1. PCSF step. In this step we first move the pure nodes included in

N P and we remap the quantities in cell c belonging to CP . Thus, we

have ψ̃k,c = (ρ̃k,c, ρ̃Ek,c, ρ̃Uk,c) using relation (42) and m̃k,c, α̃k,c, X̃k,c

for each cell c ∈ Cp .

2. MCIB step. Now, the mixed nodes in NM are moved and the ψ̃k,c =

(ρ̃k,c, ρ̃Ek,c, ρ̃Uk,c) are remapped thanks to (39) and m̃k,c, α̃k,c, X̃k,c are

computed for cells c ∈ CM .

Since CM ∩ CP 6= {∅}, one should note that cell included in this intersection

are remapped at each step of the algorithm.

At the end of remapping, only the partial values of the physical variables

per unit of volume are known. A this step, a first point is to compute the

physical variables per unit of mass. The remapped partial total energy is

given using Ẽk,c = (̃ρE)k,c/ρ̃k,c. However, this is different for the remapped

partial velocity Ũk,c. Indeed, as explained in the second part of this paper,

the Lagrangian computation of the velocity is done in Cartesian geometry.

For this reason, the remapped velocity is deduced from the (̃ρU)k,c through

Ũk,c = (̃ρU)
pl

k,c/ρ̃
pl
k,c using the planar remapped density and momentum given

through (39) and (42) with R = 1. The second point is dedicated to the

reconstruction of the global values required for the next Lagrangian step. To

this end, a classical procedure is to use specific averages

φ̃c =
1

m̃c

∑
k

m̃k,cφ̃k,c, (44)

with the global mass and density deduced from

m̃c =
∑
k

m̃k,cα̃k,c and ρ̃c =
∑
k

ρ̃k,cα̃k,c. (45)
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At last, thermodynamical variables as pressure P and internal energy ε are

obtained thanks to specific thermodynamical closures as done in [11].

6. Numerical results

We present in this section several numerical test cases performed using

the CCALE-MOF computing procedure detailed in [10, 11] including the

various development proposed in this paper. In the sequel, all the materials

are governed by perfect gas equation of state p = ρe(γ − 1), where γ stands

for the polytropic index of gas.

6.1. Sedov problem
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Figure 14: Initial grid and material positions for the Sedov problem.

We present in this first section a Sedov problem for a point blast in a uni-

form medium with spherical symmetry. We use this test case to compare our

new formulation with the original EUCCLHYD scheme in pure Lagrangian

and coupled to the CCALE-MOF procedure. The initial conditions are given
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by (ρ0, P 0,U0) = (1, 10−6,0) in a spherical domain of radius 1.2 except in

the cell at the origin (0, 0) where an initial delta-function energy source is

set through the pressure

Por = (γ − 1)ρor
E0

Vor
,

with Vor the volume of the origin cell and E0 = 0.851072 is the total amount

of released energy. The fluid has its polytropic index γ equal to
7

5
. Contrary

to the original single material test case, we add here three artificial inter-

faces, to test our multi-material CCALE-MOF algorithm. These interfaces

are initially located for a radius equals to 0.1, 0.2 and 0.3 (see Fig.14).

Here we consider both Lagrangian and ALE computations for an initial un-

structured mesh depicted on Fig.14. This grid is obtained after one rezoning

step, with ωp = 1 of an unstructured mesh initially paved with 500 quad-

rangular cells. Numerical results are depicted on Fig.15 andFig.16 for a

final time of tend = 1 and compared to the analytical solution computed us-

ing self-similar arguments as done in [11]. It consists of a diverging shock

wave whose front is exactly localized at radius R = 1. As it is illustrated

on Fig.15, the pure Lagrangian solutions are in good agreement with the

analytical one for both approaches. We can notice that the new formula-

tion is less dissipative as we reach a higher density level in the shock region.

Indeed for the Lagrangian method as for the CCALE-MOF one the shock

location is well resolved without any spurious oscillation (Fig.16). In addi-

tion, this simple problem underlines the robustness (better mesh quality near

the origin) and accuracy (shock location) of the axisymmetric CCALE-MOF

approach especially when considering multi-material flows whose interfaces

are well captured thanks to the MOF reconstruction (see Fig.16).
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Figure 15: Sedov problem. From the top to the bottom: Interface positions, density maps,

density profiles defined as a function of the cell center radius compared to the analytical

solution at final time step for the pure Lagrangian computation using new scheme (left)

and the original EUCCLHYD scheme (right).
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Figure 16: Sedov problem. From the top to the bottom: Interface positions, density maps,

density profiles defined as a function of the cell center radius compared to the analytical

solution at final time step for the new CCALE-MOF procedure (left) and the EUCCLHYD

CCALE-MOF procedure (right).
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We point out that during the Lagrangian computation, non-convex cells

appeared. This may lead to interface reconstruction failure when consider-

ing multi-material flows. As illustrated by the previous numerical results,

the proposed CCALE-MOF algorithm remains adapted to treat such config-

uration without any difficulty demonstrating once again its robustness.

6.2. Axi-symmetric triple point problem

ρ1=1
p1=1
γ1=1.5
U1=0

(ρ2,p2,γ2,U2)
=(0.125,0.1,1.5,0)

(ρ3,p3,γ3,U3)
=(1.,0.1,1.4,0)

3

7

1.5

10
0

eY

eX

Figure 17: Axi-symmetric triple point problem : geometry and initial data.

We consider in this part a three-material problem that corresponds to a

three-state Riemann problem in an axisymmetric geometry. This problem

has been wisely studied in Cartesian geometry and here we propose new re-

sults for cylindrical geometry. The computational domain is rectangular and

composed of three regions (blue, green, red) whose dimensions are depicted on

Fig.17. The top, left and right boundaries are closed thanks to walls. A sym-

metry condition is applied to the bottom boundary corresponding to the X-

axis axi-symmetry. Initially, the blue region contains a fluid with high pres-

sure and density taken equal to (ρ1, p1) = (1, 1). The green region contains

a low density and pressure fluid whose initial state is (ρ2, p2) = (0.1, 0.125).

The third fluid in the red region, initially has a low pressure and an high

density equal to (ρ3, p3) = (1, 0.1). At the beginning of the computation, all
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fluids are supposed to be at rest then U1 = U2 = U3 = 0. The blue and

green material have the same polytropic index γ1 = γ2 = 1.5, despite the red

one has γ3 = 1.4.
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Figure 18: Axi-symmetric triple point problem. Mesh and material positions at t = 5 for

Eulerian computation.
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Figure 19: Axi-symmetric triple point problem. Mesh and material positions at t = 5 for

ALE computation.

The computation using the presented axisymmetric extension of the CCALE-

MOF algorithm is made on a grid initially paved with 140× 60 square cells

until a final time tf = 5. For this simulation, comparison with a full La-

grangian computation can not be performed since its suffers from important
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mesh tangling as shown in [18]. However comparison to full Eulerian simula-

tions is done. In this case, nodes are moved to their initial positions during

the rezoning step. Numerical results for both ALE and Eulerian methods

representing interfaces and meshes are depicted on Fig.18-19. As expected,

since there is a shock wave with high speed that propagates from the heavy

material (blue) to the light one (red), the interface is sheared at the triple

point producing a Kelvin-Helmholtz like instability. Here, comparison to

planar 2D computations [10] demonstrates that axisymmetric geometry par-

ticularly affects the vortex shape that is 3D. Although the global behavior of

the solutions is very similar comparing ALE approach to the Eulerian one.

6.3. Spherical Air-Helium shock/bubble interaction test

0 0.32

0.0445

0
0.65

0.
02
5

Air

He

Piston

(ρ1, P1) = (0.182, 105)

(ρ2, P2) = (1, 105)

eY

eX

Figure 20: Air-Helium shock/bubble interaction. Initial geometry and data.

We deal in this part with the numerical simulation of the experiment of

[12] concerning the impact of a Mach 1.25 shock travelling through the air

onto a spherical bubble of Helium. To this goal, let us consider a rectan-

gular domain of dimensions [0, 0.65] × [0, 0.0445] initially full of Air of data

(ρ1, P1) = (0.182, 105) except in an half disc centered in (0, 032) of radius
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Fluid Polytropic index γ Molar mass M

Air 1.4 28.963

Helium 1.648 5.269× 10−3

Table 1: Air-Helium shock/bubble interaction: EOS parameters.

0.0225 that contains Helium characterized by (ρ2, P2) = (1, 105) as depicted

on Fig.20. Here, spherical geometry is obtain thanks to a rotation around the

X-axis. EOS parameters for each fluids are stated on Tab.1. Wall boundary

and symmetry conditions are respectively chosen for the left, top boundaries.

Despite, a piston-like condition is imposed to the right one for an incoming

velocity equal to U∗ = (u∗, 0). Here, the horizontal velocity u∗ is computed

thanks to Rankine-Hugoniot conditions and is given by u∗ = −140.312 cor-

responding to an incident shock moving at the velocity Dc = −467.707.

The domain is initially paved with a structured cartesian grid composed of

520 × 72 cells. Here, the bubble is directly initialized through the volume

fraction on this mesh. Computations are done for the multi-material axisym-

metric CCALE-MOF for a final time chosen equal to tf = ti+600×10−6 where

ti = 657.463× 10−6 corresponds to the time of the shock/bubble interaction.

Here once again, simulations can not be achieved using pure Lagrangian

framework due to the apparition of important mesh distortion. Numerical

results associated to the Schlieren density profiles [13] and interface positions

deduced from the MOF reconstruction are respectively depicted on Fig.22

and Fig.23. Let us note that each pictures are obtained thanks to an axial

symmetry with respect to the X-axis. Comparisons between the Schlieren

density profiles and the sadow-graphs of the experiment show a good agree-
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ment, especially when observing the bubble shape deformations. Moreover,

waves generated by the initial shock are well localized and illustrate multiple

reflections and refractions especially on the bubble and the domain bound-

aries. These main points clearly demonstrate the accuracy and the robustness

of the method and validate the axisymmetric CCALE-MOF approach when

computing spherical test-cases coming from experiment.

6.4. Spherical implosion

ri = 10 re = 12

(ρl, pl, γl) = (0.05, 0.1, 5
3

)
(ρh, ph, γh) = (1, 0.1, 5

3
)

p∗

eY

eX

Figure 21: Multi-mode implosion in spherical geometry. Initial geometry and data.

The last test-case of this paper deals with the numerical computation of a

spherical implosion as initially treated in [27]. The interest of this simulation

is twofold. First, this is a realistic problem quite close to those encountered

in Ignition Confinement Fusion (ICF) simulation. Then, it allows to test

the capability of the multi-material CCALE-MOF algorithm with hybrid

rezoning.
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t = ti + 20× 10−6

t = ti + 145× 10−6

t = ti + 223× 10−6

t = ti + 350× 10−6

t = ti + 600× 10−6

Figure 22: Spherical Air-Helium shock/bubble interaction. Schlieren diagram of density.

Axi-symmetric CCALE-MOF results (on the left) compared to experimental results (on

the right) [12].
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t = ti + 20× 10−6

t = ti + 145× 10−6

t = ti + 223× 10−6

t = ti + 350× 10−6

t = ti + 600× 10−6

Figure 23: Spherical Air-Helium shock/bubble interaction. Mesh and material interface

evolution after the shock hits the bubble at time ti = 657.463× 10−6.
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Here we focus on the treatment of perturbed interfaces where compressible

Rayleigh-Taylor instabilities occur.

Let us consider a spherical ball of light fluid (r ∈ [0, 10]) initially surrounded

by a shell of heavy fluid (R ∈ [10, 12]) as depicted on Fig.21. For both fluid

the polytropic index is the same γl = γh =
5

3
. The initial pressures and

densities are (ρl, pl) = (0.05, 0.1) and (ρh, ph) = (1, 0.1). The implosion is

driven by imposing the following pressure law on the dense shell boundary

p∗(t) =

 10 if t ∈ [0, 0.5],

12− 4t if t ∈ [0.5, 3].

Finally, the interface between the light and the heavy fluids is initially per-

turbed according to the law

rperp = rp(1 + a0D(rp)Pl(cos(θp))

with the damping factor

D(rp) =


1− rp − ri

re − ri
if rp ∈ [ri, re],

1− ri − rp
ri

if rp ∈ [0, ri].

where rperi denotes the perturbed radius and a0 is the amplitude of the per-

turbation. Finally, Pl is the lth Legendre polynomial. In the sequel l = 10

and several values of a0 are considered from the non-perturbed case a0 = 0,

to weakly and strongly perturbed one with respectively a0 = 2 × 10−4 and

a0 = 1× 10−3.

Computations are made for two different meshes until the final time tf = 3.

The first one is a polar grid displayed on Fig.24-(left) composed of 90× 40

cells. Size of cells in the radial direction have been chosen respecting a mass
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radial spacing deduced from the equivalent one-dimensional test case. The

other grid, is obtained after an hybrid regularization for ωp = 1 of an un-

structured mesh initially paved with 3200 quadrangular cells respecting the

mass radial spacing (see Fig.24-(right)).

Non-perturbed case with a0 = 0. As a first study, we test the behavior of our

algorithm in axisymmetric geometries in pure Lagrange computation for both

meshes. As shown on Fig.25, numerical results for both meshes are similar.

Nevertheless, the method remains faster on the unstructured mesh. Indeed,

it has the advantage to not impose a drastic time step for computation due

to triangular cells with high aspect ratio in the polar mesh as shown in [11].

0 2 4 6 8 10 12
0

2

4

6

8

10

12

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 24: Spherical implosion. Initial polar (left) and unstructured (right) grids.

Weakly perturbed case with a0 = 2 × 10−4. Now, we investigate the capa-

bility of our CCALE-MOF algorithm to treat perturbed interfaces on both

non-structured and polar meshes. To this end, comparisons with pure La-

grangian results are first achieved for weakly perturbed interfaces imposing
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Figure 25: Spherical implosion without deformation. Mesh and density for polar (left)

and unstructured (right) grids at final time tf = 3.

a0 = 2×10−4. Here for both polar and hybrid meshes, the GCNS is used. As

demonstrated on Fig.26, for the polar mesh as well as for the non-structured

mesh, ALE results, especially concerning the interface deformation, are in

very good agreement to thoses obtained thanks to pure Lagrangian compu-

tations. Furthemore, one should note that for the ALE computation on polar

grid the quality of the mesh is improved near the origin. Indeed, the central

cells are not systematically shifted to the origin contrary to computations

achieved using CNS rezoning.

Strongly perturbed case with a0 = 1× 10−3. Finally, we perform a computa-

tion of this implosion for a more pertubated interface choosing a0 five times

greater than previously with a0 = 1×10−3. Due to mesh tangling, this is not

possible to purchase such a test case using only Lagrangian method whose

computation fails for t > tfail = 2.6. Here, only results obtained thanks to

our axisymmetric multi-material CCALE-MOF are presented. Contrary, to
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Figure 26: Spherical implosion with small deformation. Mesh and density for Lagrangian

(top) and ALE (bottom) computations at final time tf = 3 for both polar (left) and

unstructured (right) grids.

Lagrangian computations, the multi-material ALE simulations run without

any difficulties thanks to specific rezoning. For both grids, final results (see

Fig.27) are very close. In particular we note the Rayleigh-Taylor instability

has grown in a same way leading to similar interface shape deformation at

final time.
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Figure 27: Spherical implosion with important deformation. Mesh and density for ALE

computation for both polar (left) and unstructured (right) grids at final time tf = 3.

7. Conclusion and future work

In this paper, we have presented several extensions concerning a Cell-

Centered Arbitrary Lagrangian-Eulerian (CCALE) strategy using the Mo-

ment of Fluid (MOF) interface reconstruction devoted to the numerical sim-

ulation of multi-material compressible flows especially in axisymmetric ge-

ometry on both polar and Cartesian unstructured meshes. To this end, we

have introduced a simple and unified formulation of the Lagrangian scheme

relying on an area-weighted formulation, a multi-material MOF interface re-

construction, a new formulation of rezoning for both polar and Cartesian

grids and finally a general hybrid remap procedure for both axisymmetric

and Cartesian geometry. As demonstrated on several academical as well as

ICF-like test cases, the proposed method remains accurate and robust.

As future work, we plan to incorporate the proposed method in the multi-

physic code CHIC dedicated to the simulation of ICF experiment. The main
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goal is to treat eventually more general configurations notably coupling re-

alistic EOS, laser energy deposition, with multi-material hydrodynamics in

the lines of [5].

50



References

[1] H.T. Ahn, M.J. Shashkov: Multi-material interface reconstruction on

generalized polyhedral meshes, J. Comput. Phys., 226(2):2096-2132,

2007.

[2] H.R. Anbarlooei, K. Mazaheri: ’Moment of fluid’ interface reconstruc-

tion method in axisymmetric coordinates, Int. J. Numer. Meth. Biomed.

Engng., 27(10):1640-1651, 2011.

[3] A.J. Barlow, P.L. Roe: A cell centred Lagrangian Godunov scheme for

shock hydrodynamics, Comput. Fluids, 46(1):133-136, 2011.

[4] M. Berndt, J. Breil, S. Galera, M. Kucharik, P.-H. Maire, M. Shashkov:

Two-step hybrid conservative remapping for multi-material arbitrary

Lagrangian-Eulerian methods, J. Comput. Phys., 230(17):6664-6687,

2011.

[5] J. Breil, S. Galera, P.-H. Maire: Multi-material ALE computation in In-

ertial Confinement Fusion CHIC, Comput. Fluids, 46(1):161-167, 2011.

[6] J. Breil, S. Galera, P.-H. Maire: A two-dimensional VOF interface re-

construction in a multi-material cell-centered ALE scheme, Int. J. Nu-

mer. Meth. Fluids, 65(11-12):1351-1364, 2011.

[7] G. Carr, S. Del Pino, B. Desprs: A cell-centered Lagrangian hydrody-

namics scheme on general unstructured meshes in arbitrary dimension,

J. Comput. Phys., 228(14):5160-5183, 2009.

51



[8] V. Dyadechko, M. Shashkov: Reconstruction of Multi-material Inter-

faces from Moment Data, J. Comput. Phys., 227(11):5361-5384, 2008.

[9] J. K. Dukowicz: A general, non-iterative Riemann solver for Godunov’s

method, J. Comput. Phys., 61(1):119-137, 1985.

[10] S. Galera, J. Breil and P.-H. Maire: A 2D unstructured multi-material

Cell-Centered Arbitrary Lagrangian-Eulerian (CCALE) scheme using

MOF interface reconstruction, Comput. Fluids, 46(1):237-244, 2011.

[11] S. Galera, P.-H. Maire and J. Breil: A two-dimensional unstructured

cell-centered multi-material ALE scheme using VOF interface recon-

struction, J. Comput. Phys., 229(16):5755-5787, 2010.

[12] J.-F. Haas, B. Sturtevant: Interaction of weak shock wave with cylin-

drical and spherical gas inhomogeneities, J. Fluid. Mech., 181:41-76,

1987.

[13] A. Hadjadj, A. Kudryavtsev Computation and flow visualization in

high-speed aerodynamics, Journal of Turbulence, 6(16), 2005.

[14] C.W. Hirt, A. Amsden, and J.L. Cook: An arbitrary Lagrangian-

Eulerian computing method for all flow speeds, J. Comput. Phys.,

14:227-253, 1974.

[15] P. Knupp: Achieving finite element mesh quality via optimization of the

Jacobian matrix norm and associated quantities. Part I– a framework

for surface mesh optimization, Int. J. Numer. Meth. Engng, 48:401-420,

2000.

52



[16] M. Kucharik, J. Breil, S. Galera, P.-H. Maire, M. Berndt, M. Shashkov:

Hybrid remap for multi-material ALE, Comput. Fluids, 46(1):293-297,

2011.

[17] M. Kucharik, R.V. Garimella, S.P. Schofield, M.J. Shashkov: A compar-

ative study of interface reconstruction methods for multi-material ALE

simulations, J. Comput. Phys., 229(7):2432:2452, 2010.

[18] R. Loubère, P.-H. Maire, M. Shashkov, J. Breil, S. Galera: ReALE: A

reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput.

Phys., 229(12):4724-4761, 2010.

[19] P.-H. Maire: A high-order cell-centered Lagrangian scheme for com-

pressible fluid flows in two-dimensional cylindrical geometry, J. Com-

put. Phys., 228(18):6882-6915, 2009.

[20] P.-H. Maire: A high-order cell-centered Lagrangian scheme for two-

dimensional compressible fluid flows on unstructured meshes, J. Com-

put. Phys., 228(7):2391-2425, 2009.

[21] P.-H. Maire, R. Abgrall, J. Breil, J. Ovadia: A cell-centered Lagrangian

scheme for two-dimensional compressible flow problems, SIAM Journal

of Scientific Computing, 29(4):1781-1824, 2007.

[22] P.-H. Maire:Contribution to the numerical modeling of Inertial Confine-
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