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Summary: We present in this paper a thermodynamic model for flow

induced crystallization of a thermoplastic. The thermomechanical framework
(generalized standard materials) allows us to couple in a very natural way the

kinetics of crystallization with the mechanical history experienced by the
thermoplastic''’. In describing the viscoelastic properties of the polymer with

a molecular theory, we obtain a model for flow-induced crystallization that

couples the chain conformation to the kinetics of crystallization. This model

intends to be valid both for shearing and elongation. We present the

equations for two cases: Maxwell and Pom-Pom constitutive equations. We

finally illustrate our model with injection molding simulations achieved with a

dedicated Finite Element code.

Introduction

The aim of this paper is to present a model that couples the mechanical history
experienced by a polymer to its kinetics of crystallization. This model is obtained in the
thermodynamic framework of so called “standard materials” that is extended here to
molecular theories. In most existing theories (see PP for example), flow induced
crystallization is modelled with two independent steps. In a first one, kinetics laws are
parameterised by flow conditions (shear or elongation) and independently or in a second
step the mechanical materials properties (viscosity, relaxation time ...) are
parameterised by the degree of crystallinity. Our point of view is similar to the one
developed by McHughs and co-workers Bl We believe that it is possible to model flow
induced crystallization in the framework of irreversible thermodynamics. This means in

particular that the two-abovementioned steps are in fact not independent (in analogy

with Onsager reciprocal relations).

Notation

M tonsorial notation (M)

M:N trace of the matricial product ( TrM.N) or M Nj; )
t intrinsic time

dt  time material derivative
Ot  time partial derivative

Qe



&/8t  time upper convective derivative

D/ Dt general notation for a convective derivative
X thermodynamic internal variable
Y thermodynamic dual variable

¢ intrinsic dissipation

] free energy (indices “c” and “a” are relative to crystalline and amorphous phase)

¢ dissipation pseudopotential (index “N” refers to quiescent (natural)
crystallization and index “M” stands for mechanical dissipation)

Po density

extra stress tensor

strain rate tensor ( Dy = (vij + vj;)/2 )
% kinetic parameters
temperature
latent heat
degree of crystallinity
ultimate degree of crystallinity
relative crystallinity
intrinsic crystallinity
dual variable of relative crystallinity
dual variable of intrinsic crystallinity
conformation tensor
dual variable of conformation tensor
elastic shear modulus
elastic strain tensor for infinite strains
dual variable of elastic strain tensor
power-law behaviour materials constants
viscosity
relaxation time
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vK  number of chains per unit volume multiplied by dumbbell stiffness
v velocity field

Go,0p material parameter of the pompom model

A chain stretch

S chain orientation tensor

p dual variable of chain stretch

dual variable of chain orientation tensor
stretch relaxation time
backbone relaxation time

@
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Generalized standard materials:

The standard material formalism has been extensively used in solids mechanics to
describe elasticity, plasticity, damage as well as many different coupled phenomena. We
give here a new extension of this formalism, which enables us to account for molecular
parameters (conformation tensor, tube orientation or extension ...) in finite strains.

The main idea of this formalism is that two potentials are required to describe the



behaviour of a material. The first one is a thermodynamic potential (specific Gibbs free
energy \ for example), which allows us to quantify the ability of the material to store
energy. The second one is called a pseudo-potential, which allows us to quantify the

ability of the material to dissipate energy. The general procedure is the following:

Step 1: Identify which materials parameters X ' describe the storage of energy. Then
quantify this energy, (i.e. give a mathematical expression for y(X)) and calculate the
dual variable Y=p,0y/0.X .

Step 2: Identify a material derivative D/Dt. This derivative is chosen so that for
reversible processes (i.e. for short experimental time scales compared to materials
relaxation times), DX. /5t=Q. Then, if we write the specific dissipation

¢=nD-Y.dX/dt and we note that this dissipation must be zero as soon as the process is

reversible (i.e. as soon as 5{ /5[:(_)), we obtain an expression for the extra stress tensor

lled

Step 3: Identify dissipation pseudopotential @-=+(¥) such that the evolution equations
write DX, /5t=—6(p~/6Z 2 In order to satisfy the second law of thermodynamics (Clausius
Duhem inequality), this potential is assumed to be convex such that ¢'(¥=0)=0. The

derivation of this pseudopotential is not always obvious, but from known constitutive

relations it is usually possible to find it out.

This formalism allows us to extend the mechanical constitutive relation and to account

for different coupling phenomena like induced crystallization.

Induced crystallization— General framework

Quiescent crystallization

Noting x and x, the actual and ultimate degree of crystallinity,  (7) (resp. (7)) the
free energy for a purely crystalline (resp. purely amorphous) phase, L the latent heat of
crystallization, noting n (resp. y(T)) an adjustable scalar (resp. function of temperature),

we have shown in ! that Nakamura quiescent crystallization kinetics (1-2) can be put

!X can be either a set of scalar, vector or tensor variables

2 a(p‘/az is a kind of generalization of the M matrix of the GENERIC formalism



into the standard form (3) (4).

o= —-exp() M)

-‘zznfrrl

di (D @
W (TN =(t~exp(N)x, w (D) + (1 ~{-exp(-N e (D) 3)

A=p, G =exp(f)x (0D v D)=B(D) exph ~ L. i=Prewp() (@

and thus
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Flow induced crystallization

A «natural» model for induced crystallization consists in simply adding the different
potentials (index M referring to Mechanical constitutive behaviour and index N to
Nakamura’s kinetics). The coupling is achieved essentially by the fact that the

mechanical parameters depend on the degree of crystallinity.
Y=W(T.£)=yx(T.N) +¥§ © ©
¢r=03(T,A)+03"(2) ™
Superscripts ® and “mean that the rheological parameters (Maxwell relaxation time
and viscosity for example) are parameterised by the degree of crystallinity. Governing

equations are deduced from (6-7) in following the 3-abovementioned steps. In

particular, kinetics of crystallization writes:

=

Ao (TN+0R) ®)

Flow induced crystallization for a power-law viscous fluid:
A power-law viscous fluid is modelled here as a viscoelastic fluid undergoing very

small elastic strains ge.

Step 1 : W=y (T, ,52)=%( EE,) ©

_OWy _

=e

Step 2: If D denotes the strain rate tensor



Fo= gD ~D (1)
The dissipation writes then
dg De
b=3D-Yimp = G-DD- L (12)
Leading to: =Y=Gg,
Step 3: O @[ 2 o (13)

Where gd denotes the deviator of 1 (‘c; ==1,0,+7;)
So that the constitutive law is classically written, in neglecting the elastic strains:

De,_dg, 00y, y .
S e =  '22KQD:D) D (14)

Step 4: Assuming that m is not affected by crystallization, equation (8) then writes:

af _ B 1-% m d, d . d 1
E‘x(ny)[ln(‘/\—)} _2”*—%“(»;1—)(2 33 TA(EA‘T] (15)

Discussion

As a consequence of a kind of Onsager principle, the influence of flow on crystallization

is completely determined by the influence of crystallization on the flow (i.e. by the way

the rheological parameters depend on crystallinity through A)

In the Newtonian case (m = 1, K = n), the equations are explicit. As A is an
increasing function of the crystallinity «, it can be seen that there is two
mechanisms for crystallization. The first one has a thermal origin and is correctly
described by the Nakamura law. The second one has a mechanical origin: as
soon as the viscosity depends on A and as the thermal crystallization is not
instantaneous, there is a crystallization induced by the flow. This dependence is
equivalent to a dependence of the viscosity on a. An illustration of this point is
found on two different rheological tests assumed to be carried out with polymers
of different molecular length. In the first test we consider a shearing experiment
carried out at a constant shear rate. The viscosity is proportional to the molecular
length to a power of 3.4, thus one can deduce from (15), that the longer the
molecule is, the more effective is the flow induced crystallization. In a second

test, we consider a shear experiment, which is carried out at a constant shear



stress. The viscosity is then put at the denominator, which induces an opposite
influence: the longer the molecule is, the less important is the induced
crystallization.

- Figure 1 depicts the evolution of the shear viscosity with respect to time in a test
carried out at a constant temperature and shear rate. The function K(A)is
adjusted to fit at best the experiments of Titomanlio etbbb al. B! (Figure 2). The
qualitative evolution of viscosity with time is correctly predicted. It can also be
noted from Figure 3 that, though no induction time has been artificially
introduced into the model, an apparent induction time is correctly predicted: the
crystallization seems to take place after a certain time only, and this induction

time appears to be a decreasing function of strain rate.
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Figure 1 — Numerical predictions for increase of shear viscosity due to crystallization
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Figure 3 — Crystallinity induced by flow at different shear rates

Flow induced Crystallization for a viscoelastic fluid

Upper convected Maxwell fluid
If K denotes the elastic stiffness of the dumbbell, v the number of chains per unit

volume, G the elastic modulus of the Maxwell fluid and &/6t the upper convected

* Experimental results from Titomanlio et al. (1997)



derivative, then the evolution of the conformation tensor (¢ = <R . R> where R denotes
the end-to-end vector of the polymeric chain) is given by:

&_ 1

_1...G
5 oS ovEL (16)

Where /5t denotes the upper convected derivative

& dc
Sod gradyc—c.grad v 17
So that, if D denotes the strain rate tensor, the extra stress tensor writes:

=vKc-Gl (18)

5
With 8—%3:2@ and  21=G6 (19)

Step 1: The free energy depends on temperature T and conformation tensor c. So that,

in neglecting thermo elasticity:

PV, (@ = VK Tr(c)-Gn (det@)J (20)
=p 2t o]

Step 2: For the upper convected Maxwell model, the derivative D/Dt is the upper

convected one, so that a deformation is elastic if and only if &/8¢=0. The dissipation

writes then:
¢:(E—2£g):£—£:8g/81 21
So that the expression for the extra stress tensor is deduced as:
1=2zC (22)
Step 3: The pseudopotential is given by:
* (=G 2 G
0,2 26lndet(l vKé)'mTr@ 23)
De _&_0¢_ 1. G
So that E = g— ag ——Eg‘f'mz (24)

It is then straightforward to verify that equations (20) (22) (23) yield to the classical
expression (19) for the upper convected Maxwell model
Step 4: In assuming that the relaxation time depends predominantly on crystallinity,

equation (12) then writes:



d o
o)) o )
But

vk —+1]_ (26)

So that: a

__n B l_l _of_1 G G z X

Pom-Pom model

The Pom-Pom model exhibits two relaxation mechanisms; tube orientation S and

backbone stretch A. In its differential form, it can be written

=13G,6% s (28)
ds , 1 1
= =grady.S + S.grady” - 2(S:D)S - 4-(S - 11 (29)
! S L AL
da
ST=M8D) - el(x—l) (30)

Step 1: The free energy depends on S and A and can be written, following Ottinger
expression for the entropy .

oI, S)=— HIndetS+ 1H(?3 2In(A)) 31

with H:QG 0 (32)
associated dual variables are y =p0%—\§ :——é—H i_l (33)
nep, =1 (- 1) (34)

Step 2: The derivative DIDt is defined by:

ASY (dS .

5 S AL —d—t=——grade—-S.gradZ +2(S:D)yS

Dilo| |30 d (33)
3 d——X(S :D)

A/At is a convective derivative preserving the trace, which is “naturally” associated to
the upper convected derivative 8/t for a tensor of trace unity (Tr(S) = Sk = 1). More
precisely:

AS 8S s

A8 (St Tr(_) so that, Tr( ) 0 (36)

The dissipation writes then:



=1~y p (37

Or, with equations (33), (34), (35)

AS 3
b=lz-H2s +H1):D|- i -nlh (38)
AS 3
A2 _ LA = 39
But AL 0 and 5, 0 = 0=0 (39)
Thus 1=H¥s -1 (40)
Step_3:

. -2y
Pu (1) = e%, ~indet () - 1770 - &

+ el—s f{ﬁ—l+mjdm}

It is then straightforward to verify that equations (33-35) and (41) yield the classical

(41)

expression (28-30) for the Pom-Pom model.
Step 4: In assuming that the relaxation time depends predominantly on crystallinity,

equation (12) then writes:

AR A))[—!g—mdetﬂ Tr(y)—] 2 9(11\)) f(—h1+1/1+('”)j i (111('3) ")

Discussion
The most important point that we whish to discuss here are the following:

- As soon as we have chosen a model for the rheological behaviour of the polymer
and that we are able to express it into the thermodynamical “standard” form, we
are able to write a model for induced crystallization, which is “naturally”
associated to this rheological model. A physical interpretation for this is that
crystallization is related to the microscopic chain displacements and that the link
between chain conformation and macroscopic mechanical is precisely the
rheological constitutive relation. It can thus be understood that most of the
induced crystallization mechanisms are already contained inside the rheology.

- This is not the only way to do it. McHugh et al. for example in a similar spirit
(Generalized Hamiltonian Systems) decide to introduce a specific coupling
function aimed to fit at best the crystallization kinetics. In case of necessity, we

could do the same in our formalism, but we present here the simplest models.
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- This formalism allows one to achieve numerical simulations. Injection moulding
is simulated for example with the Pom-Pom model. Numerical procedure is
described in'®). Figure 4 shows (for an advancing front coming from left side to
right side), the evolution with time of the degree of crystallinity. At the end of
the moulding stage (last picture), the skin layer begins to solidify and exhibits a
crystallization affected by the flow. Figure 5 shows for the same experimental
situation, the evolution of the stretch A. Here again the skin layer is
predominantly stretched. Figure 6 shows the orientation of the molecules. Near

the flow front the fountain effects disorients the molecules, which are almost

oriented near the walls.

Figure 4 — Degree of crystallinity during the injection moulding process
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Figure 5 — Backbone stretch A in injection moulding
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Figure 6 — Orientation tensor in injection moulding: arrows indicate the prefer.reéi. ot
orientation (eigenvector associated with the highest eigenvalue) and contours indic
level of this maximum eigenvalue
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Conclusions

We have presented in this paper a general framework for flow-induced crystallization.
Much remains to do to reach a reasonable modelling. However we do believe that our
formalism simplifies the physics because it does not exhibit to many adjustable
parameters. Indeed, the only parameters are those that are related to the rheological
characterization of the polymer with respect to the degree of crystallinity. There are
obviously more phenomenological procedures, which are already able to model some
specific processes, but none of them (to our knowledge) are able to deal with extension

as well as with shear. This is one of the advantages of our approach.
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