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fusive behaviour model for a polymer matrix composite is proposed. Within
f moisture depends upon the stress state experienced by the material. The
ns are based on a thermo-dynamical approach. The model is, firstly, estab-
isotropic matrix. It is, thereafter, extended to impermeable unidirectional
usion relation has been treated through a two steps procedure. In a first step,
the maximum moisture absorption capacity and the stresses is assumed to
es that the diffusivity remains independent upon the mechanical states. In a
usivities and maximum moisture absorption capacity were expressed as
l states.
1. Introduction

Themoisture diffusion problem in polymermatrix composites is
often investigated through uncoupled models (Crank, 1975; Loos
and Springer, 1979, 1981; Shen and Springer, 1977; Tsai and Hahn,
1980; Jacquemin and Vautrin, 2002). Fick’s model in particular,
although easy to implement (numerically) has repeatedly shown its
limits when confronted to experimental data. This statement
especially applies to the context of simulating long-term diffusive
behaviour experienced by composite materials (Weitsman et al.,
1987; Whitney and Browning, 1978; Jiming and James, 1995). Dis-
crepancies between Fick’s law predictions and the practically
measured quantities are sometimes described as anomalies of
diffusion (Perreux et al., 2002; Avena and Bunsell, 1986). Some of
the so-called anomalous diffusive behaviours can be attributed to,
and explained by, a hygro-mechanical coupling, featuring relations
between the diffusion process and the internal mechanical states
experienced by the material (Henson and Weitsman, 1986;
Weitsman, 1990; Lee and Peppas, 1993).

In this study, a more realistic modelling of composites diffusive
behaviour taking into account a hygro-mechanical coupling is
investigated. Within this approach, the effective diffusivity of a
composite ply is related to the mechanical states experienced by its
very constituents, i.e. the organic matrix and the reinforcing fibres.
Such a hygro-mechanical coupling affects both the coefficients of
(F. Jacquemin).
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diffusion and the maximum moisture absorption capacity. The
principle of the model is founded on Larché and Cahn theory (1973,
1978, 1982), developed for investigating diffusion of gases in
metals. This theory has already been extended to pure polymers by
Neogi and Kim (1984), Neogi et al. (1986), Carbonell and Sarti
(1990), Derrien and Gilormini (2006, 2007). The specific case of
heterogeneous composites was investigated by Durier et al. (2006)
and (Derrien and Gilormini, 2007). Recently, another attempt in
this trend has been proposed by Youssef et al. (2009a,b), for a
laminate. In the present work, we attempt to study the diffusive
behaviour of composite with polymer matrix taking into account
the stressediffusion interaction owing to aso-called diffusive
coupled model. A coupled model description for a homogeneous
isotropic matrix based upon thermodynamics is firstly presented.
The model is thereafter extended to deal with impermeable uni-
directional fibre composites. As part of the developed approach, the
stressediffusion interaction will be treated through a two steps
procedure. In a first step, only the coupling between the maximum
moisture absorption capacity and the stresses is assumed to occur.
This implicitly involves that the diffusivity remains independent
upon the mechanical states. In a second step, both the diffusivities
and maximum moisture absorption capacity were expressed as
functions of the mechanical states.

2. Coupled model description

The diffusion flux is usuallymodelled using Fick’s law, which has
the advantage of being simple. Unfortunately, for materials such as
polymers and composites, which are very sensitive to moisture and



can undergo swelling, transport phenomena are more complex. In
fact, the diffusivity, assumed constant (for a given isotherm) in
Fick’s law, may in some cases, depend upon the moisture content.
Such an occurrence induces non-linearities, the appropriate rep-
resentation of which requires more advanced models.

The coupling between diffusion and stresses is often established
accordingly to Larché and Cahn (1973) theory. Larché and Cahn
studied the moisture concentration and internal stresses influence
on the local diffusion flow. In order to theoretically account for
these effects, the authors considered the moisture flux as inde-
pendent upon both the stresses and concentration gradients. On
the opposite, the traditional Fickian model neglects the effects,
induced by the mechanical states on the diffusion process. As a
consequence, Larché and Cahn theory constitutes an improvement
over Fick’s historical proposal. Nevertheless, it should be stressed,
that Larché and Cahn model was developed for dealing with the
issue of hydrogen diffusion in metals. Thus, this model applies well
to many materials, provided that they exhibit a linear isotropic
elastic behaviour. The state variables chosen for building this
theoretical approach are the strains, the entropy, and the chemical
species concentrations.

In the context of diffusion through heterogeneous solids, a po-
tential m, constant at equilibrium, can be defined. This potential is
the chemical potential, in the cases that fluids diffusing through
solids are considered. m is called the diffusion potential since its
gradients across the solid volume lead to the diffusion process. Note
that m depends on the type of diffusion, which can follow interstitial
as well as vacancy mechanisms, according to Larché and Cahn
(1973):

J ¼ �B
�
m; T; sij

�
Vm
�
m; sij

�
(1)

Where B is the diffusing chemical species mobility, which depends
upon local temperature, stress and concentration. In order to
simplify the theoretical approach, the dependence of B upon the
chemical states will be neglected throughout the present work. In
the specific case, corresponding to the conditions fulfilled in prac-
tice, when moisture diffuses in polymers, that interstitial diffusion
only is assumed to occur, at a fixed temperature, B satisfies the
following relation, given by Larché and Cahn (1982):

Bij ¼ Dij
m
RT

(2)

Where Dij is the diffusivity. Bij as well as Dij is a second order tensor,
note that B and D are symmetric tensors. The mass conservation
equation is expressed by:

vm
vt

þ VJ ¼ 0 (3)

Assuming the stress relaxation to be associated to time con-
stants significantly shorter than the transient part of the diffusion
process, a quasi static equilibrium can be considered to take place at
any moment. This additional, realistic assumption enables writing:

sij;j ¼ 0 (4)

Relation (5) is valid for small strains only:

(
ε
tot
ij ¼ ε

m
ij þ ε

ch
ij

ε
m
ij ¼ Sijklskl

(5)

Where Sijkl denotes the compliances tensor.
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The second part of the right member, εchij , denotes the free
strains induced by the hygroscopic expansion. The total strain is
expressed as a function of displacement through:

ε
tot
ij ¼

�
ui;j þ uj;i

�
2

(6)

The diffusion potential is determined from the study of the total
energy of the solid-diffusing chemical species system. In the case,
investigated in the present study, of the interstitial diffusion of
water molecules in polymers, the system total energy was defined
by Larché and Cahn (1973) as follows:

de0 ¼ sijdε
total
ij þ Tds0 þ 1

V0

X
mdm (7)

Where V0 stands for the molar volume of the diffusing chemical
species whose content is denoted by m, whereas s represents the
entropy. The symbol 0 relates to the reference state of the corre-
sponding quantity. Two Legendre transforms, involving either
Helmholtz free energy density f, or Gibbs function 4 can be
achieved:

f 0 ¼ e0 � Ts0

40 ¼ f 0 � sijε
tot
ij

(8)

Partial derivative symmetries relative to 40 yield the following
Maxwell equation:

� vm

vsij

!
m;T

¼ V0
vεtotij

vm

!
skl;T

(9)

Accounting for (5) in (9), the Maxwell equation can be rewritten
as:

vm

vsij

!
m;T

¼ �V0

�
vSijklskl
vm

�
skl;T

� V0
vεchij
vm

!
skl;T

(10)

By integrating with respect to the stress tensor, one obtains:

m
�
m; sij

� ¼ m
�
m;0

�� V0

��
vSijkl
vm

�
skl;T

$skl$sij þ bijsij

�
(11)

Where the coefficient of hygroscopic expansion was introduced, as
follows, through its definition:

bij ¼
vεchij
vm

!
skl ;T

(12)

m(m, 0) is the diffusing species chemical potential in the free
stress state. The second order factor involved in Equation (11) ex-
presses a possible effect of the diffusing species content on the
elastic stiffness. In the following of the present work, such a
dependence of the stiffness upon the moisture content will be
neglected. The interested reader can nevertheless refer to Youssef
et al. (2009a), where that very effect was thoroughly investigated.
Moreover, amorphous polymers exhibit isotropic properties, so that
bij ¼ bdij (where dij stands for the Kronecker symbol). The resulting
chemical potential linearly depends upon the stress tensor trace:

m
�
m; sij

� ¼ m
�
m;0

�� V0b trsij (13)

With initial and appropriate boundary conditions, the Equa-
tions (1, 3e6) and (11) constitute the general formulation of the
coupled diffusion problem. The displacements and the content



fields are unknown. When it is more convenient to work in terms
of stresses, Equations (5) and (6) are replaced by the compatibility
conditions. In this case, we get six equations for six components of
stress and content. A simultaneous solving of this set of equations
provides time-dependent evolutions of the stress and content
fields.

3. Application of the coupled model to the case of an
isotropic solid

3.1. Constitutive equations

Moisture diffusion in an isotropic polymer is considered in the
present section. The material is assumed to exhibit a coefficient of
moisture expansion b. Accounting for that additional assumption
yields the following simplified form for (12):

ε
ch
ij ¼ bDmdij (14)

Where Dm ¼ m � m0 (m0 standing for the initial chemical species
content in the solid).

BeltramieMitchell compatibility equations enable expressing
the studied problem in terms of stresses:

�
1þ n

�
sij; kk þ skk; ij þ Eb

�
1þ n

1� n
dijL; kk þ L; ij

�
¼ 0 (15)

These conditions are necessary and sufficient for ensuring the
solid medium continuity. They provide the displacement field from
the stresses. Equations (1) to (6) become:8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

J ¼ �BVm

B ¼ Dm
RT

vm
vt

þ VJ ¼ 0

sij;j ¼ 0

ε
tot
ij ¼ �n

E
trsijdij þ

1þ n

E
sij þ bDmdij

(16)

3.2. Determination of the diffusion law

The diffusion law is deduced from themoisture flux, which itself
is a function of the generalized chemical potential, the Expression
(1) can be written as follows:

J ¼ �Dmm
RT

"
vm
�
m; sij

�
vm

vm
vr

þ vm
�
m; sij

�
vtrsij

vtrsij
vr

#
(17)

In contrast to Fick’s model, Expression (17) shows that the flow
does not only depend upon the local content gradient, but also on
the content distribution over the entire solid. In others words,
unlike uncoupled approaches, the proposed model accounts for
nonlocal interactions. Moreover, moisture absorption yields inter-
nal mechanical states. According to the literature, any mechanical
state may affect the so-called “free volume” of the organic matrix
(Fahmy and Hurt, 1980; Neogi and Kim, 1984; Neogi et al., 1986;
Neumann and Marom, 1986; Henson and Weitsman, 1986; Gillat
and Broutman, 1978; Youssef et al., 2009b). Now, many authors
relate the diffusion coefficients of polymers to the mechanical
states through their free volume fraction (Fujita, 1961; Fahmy and
Hurt, 1980; Neuman and Marom, 1985; Gueribiz et al., 2011). The
resulting theoretical approach is thus often referred to as the free
volume theory.
3

In the following of the present study, two practical examples
will be investigated:

i) the case when the polymer matrix diffusivity Dm remains
independent upon the mechanical states, and ii), the case when Dm

varies as a function of the stresses.

3.2.1. Assuming the matrix diffusivity independent upon the stress
state

In the case that the polymer diffusivity is assumed independent
upon the mechanical state, one can write Dm (sij) ¼ Dm. The dif-
ferential equation describing the diffusion law is obtained from the
expression of mass conservation (3), expressed in cylindrical
coordinates:

Expressing the chemical potential through Equation (13) yields:

vm
vt

¼1
r

�
Dm

RT
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

��

þ Dm

RT
div
�
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

�� (18)

Equation (18) develops

vm
vt

¼ Dm

RT

"�
vm
vr

�2
 
vm
�
m; sij

�
vm

þm
v2m
�
m; sij

�
vm2

!

þm
vm
�
m; sij

�
vm

v2m
vr2

� V0b
vm
vr

vtrsij
vr

þm
v2trsij
vr2

!#

þ 1
r
Dm

RT
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

�
(19)

Considering:

m;1 ¼ vm
�
m; sij

�
vm

and m;2 ¼ v2m
�
m; sij

�
vm2 finally we get :

vm
vt

¼ Dm

RT

"
m;1

1
r
vm
vr

mþ
�
vm
vr

�2
þm

v2m
vr2

!
þ m;2m

�
vm
vr

�2

� V0b
vtrsij
vr

�
vm
vr

þm
r

�
þm

v2trsij
vr2

!#

(20)

3.2.2. Assuming matrix diffusivity dependent upon the stress state
In this case the flux is expressed by (17) substituting (17) in the

expression of mass conservation (3), one obtains:

vm
vt

¼1
r

�
Dm
�
sij
�

RT
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

��

þ 1
RT

div
�
Dm
�
sij
�
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

�� (21)

vm
vt

¼1
r

�
Dm
�
sij
�

RT
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

��

þ 1
RT

vDm
�
sij
�

vr

�
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

��

þ Dm
�
sij
�

RT
div
�
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

��
(22)



Which simplifies as follows:

vm
vt

¼ 1
r

�
Dm

RT
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

��

þ Dm

RT

"
vm
�
m; sij

�
vm

�
vm
vr

�2
þm

v2m
�
m; sij

�
vm2

�
vm
vr

�2

þm
vm
�
m; sij

�
vm

v2m
vr2

� V0b
vm
vr

vtrsij
vr

� V0bm
v2trsij
vr2

#

þ vDm
�
sij
�

vr
m
�
vm
�
m; sij

�
vm

vm
vr

� V0b
vtrsij
vr

�
(23)

Finally:

vm
vt

¼ 1
RT

�
Dm
�
sij
�

r
þ vDm

�
sij
�

vr

�
mm;1

vm
vr

� V0b
vtrsij
vr

þ vm
vt

¼ Dm
�
sij
�

RT

"
m;1

 �
vm
vr

�2

þm
v2m
vr2

!
þ m;2m

�
vm
vr

�2

� V0b
vm
vr

vtrsij
vr

þm
v2trsij
vr2

!#

(24)

In order to solve Equations (20) and (24), the global chemical
potential should be estimated. This particular task requires an
expression of the stress free chemical potential m(m, 0) of the
considered system diffusing chemical species/polymer matrix.

Larché and Cahn (1973) demonstrated that the chemical po-
tential at free state m(m, 0) may be taken as the chemical po-
tential at reference state m(m) for the case of an interstitial
diffusion. For polymers, this potential depends on the vitrous
transition temperature. Modelling the variation of chemical po-
tential and pressure as a function of content is treated according
to the nature of the couple polymer/solvent, since the sorption
isotherms may show considerable discrepancies from one sys-
tem to another. Details on the question of sorption isotherms can
be found in Gaudichet-Maurin (2005) works. In the case that gas
sorption in rubbery polymers, is considered, the relationship
between the content and the pressure is often assumed to satisfy
Henry’s Law. Considering the moist air as a mixture of ideal
gases and equating activity to content in the stress-free polymer
yields:

m
�
m
� ¼ mo þ RTln

�
m
m0

�
(25)

Relation (25) is not appropriate for modelling strong moisture
contents, since the sorption isotherm is often convex in such a
situation. Convex sorption isotherms can be more accurately rep-
resented by the so-called FloryeHuggins equation:

m
�
m; 0

� ¼ mo þ RT
h
ln
�
m
�þ �1�m

�þ cð1�mÞ2
i

(26)

Where c is the FloryeHuggins coefficient, varying from c ¼ 0.5 to
c ¼ 1.5 for rubbery or glassy polymers, respectively). Although
Equation (26) works well for most polymers, other laws, more
comprehensive, are often applied to the cases of either rubbery
polymers or elastomers. Among these laws, FloryeHugginse
Rehner relation takes into account the effects of macromolecular
chains cross-linking. Moreover, unlike the traditional Henry’s
4

law, it has the advantage of being valid for any value of the
solubility:

m
�
m; 0

� ¼mo þ RT
h
ln
�
m
�þ �1�m

�þ cð1�mÞ2
i

þ E
3r0

h
ð1�mÞ1=3 � ð1�mÞ=2

i (27)

The last part of the right side of the above written Equation (27)
takes into account the elastic distortion of the polymeric chains
induced by the infiltration of the diffusing species.
4. Extension of the coupled model to composites materials

4.1. Case of a matrix the diffusivity of which is independent of the
stress state

Let us consider a composite reinforced by unidirectional,
impermeable, infinitely long fibres, homogeneously embedded in a
polymer matrix. The elementary unit cell of such a material can be
schematized by two coaxial cylinders, one representing the fibre
surrounded by the second representing the matrix (Fig. 1). The fi-
bres have a revolution symmetry axis noted z.

A perfect adhesion is assumed between the fibre and thematrix.
Moreover, the unit cell can be supposed to be free of macroscopic
stresses. The mechanical problem posed on the REV cell can be
expressed as:���������������������

divðsÞ ¼ 0 Equilibrium in REV

s ¼ L : ½εðUÞ � bDm� Behavior in REV

ε ¼ 1
2
�
VUþVtU

�
Compatibility in REV

ks$nk ¼ 0 Load transmission at interface

kUk ¼ 0 Continuity of displacements at interface

hsi ¼ 0 Macroscopic stresses ðfree stateÞ

(28)

Where b stands for the coefficients of hygroscopic expansion,
whereas L is the elastic stiffness tensor. These two tensors are
assumed to be constant for both constituents.

Due to the cylindrical geometry of the problem, the resolution is
conducted in a cylindrical coordinate system defined by the vari-
ables (r,q,z) associated to the components of displacement vector
(w,v,u). Taking into account the problem geometry and the
considered load, the displacement field solution of the problem
(28) is written in each phase as follows:

� In the matrix

8><uðzÞ ¼ Amz
>:w
�
r
� ¼ Bmr þ Cm

r

(29)
� In the fibre

(
u
�
z
� ¼ Af z� �

f (30)

w r ¼ B r



ez

rf

rm

z

er

e

z

cS 

Fibre Matrix
rrf rm

0m

sm

M
oi

st
ur

e 
F

lu
x 

Fig. 1. Representative unit cell (REV) of unidirectional composite material.
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vm
vs

¼ 1
RT

"
m;1

1
z

vm
vz

mþ
�
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vz

�2

þm
v2m

vz2

!
þ m;2m

�
vm
vz

�2

� V0b
vtrsij
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�
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vz

þm
z

�
þm

v2trsij
vz2

!#
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zf ; s



¼ 0 Condition at fibre=matrix interface

mð1; sÞ ¼ Ms Boundary condition

mðz; 0Þ ¼ 0: Initial condition

(33)
The components of the strain tensor are then given by the
following relations:

����������������

εrr ¼ vwðrÞ
vr

εqq ¼ wðrÞ
r

εrq ¼ εrz ¼ εqz ¼ 0

εzz ¼ vuðzÞ
vz

(31)

In the case of an isotropic material, such as the polymer matrix,
the radial component wm of the displacement field satisfies the
following equation (Jacquemin et al., 2005):

r2
v2wm

vr2
þ r

vwm

vr
�wm ¼

kmr2
vDmm

vr
Lqq

(32)

Where: km ¼ Lzqbzz þ Lqrbqq þ Lqqbqq.

For isotropic material : bzz ¼ bqq ¼ b;

Lqq ¼ Eð1� nÞ
ð1þ nÞð1� 2nÞ;

Lqr ¼ Lzq ¼ En
ð1þ nÞð1� 2nÞ

The solution of the differential Equation (32) is the sum of the
solution of the homogeneous associated equation and a particular
solution. The radial component of the displacement field in the hy-
drophilic matrix is obtained by considering a polynomial approxi-
mation of the transient moisture content that can easily be obtained
through the classical finite difference method, as an example.
5

Finally, determination of the whole displacement field de-
pends on the determination of 5 constants, namely Am, Bm, Cm, Af

and Bf, which can be deduced from the following conditions:
displacement continuity at fibre/matrix interface, continuity of radial
stress at the interface fibre/matrix, boundary conditions, global stress
equilibrium condition. Then, the strains and stresses are easy to
deduce.

In order to solve the diffusion problem, a relation describing the
moisture sorption isotherm should be chosen.

Then the differential Equation (20) is transformed to dimen-
sionless equation using the following variables change: z ¼ r/rm,
s ¼ Dmt=r2m.

The diffusion problem to be solved writes as follows:
The reader should take care that the maximum moisture ab-
sorption capacity Ms at REV edges, although constant according to
the traditional Fickian model, varies over time within the coupled
model presented in this work. This evolution of Ms, occurring
during the transient phase of the diffusion comes from the
dependence of the chemical potential on the mechanical stresses
states the magnitude of which change as the sorption takes place.
At any time, the Ms value is obtained from equating the chemical
potentials of water at the interface between the ambient fluid and
the composite material.

A finite difference calculation, expressed in a cylindrical coor-
dinate system, is applied to the system (36) through an explicit
scheme, in which the moisture content at the edges varies during
the diffusion process.

Thematerial used for the simulation is a composite composed of
Epoxy matrix and glass fibre, the properties of both materials are
listed in Table 1:

Boundary condition corresponds to amoisture relative humidity
of 100%. For the value of constant a of Doolittle’s Equation (37), we
have taken the experimentally determined value for Epoxy resin
a ¼ 0.033. Forthe free-volume fractionvf0in the stress-free state
corresponding to the Epoxy, the value of 2.5% is taken (Neuman and
Marom,1985). The value of the molar volume of water V0is taken to
be 18 cm3/mol.

We start the calculation process by imposing an initial value of
the moisture at the edges of the REV. The bulk of the material is
considered as dry at the initial stage. Thus, at start, the diffusivity is
independent from the position (i.e. the depth). Besides, the initial
stress state is assumed to be null throughout the studied sample.
First, the diffusion problem is solved. As a result one obtains the
new moisture content profile in the material, as a function of the
depth. Then, the stresses are evaluated, and the mechanical states
are determined. Owing to the knowledge of both the moisture
content and the mechanical states, the diffusivity is calculated as a
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Table 1
Mechanical properties of glass fibre and epoxy resin N5028 (Jacquemin et al., 2005).

E (GPa) n r (kg/m3) b Mm (%)

Epoxy N5028 4.5 0.3 1200 0.6 5.9
Glass fibre 77.5 0.23 2540 0 0
function of the position as well as new boundary conditions. The
next loop of the calculation process is then initiated. This numerical
implementation is summarised below (Fig. 2).

Fig. 3 displays the evolution of the average moisture content in
the matrix normalized to the matrix content at saturation, for
different values of the matrix hygroscopic expansion varying from
0 to 0.6. The curves were plotted using Henry’s Law (25) for the
chemical potential of water in the polymer. According to Fig. 3, the
time dependent moisture content in the matrix as well as its
maximum moisture absorption capacity strongly depends on the
hygroscopic expansion coefficient. Thus, one of the main factors
controlling the magnitude of the hygro-mechanical coupled effects
over the moisture diffusion process is the mechanical states
induced by the expansion of the polymer in presence of water. The
predictions of the classical Fick’s law are reproduced by the coupled
model in the case that the condition b ¼ 0 is assumed during the
calculations. The deviation between Fick’s law and the predicted
results increases with b. The Fick’s law is obtained as particular case
when Henry’s law is applied for the chemical potential of water in
the polymer for b¼ 0. Notting that the curves in Figs. 3 and 4 do not
start with a neat straight line at the origin. This is due to the
coupling phenomenon between moisture diffusion and internal
mechanical states.
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Fig. 2. Algorithm of numerical simulation.
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Fig. 3. Evolution of the normalized average moisture content in the composite matrix
for different values of the coefficient of hygroscopic expansion (vf ¼ 0.7).
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Fig. 4 shows the evolution of the normalized average moisture
content in the composite matrix, as a function of the external
mechanical load applied to the edges of the unit cell. The sign and
magnitude of the applied load affects the maximum moisture ab-
sorption capacity reached in the permanent stage of the diffusion
process. However, the time necessary for reaching the permanent
regime and the overall shape of the curve are unaffected by an
additional external load. The predicted results are compatible with
other coupled approaches such as the free volume theory: a tensile
load increases the saturation level, whereas a compression de-
creases the maximum moisture absorption capacity (Fahmy and
Hurt, 1980; Neuman and Marom, 1985, 1986; Gueribiz et al., 2011).

Fig. 5 presents the results predicted by the coupled model as a
function of the theoretical expression considered for the chemical
potential. According to Fig. 5, the models of Henry and Florye
Huggins are very close together, although a small gap can be
noticed in the permanent regime. The model of FloryeHugginse
Rehner is however far from both the others. This is probably due to
the fact that this model takes into account the elastic distortion of
the polymer chains caused by the infiltration of solvent between
them, whereas neither Henry nor FloryeHuggins approach
consider this effect.

Fig. 6 displays the time-dependent profiles predicted by the
hygro-mechanical model for the moisture content, over the whole
depth of the studied sample. The change of maximum moisture
absorption capacity occurring at the edge of the specimen is clearly
shown on this figure. Figs. 7 and 8 show the corresponding profiles
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Fig. 5. Evolution of the normalized average moisture content in the organic matrix as a
function of the considered chemical potential (b ¼ 0.4, vf ¼ 0.7).
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Fig. 6. In-depth time-dependent profiles predicted by the coupled model for the
moisture content (b ¼ 0.4, vf ¼ 0.7).
obtained for the chemical potential expressed by (13) and using
Henry law for m(m, 0) and the hydrostatic stress, respectively. A
uniformvalue throughout the depth of the specimen is obtained for
any of the studied quantities, in the permanent stage of the mois-
ture diffusion process.
4.2. Case of a matrix the diffusivity of which depends on the
mechanical state

In the previous section, the diffusivity of the polymer matrix
was assumed to be independent from the mechanical state (thus it
was remaining constant throughout the diffusion process). In this
section we consider a more realistic coupling according to which
the matrix diffusivity depends on the internal mechanical state.
Compared to the previous case, the mechanical problem remains
unchanged, as well as its solution. The difference concerns the
hygroscopic problem to be solved, only:
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The dependence of the matrix diffusivity on the mechanical
state is evaluated on the basis of the free volume theory (Neuman
and Marom, 1985):

ln
�
Dm
�
sij
�

Dm

�
¼ a

1

v
f
0

� 1

v
f
s

!
(35)

Where a is a proportionality constant, depending on the
considered polymer. vf0 and vfs are respectively the free-volume
volume fractions in the stress-free state and at a given stressed
state. Dm stands for the coefficient of moisture diffusion of the
stress-free polymer, whereas Dm(s) is the corresponding coefficient
in the case that the polymer experiences a given mechanical state.
The relationship between vf0 and vfs is given by (Neuman and
Marom, 1985):
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Accounting for (36) in relation (35), one obtains (Gueribiz et al.,
2011):
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Fig. 9 shows the time-dependent profile predicted for the
average moisture content in the polymer as a function of the co-
efficient of hygroscopic expansion, in the case that the moisture
diffusion coefficient of the matrix depends on the mechanical state.
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Fig. 9. Time-dependent profile predicted for the average moisture content in the
polymer as a function of the coefficient of hygroscopic expansion (vf ¼ 0.7).
The chemical potential considered for achieving the computation
corresponds to Henry’s law. According to Fig. 9, the moisture con-
tent reached in the permanent stage strongly depends on the hy-
groscopic expansion coefficient. Low values of this coefficient are
associated to high moisture content at saturation. On the contrary,
strong hygroscopic expansion coefficients induce a decrease in the
maximum moisture absorption capacity at the end of the transient
stage of the diffusion process.

Fig. 10 displays a comparison between the predictions of the
hygro-mechanical coupled model obtained in the cases that either
the dependence of the diffusivity over the mechanical states is
accounted for or not. It was found that the saturation level (i.e. the
permanent regime) is not affected by coupling effects on the co-
efficient of moisture diffusion. On the contrary, accounting for an
interaction between the internal mechanical state and the diffusion
coefficient strongly changes the transient part of the diffusion
process, leading to a shorter transient stage.
5. Conclusion

In this work, a realistic diffusive behaviour is investigated. A
coupled modelling is proposed in which the diffusion process is
considered dependent on the stress state. The formalism of such
model is established based on a thermodynamic approach. The
simple case of a homogeneous isotropic matrix was investigated
8

and thereafter extended to unidirectional composite with an
impermeable fibre. Due to the complexity of the featured physical
processes, the coupling stressediffusion has been treated in two
stages: at first, only the coupling on the maximum moisture ab-
sorption capacity was considered, whereas the diffusivity was
assumed independent of the stress state whereas, in a second time,
the coupling was assumed to affect the diffusivity as well as the
maximum moisture absorption capacity. The numerical computa-
tions show that the hygroscopic expansion coefficient is the
parameter which has the most effect on coupling. In this study, it
appears that coupling only on the content tends to increase the
time required to attain the permanent regime compared to a
coupling on both the maximum moisture absorption capacity and
diffusivity, although that saturation levels remain unchanged.
Moreover, this modelling shows that the saturation levels are lower
compared to the uncoupled model and that this one overestimates
the corresponding stress levels.
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Nomenclature

J: Moisture flux
B: The diffusing chemical species mobility
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m: The diffusion chemical potential
m: Moisture content
T: Temperature
s: Stress tensor
ε: Strain tensor
Sijkl: The compliances tensor
w,v,u: Displacements
Dij: The diffusivity tensor
e: The system total energy
s: Entropy
V0: The molar volume
f: Helmholtz free energy density
4: Gibbs function
bij: The hygroscopic expansion tensor
Lijkl: The stiffness tensor
trsij: Trace of stress tensor
E: Young’s modulus
n: Poisson’s coefficient
R: Ideal gas constant
M: Average moisture content
Mm: Moisture content at saturation
Ms: The maximum moisture absorption capacity at RVE edges
vf0 vfs: The free-volume volume fractions in the stress-free state and at a given

stressed state
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